JP3818476B2 - Attenuator - Google Patents

Attenuator Download PDF

Info

Publication number
JP3818476B2
JP3818476B2 JP18667098A JP18667098A JP3818476B2 JP 3818476 B2 JP3818476 B2 JP 3818476B2 JP 18667098 A JP18667098 A JP 18667098A JP 18667098 A JP18667098 A JP 18667098A JP 3818476 B2 JP3818476 B2 JP 3818476B2
Authority
JP
Japan
Prior art keywords
damping device
guide
inner cylinder
damping
rotating inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18667098A
Other languages
Japanese (ja)
Other versions
JP2000017885A (en
Inventor
敬哉 雉本
英二 黒田
哲之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP18667098A priority Critical patent/JP3818476B2/en
Publication of JP2000017885A publication Critical patent/JP2000017885A/en
Application granted granted Critical
Publication of JP3818476B2 publication Critical patent/JP3818476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震構造物等に用いられ地震等のエネルギーを減衰させる減衰装置に関し、特に構造が簡単且つ小型で減衰効果の大きい減衰装置に関する。
【0002】
【従来の技術】
一般に、減衰装置は、相対変位する2点(物体)間に装着され、一方の振動源側から他方の制振物体側へ伝達される振動エネルギーを熱エネルギーに変換消失することにより減衰効果を達成するよう構成されている。
【0003】
前記、一般通常の減衰装置は、装置内に形成される粘性体チャンバ内に、振動に伴って発生される相対変位部分を収容することにより、その粘性摩擦抵抗を利用して減衰効果を達成するように構成されており、この場合、前記相対変位部分の相対変位量は実際の変位量(相対変位する2点間の変位量)より増幅手段を介して増幅されるよう構成されている。従って、減衰効果も増大させることができる。因みに、減衰効果は、相対変位(動作)する2部分の間の対向面積の1乗および相対速度のα乗に比例する。
【0004】
【発明が解決しようとする課題】
しかしながら、前述した従来の減衰装置には、次に述べるような難点があった。すなわち、前記従来の減衰装置は、前述のように、相対変位部分を増幅する手段を有するのが一般であるが、この変位増幅手段は、通常ヒンジ・ジョイント機構で連結されるテコ手段から構成されていた。このようなテコ手段は、その増幅倍率(相対変位間の対向面積および相対速度の増大比率)が充分でなく、しかも構成が複雑で減衰装置を大型化すると共に作動精度を低下する難点を有していた。また、この種の減衰装置において、粘性体チャンバ内の粘性体の中心部分が利用されず減衰効果の小さいものもあった。
【0005】
そこで、本発明の目的は、簡単小形な構成でしかも大きな増幅倍率を達成しえる変位増幅手段、すなわち簡単小形な構成でしかも大きな変位増幅倍率を得ることで、また中心部の粘性体を利用することにより、大きな減衰効果を発揮する減衰装置を提供することにある。
【0006】
【課題を解決するための手段】
先の目的を達成するために、本発明に係る減衰装置は、相対変位可能に互いに接続される第1および第2の連結部材からなり、この第1の連結部材は、少なくともその接続側に案内ねじ部が形成され、この案内ねじ部に係合すると共に案内ねじ部との相対変位に基づき案内ねじ部上を回転摺動するよう軸支される案内ナットと、前記案内ねじ部より大きな径を有すると共にこの径より充分大きな軸方向長さとを有し、前記案内ナットに一端部が固着され他端部が開放端である円筒形状の回転内筒とからなり、前記第2の連結部材は、前記回転内筒および案内ナットを収容する固定外筒からなり、少なくとも前記固定外筒の内壁と前記回転内筒との間隙に減衰用の粘性体が充填された減衰装置であり、前記固定外筒の中心に前記回転内筒の中空部内径より小さな外径を有し、且つ前記案内ナット回転時に案内ねじ部と間隔を有する位置まで軸方向に沿って延在する細長体を有すると共に、回転内筒の内壁と細長体との間隙に減衰用の粘性体を充填することを特徴とする。
【0007】
この場合、細長体は円柱棒または多角柱棒に構成されるようにしてもよく、細長体表面に突起物を設けるように構成してもよい。前記した減衰装置を建築構造物における構造枠体の対向角部間に、あるいは建築構造物における基礎とこの基礎上の建築構造物との間に圧縮または引張り可能に配設するように構成してもよい。
【0008】
本発明に係る減衰装置は、その変位増幅手段が、第1の連結部材の案内ねじ部に螺合する案内ナットで回転摺動される回転内筒から形成されている。従って、変位増幅手段の前述した相対速度増大比率Nは、下記式
N=πD/р
但し、pは案内ねじ部のねじピッチ
Dは回転内筒の外径
において、pおよびDを適宜の値に設定することにより適宜充分な大きさに選定することができる。仮に、pおよびDを2および10cmに設定するとNは15.7倍に増幅される。この場合、前記減衰装置を45度方向のブレースとして使用すると前記Nは更に22.2倍に増幅される。
【0009】
また、同じく前述した相対変位する対向面積Aも、回転内筒の前記外径Dおよび長さLを適宜の値に設定することにより同じく適宜充分な大きさに選定されることができる。更に、回転内筒中空部と細長体とが有する対向面積により、更に大きな減衰効果を発揮することが可能となる。なお、これらによって達成される前記減衰装置の減衰効果は、後述する実施例において更に詳述される。しかも、この変位増幅手段は、ねじ−ナット機構であるため、簡単且つ小形に構成されることができる。すなわち、本発明に係る減衰装置は、その優れた特性から簡単且つ小形に構成することができると共に、充分大きな減衰効果を発揮することができる。
【0010】
次に、本発明に係る減衰装置の一実施例を添付図面を参照して以下詳細に説明する。図1において、本発明に係る減衰装置50は、相対変位する2点L1、L2間を連結するよう互いに接続される第1および第2の連結部材10および20からなり、これら両連結部材10、20は、それぞれの一端部を前記2点L1、L2の1つにそれぞれ固定される。第1の連結部材10は、その接続側に案内ねじ部10aが形成され、このねじ部10a上には、ボールベアリング12を介して螺合される案内ナット14と、案内ねじ部10aより大きな径を有すると共にこの径より充分大きな軸方向長さとを有し、案内ナット14に一端部が固着され他端部が開放端である円筒形状の回転内筒16とからなる。
【0011】
第2の連結部材20は、その接続側を回転内筒16および案内ナット14を収容するチャンバ22を有する固定外筒24からなり、固定外筒24の中心に軸方向に沿って細長体60を延在させ、チャンバ22内には減衰用の粘性体26を充填するよう構成する。細長体60は回転内筒16の中空部内径より小さな外径を有し、且つ、案内ナット14が回転する時に案内ねじ部10aと間隔61を有する位置まで延在する。減衰装置50は前記したように概略円柱形をしており、減衰棒と称されることもある。
【0012】
ここで、回転内筒16は、一端部が案内ナット14に固着され他端部が開放端であり、案内ナット14は固定外筒24の開放端に固定されるケーシング32内に収納され、ケーシング32の上下両対接面にそれぞれボールベアリング28、30を配設されている。このため、回転内筒16は2点L1、L2間の相対変位から発生される圧縮および引張りの両荷重に対応して、案内ナット14を介して案内ねじ部10a上を回転且つ図示上下方向へ摺動するよう軸支されている。
【0013】
以下、本発明の減衰装置の減衰効果について詳細に説明する。減衰装置50を、建築構造物72の2点L1、L2間に架設するよう配置した模式説明図(図2)、および概略切欠断面図(図3)において、
建築構造物の卓越(基本)振動数 n(Hz)
減衰装置50の軸方向変形(最大) d(cm)
案内ねじ部10aのねじピッチ p(cm)
片振幅時間Δt(=1/2n)内の回転数 m=d/p
回転内筒16の回転数(1秒間) f=2dn/p
細長体60の外径 DH(cm)
回転内筒16の内径 DK(cm)
回転内筒16と細長体60の対向部長さ L(cm)
回転内筒16内表面の細長体60との対向部の
表面積 A=πDH
とすると、回転内筒16の内表面の角速度ω(rad/sec)は、下記式(1)
ω=2πf=4πdn/p (1)
によって、また、回転内筒16の内周速度v(cm/sec)は、下記式(2)
v=2πdnDK/p (2)
によって、それぞれ表される。
このような減衰装置において、その粘性体による減衰力Qd(kg)は一般に、下記式(3)
Qd=a・μ・(dv/dy)α・A (3)
但し、a:係数
μ:粘性体の粘度(kg・sec/cm2)
dv:2面(回転内筒16内面と細長体60外面)間の速度差(cm/sec)
dy:2面(回転内筒16内面と細長体60外面)間の隙間(cm)
A:2面(回転内筒16内面と細長体60外面)間の対向面積(cm2
で与えられるので、単位隙間(1cm)当たりの減衰力は、上記式(3)に前記式(2)を代入して得られる下記式(4)
Qd=a・μ・A・(2πdnDK/p)α (4)
から算定することができる。
【0014】
ここで、実験結果として下記概算値
a:0.0843(μ30) 0.483 (但しμ30は温度30℃の時の粘性体の粘度)
μ:7.1(μ30)0.88・e 0.07t(但しtは温度℃)
α:0.94
が得られており、すなわち簡略化された関係式として下記式(5)
【数1】

Figure 0003818476
が得られている。前記(1),(2)から仮に
n=1(Hz)
d=5(cm)
p=0.5(cm)
K=10(cm)
H= 8(cm)
L=100(cm)
dy=1(cm)
μ30=100poise=1/(9.8×103)(kg・sec/cm2
t=20(℃) とすると、すなわち
f=2dn/p=20(rps)
A=πDHL=π×8×100=2513(cm2
v=2πdnDK/p=2×π×5×1×10/0.5=628(cm/sec)
の場合を想定すると、前記減衰力Qdは、上記式(5)から、下記の様に算定される。
【0015】
【数2】
Figure 0003818476
すなわち、本発明の細長体60を回転内筒16の内側に軸方向に延在させる減衰装置によれば、直径8cmおよび対向部長さ100cmの細長体を用いて約3.2tonの大きな減衰力を得られることがわかる。従来の減衰装置においては、中心部の粘性体は静止しており、この減衰力を利用していなかった。
【0016】
ここで、前記と同一諸条件下で、回転内筒16外面と固定外筒24内面の対向する面間に発生する減衰力を算定してみる。
回転内筒16外面と固定外筒24内面の対向部表面積を A′
回転内筒16外面と固定外筒24内面間の速度差を v′
回転内筒16と固定外筒24の対向部長さ L′
回転内筒の外径を D
として、 L′=100(cm) D= 10(cm)とすると、前記算出式より
A′=πDL′=π×10×100=3141(cm2
v′=2πdnD/p=2×π×5×1×10/0.5=628(cm/sec)
dy′:2面(固定外筒24内面と回転内筒16外面)間の間隙とし、
dy′=1(cm)とすると減衰力は(5)式より以下のように算出される。
【0017】
【数3】
Figure 0003818476
となり、約4tonの大きな減衰力を得られる。
【0018】
このように、上記のような減衰装置において、回転内筒16外面と固定外筒24内面間の粘性体により、約4tonの大きな減衰力が得られ、さらに、本発明の細長体60を軸方向に延在させることで、合計約7.2tonの減衰力を得られる。
【0019】
このように、本発明に係る減衰装置によれば、ねじ部の直線変位を回転運動に変換する簡単且つ小形な構成で、従来のこの種の減衰装置に比較し極めて大きな減衰効果を容易に達成することができる。また、この減衰装置は、比較的構造物の大きさを選ばずに容易に適用されると共に、圧縮および引張りの両荷重に対して適用される利点を併せ有する。
【0020】
なお、本発明の減衰装置50の軸方向に延在する細長体は、種々に変更されることができ、以下にその変形例を示す。図4(a)に示す実施形態は、多角柱として6角柱の棒から形成された細長体62の例を示している。図4(b)に示す変形例は、図1に示す実施形態における回転内筒16に被覆される細長体60の表面に、突起物66を形成された細長体64である。なお、この2つの実施形態においても、先の実施形態と同様の作用、効果が発揮されることは明らかである。
【0021】
また、本発明に係る減衰装置は、前述したように、比較的大きな構造物にも小さな組立物にも広く適用される。次に、本発明に係る減衰装置を建築構造物に適用した場合の実施例について以下説明する。
【0022】
図5〜7の適用例において、減衰装置50は建築構造物72の構造枠体74における対向角部の取付プレート74a、74bの間にそれぞれ連結部材10、20を介して圧縮および引張り可能に配設されている。従って、地震等で発生する構造枠体74の歪み変位によって伸縮される減衰装置50の減衰効果により構造枠体74内の前記歪みエネルギーが吸収されて、建築構造物72の振動が有効に制振され得る。このように、本発明に係る減衰装置によれば、前述したように、簡単且つ、小形に構成されると共に充分に大きな減衰効果を発揮することができる。
【0023】
図8の適用例においては、減衰装置50は基礎76と、この基礎上76上に免震パッド78、78を介して支持される建築構造物80との間に、それぞれの支持柱76aおよび80aを介して圧縮および引張り可能に配設されている。従って地震等により発生される基礎76と建築構造物80との間の水平方向の相対変位によって、伸縮される減衰装置50の減衰効果により、基礎76と建築構造物80との間の水平方向の相対変位エネルギーが吸収されて、建築構造物80の振動が有効に減衰される。
【0024】
以上、本発明を好適な一実施例について説明したが、本発明は前記実施例に限定されることなく、その精神を逸脱しない範囲内において多くの改良変更が可能である。例えば、細長体は円柱棒の例を示したが、パイプ状の棒で構成してもよく、減衰装置内のボールベアリングは、適宜別の軸支手段に変更し得る。
【0025】
【発明の効果】
以上説明したように、本発明に係る減衰装置は、相対変位可能に互いに接続される第1および第2の連結部材からなり、この第1の連結部材は、少なくともその接続側に案内ねじ部が形成され、この案内ねじ部に係合すると共に案内ねじ部との相対変位に基づき案内ねじ部上を回転摺動するよう軸支される案内ナットと、前記案内ねじ部より大きな径を有すると共にこの径より充分大きな軸方向長さを有し他端部が開放端であり、前記案内ナットに一端部が固着されこの案内ナットを介して回転摺動可能に挿着される回転内筒とからなり、前記第2の連結部材は、前記回転内筒および案内ナットを収容する固定外筒からなり、固定外筒内面には、回転内筒中空部に被覆され軸方向に沿って細長体が延在すると共に、少なくとも前記固定外筒の内壁と前記回転内筒、および回転内筒の内壁と細長体との間隙に、減衰用の粘性体を充填するよう構成した。すなわち、本発明の前記減衰装置は、その減衰機構が案内ねじ部の直線変位を回転内筒の回転摺動運動に変換するように構成されるので、その変位変換倍率(相対速度増大比率等)が、従来のこの種の装置に比較して大幅に増大される。従って、本発明の減衰装置によれば、簡単且つ小形な構成でしかも大きな減衰効果が容易に達成し得る。
【0026】
本発明に係る減衰装置を、建築構造物における構造枠体の対向角部間に圧縮または引張り可能に配設すると、その減衰装置が前述したように簡単且つ小形に構成されると共に十分な減衰力を発揮することができるので、建築構造物の振動等を効率よく減衰させることができる。また、本発明に係る減衰装置を、建築構造物における基礎とこの基礎上の構造物との間に圧縮または引張り可能に配設すると、その減衰装置が前述したように簡単且つ小形に構成されると共に十分な減衰力を発揮することができるので、基礎と建築構造物との間の振動等を効率よく減衰させることができる。
【図面の簡単な説明】
【図1】本発明に係る減衰装置の一実施例を示す断面図である。
【図2】本発明に係る減衰装置を建築構造物の2位置間に架設するよう配置した模式的説明図である。
【図3】図2における一部切欠断面図である。
【図4】(a)は多角柱の棒で形成された細長体の実施形態の斜視図、(b)は円柱の棒で形成された細長体に突起を設けた他の実施形態の斜視図である。
【図5】建築構造物における構造枠体の対向角部間に、本発明に係る減衰装置を適用する場合の概略正面図である。
【図6】図5におけるA部拡大図である。
【図7】図5におけるB部拡大図である。
【図8】建築構造物における基礎と建築構造物との間に、本発明に係る減衰装置を適用する場合の概略構成図である。
【符号の説明】
10 第1の連結部材
10a 案内ねじ部
12 ボールベアリング
14 案内ナット
16 回転内筒
20 第2の連結部材
22 チャンバ
24 固定外筒
26 粘性体
28、30 ボールベアリング
32 ケーシング
50 減衰装置
60、62、64 細長体
61 間隔
66 突起物
72 建築構造物
74 構造枠体
76 基礎
78 免震パッド
80 建築構造物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an attenuation device that is used in seismic isolation structures and the like and attenuates energy such as earthquakes, and more particularly to an attenuation device that has a simple structure, a small size, and a large damping effect.
[0002]
[Prior art]
Generally, a damping device is mounted between two points (objects) that are relatively displaced, and achieves a damping effect by converting the vibration energy transmitted from one vibration source side to the other damping object side into heat energy and disappearing. It is configured to
[0003]
The general ordinary damping device achieves a damping effect by using a viscous frictional resistance by housing a relative displacement portion generated by vibration in a viscous body chamber formed in the device. In this case, the relative displacement amount of the relative displacement portion is configured to be amplified via the amplifying means from the actual displacement amount (the displacement amount between the two relatively displaced points). Therefore, the attenuation effect can be increased. Incidentally, the damping effect is proportional to the first power of the opposing area between the two portions that are relatively displaced (moved) and the α power of the relative velocity.
[0004]
[Problems to be solved by the invention]
However, the above-described conventional damping device has the following problems. That is, as described above, the conventional attenuation device generally has means for amplifying the relative displacement portion, and this displacement amplifying means is usually composed of lever means connected by a hinge joint mechanism. It was. Such lever means has a drawback that its amplification factor (opposite area between relative displacements and increase rate of relative speed) is not sufficient, the structure is complicated, the damping device is enlarged, and the operation accuracy is lowered. It was. Further, in this kind of damping device, there is a damping device having a small damping effect because the central portion of the viscous body in the viscous body chamber is not used.
[0005]
Accordingly, an object of the present invention is to provide a displacement amplifying means that can achieve a large amplification magnification with a simple and small configuration, that is, to obtain a large displacement amplification magnification with a simple and small configuration and to use a viscous body at the center. Accordingly, an object of the present invention is to provide an attenuation device that exhibits a large attenuation effect.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the damping device according to the present invention includes first and second connecting members connected to each other so as to be relatively displaceable, and the first connecting member is guided to at least the connecting side thereof. A screw nut is formed, and a guide nut that is pivotally supported on the guide screw portion so as to rotate and slide on the basis of a relative displacement with the guide screw portion and a larger diameter than the guide screw portion. And having an axial length sufficiently larger than this diameter, and having a cylindrical rotating inner cylinder having one end fixed to the guide nut and the other end being an open end, and the second connecting member is A damping device comprising a fixed outer cylinder that accommodates the rotating inner cylinder and a guide nut, wherein at least a gap between the inner wall of the fixed outer cylinder and the rotating inner cylinder is filled with a viscous viscous material. The hollow of the rotating inner cylinder in the center of An elongated body having an outer diameter smaller than the inner diameter and extending along the axial direction to a position having a distance from the guide screw portion when the guide nut is rotated, and in the gap between the inner wall of the rotating inner cylinder and the elongated body It is characterized by filling a viscous body for damping.
[0007]
In this case, the elongated body may be configured as a cylindrical bar or a polygonal column bar, or may be configured such that a protrusion is provided on the surface of the elongated body. The damping device described above is configured to be compressible or tensionable between opposing corners of the structural frame in the building structure or between the foundation in the building structure and the building structure on the foundation. Also good.
[0008]
In the damping device according to the present invention, the displacement amplifying means is formed of a rotating inner cylinder that is slidably rotated by a guide nut screwed into the guide screw portion of the first connecting member. Therefore, the aforementioned relative speed increase ratio N of the displacement amplifying means is given by the following formula N = πD / р
However, p can be selected to be a sufficiently large size by setting p and D to appropriate values, with the screw pitch D of the guide screw portion being the outer diameter of the rotating inner cylinder. If p and D are set to 2 and 10 cm, N is amplified 15.7 times. In this case, when the attenuation device is used as a brace in the 45 degree direction, the N is further amplified 22.2 times.
[0009]
Similarly, the above-described opposed area A that is relatively displaced can also be selected to have a sufficiently large size by setting the outer diameter D and the length L of the rotating inner cylinder to appropriate values. Furthermore, a larger damping effect can be exhibited by the facing areas of the rotating inner cylinder hollow portion and the elongated body. In addition, the attenuation effect of the attenuation device achieved by these will be described in more detail in the embodiments described later. Moreover, since this displacement amplifying means is a screw-nut mechanism, it can be configured simply and in a small size. That is, the attenuation device according to the present invention can be configured simply and compactly from its excellent characteristics, and can exhibit a sufficiently large attenuation effect.
[0010]
Next, an embodiment of an attenuation device according to the present invention will be described in detail with reference to the accompanying drawings. In FIG. 1, the damping device 50 according to the present invention includes first and second connecting members 10 and 20 connected to each other so as to connect two points L1 and L2 that are relatively displaced. 20 is fixed at one end to one of the two points L1 and L2. The first connecting member 10 has a guide screw portion 10a formed on the connection side thereof, a guide nut 14 screwed through the ball bearing 12 on the screw portion 10a, and a diameter larger than that of the guide screw portion 10a. And a cylindrical rotating inner cylinder 16 having an axial length sufficiently larger than this diameter, one end fixed to the guide nut 14 and the other end being an open end.
[0011]
The second connecting member 20 includes a fixed outer cylinder 24 having a chamber 22 that accommodates the rotating inner cylinder 16 and the guide nut 14 on the connection side, and an elongated body 60 is formed along the axial direction at the center of the fixed outer cylinder 24. The chamber 22 is configured to be filled with a damping viscous body 26. The elongated body 60 has an outer diameter smaller than the inner diameter of the hollow portion of the rotating inner cylinder 16 and extends to a position having a gap 61 with the guide screw portion 10a when the guide nut 14 rotates. The damping device 50 has a substantially cylindrical shape as described above, and is sometimes referred to as a damping rod.
[0012]
Here, one end of the rotating inner cylinder 16 is fixed to the guide nut 14 and the other end is an open end. The guide nut 14 is housed in a casing 32 that is fixed to the open end of the fixed outer cylinder 24. Ball bearings 28 and 30 are arranged on both upper and lower surfaces of the bearing 32, respectively. For this reason, the rotating inner cylinder 16 rotates on the guide screw portion 10a via the guide nut 14 in the vertical direction in the figure in response to both compression and tension loads generated from the relative displacement between the two points L1 and L2. It is pivotally supported to slide.
[0013]
Hereinafter, the attenuation effect of the attenuation device of the present invention will be described in detail. In the schematic explanatory view (FIG. 2) and the schematic cutaway cross-sectional view (FIG. 3) in which the damping device 50 is arranged to be installed between the two points L 1 and L 2 of the building structure 72.
Excellent (basic) frequency of building structure n (Hz)
Axial deformation of damping device 50 (maximum) d (cm)
Screw pitch of guide screw 10a p (cm)
Number of rotations within one amplitude time Δt (= 1 / 2n) m = d / p
Number of rotations of the rotating inner cylinder 16 (1 second) f = 2dn / p
Outer diameter of elongated body DH (cm)
Inner diameter of rotating inner cylinder 16 D K (cm)
Opposite length L (cm) of the rotating inner cylinder 16 and the elongated body 60
Surface area of the inner surface of the rotating inner cylinder 16 facing the elongated body 60 A = πD H L
Then, the angular velocity ω (rad / sec) of the inner surface of the rotating inner cylinder 16 is expressed by the following equation (1).
ω = 2πf = 4πdn / p (1)
Further, the inner peripheral speed v (cm / sec) of the rotating inner cylinder 16 is expressed by the following equation (2).
v = 2πdnD K / p (2)
Respectively.
In such a damping device, the damping force Qd (kg) by the viscous body is generally expressed by the following equation (3)
Qd = a · μ · (dv / dy) α · A (3)
However, a: Coefficient μ: Viscosity of viscous material (kg · sec / cm 2 )
dv: Speed difference (cm / sec) between two surfaces (the inner surface of the rotating inner cylinder 16 and the outer surface of the elongated body 60)
dy: gap (cm) between two surfaces (the inner surface of the rotating inner cylinder 16 and the outer surface of the elongated body 60)
A: Opposing area (cm 2 ) between two surfaces (the inner surface of the rotating inner cylinder 16 and the outer surface of the elongated body 60)
Therefore, the damping force per unit gap (1 cm) can be obtained by substituting the above equation (2) into the above equation (3).
Qd = a · μ · A · (2πdnD K / p) α (4)
It can be calculated from
[0014]
Here, the following approximate values as experimental results a: 0.0843 (μ30) - 0.483 ( provided that the viscosity of the viscous material when the Myu30 temperature 30 ° C.)
μ: 7.1 ( μ30 ) 0.88 · e - 0.07t (where t is temperature ° C)
α: 0.94
In other words, as a simplified relational expression, the following expression (5) is obtained.
[Expression 1]
Figure 0003818476
Is obtained. From the above (1) and (2), tentatively n = 1 (Hz)
d = 5 (cm)
p = 0.5 (cm)
D K = 10 (cm)
D H = 8 (cm)
L = 100 (cm)
dy = 1 (cm)
μ30 = 100poise = 1 / (9.8 × 10 3 ) (kg · sec / cm 2 )
When t = 20 (° C.), that is, f = 2dn / p = 20 (rps)
A = πD H L = π × 8 × 100 = 2513 (cm 2 )
v = 2πdnD K /p=2×π×5×1×10/0.5=628 (cm / sec)
Assuming this case, the damping force Qd is calculated as follows from the above equation (5).
[0015]
[Expression 2]
Figure 0003818476
That is, according to the damping device that extends the elongated body 60 of the present invention in the axial direction inside the rotating inner cylinder 16, a large damping force of about 3.2 tons is obtained using the elongated body having a diameter of 8 cm and a facing portion length of 100 cm. It turns out that it is obtained. In the conventional damping device, the viscous body at the center is stationary and this damping force is not used.
[0016]
Here, the damping force generated between the opposing surfaces of the outer surface of the rotating inner cylinder 16 and the inner surface of the fixed outer cylinder 24 under the same conditions as described above will be calculated.
The surface area of the opposing portion of the outer surface of the rotating inner cylinder 16 and the inner surface of the fixed outer cylinder 24 is A ′
The speed difference between the outer surface of the rotating inner cylinder 16 and the inner surface of the fixed outer cylinder 24 is v ′.
Opposite length L ′ of the rotating inner cylinder 16 and the fixed outer cylinder 24
The outer diameter of the rotating inner cylinder is D
Assuming that L ′ = 100 (cm) and D = 10 (cm), A ′ = πDL ′ = π × 10 × 100 = 3141 (cm 2 )
v ′ = 2πdnD / p = 2 × π × 5 × 1 × 10 / 0.5 = 628 (cm / sec)
dy ′: the gap between the two surfaces (the inner surface of the fixed outer cylinder 24 and the outer surface of the rotating inner cylinder 16),
When dy ′ = 1 (cm), the damping force is calculated from the equation (5) as follows.
[0017]
[Equation 3]
Figure 0003818476
Thus, a large damping force of about 4 tons can be obtained.
[0018]
As described above, in the damping device as described above, a large damping force of about 4 tons is obtained by the viscous body between the outer surface of the rotating inner cylinder 16 and the inner surface of the fixed outer cylinder 24. Further, the elongated body 60 of the present invention is axially moved. A total of about 7.2 tons of damping force can be obtained.
[0019]
As described above, according to the damping device of the present invention, an extremely large damping effect can be easily achieved as compared with a conventional damping device of this type with a simple and small configuration that converts the linear displacement of the screw portion into a rotational motion. can do. In addition, this damping device can be easily applied regardless of the size of the structure, and has the advantage of being applied to both compression and tension loads.
[0020]
In addition, the elongate body extended in the axial direction of the attenuation | damping apparatus 50 of this invention can be changed variously, The modification is shown below. The embodiment shown in FIG. 4A shows an example of an elongated body 62 formed from a hexagonal rod as a polygonal column. The modification shown in FIG. 4B is an elongated body 64 in which a protrusion 66 is formed on the surface of the elongated body 60 covered with the rotating inner cylinder 16 in the embodiment shown in FIG. It should be noted that in these two embodiments, it is obvious that the same operations and effects as those of the previous embodiment are exhibited.
[0021]
Further, as described above, the damping device according to the present invention is widely applied to a relatively large structure and a small assembly. Next, the Example at the time of applying the damping device concerning this invention to a building structure is described below.
[0022]
5 to 7, the damping device 50 is disposed between the mounting plates 74a and 74b at opposite corners of the structural frame 74 of the building structure 72 so as to be compressible and tensionable via the connecting members 10 and 20, respectively. It is installed. Therefore, the strain energy in the structural frame 74 is absorbed by the damping effect of the damping device 50 that is expanded and contracted by the strain displacement of the structural frame 74 caused by an earthquake or the like, and the vibration of the building structure 72 is effectively damped. Can be done. Thus, according to the damping device of the present invention, as described above, the damping device is simple and small and can exhibit a sufficiently large damping effect.
[0023]
In the application example of FIG. 8, the damping device 50 is provided between a foundation 76 and a building structure 80 supported on the foundation 76 via seismic isolation pads 78, 78. It is arranged to be able to be compressed and pulled through. Therefore, the horizontal displacement between the foundation 76 and the building structure 80 is caused by the damping effect of the damping device 50 that is expanded and contracted by the horizontal relative displacement between the foundation 76 and the building structure 80 generated by an earthquake or the like. The relative displacement energy is absorbed, and the vibration of the building structure 80 is effectively damped.
[0024]
The present invention has been described with reference to a preferred embodiment. However, the present invention is not limited to the above-described embodiment, and many improvements and modifications can be made without departing from the spirit of the present invention. For example, the elongate body is an example of a cylindrical rod, but it may be formed of a pipe-like rod, and the ball bearing in the damping device can be appropriately changed to another axial support means.
[0025]
【The invention's effect】
As described above, the damping device according to the present invention includes the first and second connecting members that are connected to each other so as to be relatively displaceable, and the first connecting member has at least a guide screw portion on the connection side. A guide nut formed and engaged with the guide screw portion and pivotally slidable on the guide screw portion based on relative displacement with the guide screw portion, and has a larger diameter than the guide screw portion. It has an axial length sufficiently larger than the diameter, the other end is an open end, one end is fixed to the guide nut, and a rotating inner cylinder is inserted through the guide nut so as to be slidable. The second connecting member includes a fixed outer cylinder that accommodates the rotating inner cylinder and the guide nut, and an elongated body extends along the axial direction on the inner surface of the fixed outer cylinder so as to be covered with a hollow portion of the rotating inner cylinder. And at least the fixed outer cylinder Wall and the rotating inner cylinder, and the gap between the inner wall and the elongated body of the rotating inner cylinder, and configured to fill the viscous body for damping. That is, the damping device of the present invention is configured such that the damping mechanism converts the linear displacement of the guide screw portion into the rotational sliding motion of the rotating inner cylinder, and therefore the displacement conversion magnification (relative speed increase ratio, etc.) Is greatly increased compared to conventional devices of this type. Therefore, according to the damping device of the present invention, a large damping effect can be easily achieved with a simple and small configuration.
[0026]
When the damping device according to the present invention is disposed so as to be compressible or tensionable between the opposing corners of the structural frame body in the building structure, the damping device is simply and compactly configured as described above and has sufficient damping force. Therefore, the vibration of the building structure can be efficiently damped. Moreover, when the damping device according to the present invention is disposed between a foundation in a building structure and a structure on the foundation so as to be compressible or tensionable, the damping device is simply and smallly configured as described above. And since sufficient damping force can be exhibited, the vibration etc. between a foundation and a building structure can be attenuated efficiently.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an attenuation device according to the present invention.
FIG. 2 is a schematic explanatory diagram in which the damping device according to the present invention is arranged to be installed between two positions of a building structure.
3 is a partially cutaway sectional view in FIG. 2. FIG.
4A is a perspective view of an embodiment of an elongated body formed of a polygonal rod, and FIG. 4B is a perspective view of another embodiment in which a projection is provided on the elongated body formed of a cylindrical rod. It is.
FIG. 5 is a schematic front view when the damping device according to the present invention is applied between opposing corners of a structural frame in a building structure.
6 is an enlarged view of a part A in FIG.
7 is an enlarged view of a portion B in FIG.
FIG. 8 is a schematic configuration diagram when the damping device according to the present invention is applied between a foundation and a building structure in a building structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 1st connection member 10a Guide screw part 12 Ball bearing 14 Guide nut 16 Rotating inner cylinder 20 Second connection member 22 Chamber 24 Fixed outer cylinder 26 Viscous body 28, 30 Ball bearing 32 Casing 50 Damping device 60, 62, 64 Elongated body 61 Interval 66 Projection 72 Building structure 74 Structure frame 76 Foundation 78 Seismic isolation pad 80 Building structure

Claims (5)

相対変位可能に互いに接続される第1および第2の連結部材からなり、この第1の連結部材は、少なくともその接続側に案内ねじ部が形成され、この案内ねじ部に係合すると共に案内ねじ部との相対変位に基づき案内ねじ部上を回転摺動するよう軸支される案内ナットと、前記案内ねじ部より大きな径を有すると共にこの径より充分大きな軸方向長さとを有し、前記案内ナットに一端部が固着され他端部が開放端である円筒形状の回転内筒とからなり、前記第2の連結部材は、前記回転内筒および案内ナットを収容する固定外筒からなり、少なくとも前記固定外筒の内壁と前記回転内筒との間隙に減衰用の粘性体が充填された減衰装置であり、
前記固定外筒の中心に前記回転内筒の中空部内径より小さな外径を有し、且つ、前記案内ナット回転時に案内ねじ部と間隔を有する位置まで軸方向に沿って延在する細長体を有すると共に、回転内筒の内壁と前記細長体との間隙に減衰用の粘性体を充填することを特徴とする減衰装置。
The first and second coupling members are connected to each other so as to be relatively displaceable. The first coupling member has a guide screw portion formed at least on the connection side thereof, and engages with the guide screw portion and is guided by the guide screw. A guide nut pivotally supported so as to rotate and slide on the guide screw portion based on a relative displacement with respect to the guide portion, a diameter larger than the guide screw portion and an axial length sufficiently larger than the diameter, and the guide A cylindrical rotating inner cylinder having one end affixed to the nut and the other end being an open end, and the second connecting member is a fixed outer cylinder that houses the rotating inner cylinder and the guide nut, A damping device in which a gap between the inner wall of the fixed outer cylinder and the rotating inner cylinder is filled with a viscous material for damping;
An elongated body having an outer diameter smaller than the inner diameter of the hollow portion of the rotating inner cylinder at the center of the fixed outer cylinder and extending along the axial direction to a position having a distance from the guide screw portion when the guide nut rotates. A damping device characterized in that a damping viscous body is filled in a gap between the inner wall of the rotating inner cylinder and the elongated body.
前記細長体は円柱の棒または多角柱の棒で形成されることを特徴とする請求項1記載の減衰装置。2. The attenuation device according to claim 1, wherein the elongated body is formed of a cylindrical rod or a polygonal rod. 前記細長体表面に、突起物を設けることを特徴とする請求項1または2に記載の減衰装置。The attenuation device according to claim 1, wherein a protrusion is provided on the surface of the elongated body. 建築構造物における構造枠体の対向角部間に圧縮または引張り可能に配設することを特徴とする請求項1乃至3のいずれかに記載の減衰装置。The damping device according to any one of claims 1 to 3, wherein the damping device is arranged so as to be compressible or tensionable between opposing corners of a structural frame in a building structure. 建築構造物における基礎とこの基礎上の建築構造物との間に圧縮または引張り可能に配設することを特徴とする請求項1乃至3のいずれかに記載の減衰装置。The damping device according to any one of claims 1 to 3, wherein the damping device is disposed so as to be compressible or tensionable between a foundation in a building structure and a building structure on the foundation.
JP18667098A 1998-07-01 1998-07-01 Attenuator Expired - Fee Related JP3818476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18667098A JP3818476B2 (en) 1998-07-01 1998-07-01 Attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18667098A JP3818476B2 (en) 1998-07-01 1998-07-01 Attenuator

Publications (2)

Publication Number Publication Date
JP2000017885A JP2000017885A (en) 2000-01-18
JP3818476B2 true JP3818476B2 (en) 2006-09-06

Family

ID=16192617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18667098A Expired - Fee Related JP3818476B2 (en) 1998-07-01 1998-07-01 Attenuator

Country Status (1)

Country Link
JP (1) JP3818476B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633229B2 (en) * 2000-05-31 2011-02-16 Thk株式会社 Damping device
JP4622207B2 (en) 2002-02-21 2011-02-02 オイレス工業株式会社 Vibration absorber and damping structure using the same
JP2004239411A (en) * 2003-02-07 2004-08-26 Sumitomo Mitsui Construction Co Ltd Attenuator
KR101171876B1 (en) 2010-05-11 2012-08-07 주식회사 에이브이티 The damper for the earthquake-proof

Also Published As

Publication number Publication date
JP2000017885A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP3408706B2 (en) Damping bar and damping device using the same
WO1998029625A1 (en) Damping top, damping rod, and damping device using same
JPH0358009B2 (en)
JP2007211503A (en) Seismic response control apparatus of building and building structure
JP3818476B2 (en) Attenuator
US6385917B1 (en) Base isolation device with damping mechanism
JP5728173B2 (en) Vibration control device, steel tower and structure
JPS6316632B2 (en)
JPH11201224A (en) Damping piece, damping rod and damping device using the same
JPH10184786A (en) Damping piece and damping device therewith
JP4432208B2 (en) Damper and building using it
JPH11229663A (en) Damper and vibration control structure using same
JP4115078B2 (en) Seismic isolation device with damping mechanism
JP5318483B2 (en) Vibration control device
JP2000087592A (en) Small-stroke vibration isolation device
JP4745308B2 (en) Seismic isolation device with damping mechanism
JP4843881B2 (en) Coupling damping device using rotary inertia force
JP6991487B2 (en) Torsion history damper
JPH10280726A (en) Vibration control mechanism
JP2005180492A (en) Design method, design support system, design support program and design method of damping system
JP2003138784A (en) Damping top
JP4317766B2 (en) Clevis and damping device connected to clevis
JP4300647B2 (en) Seismic isolation device
JP2548905B2 (en) Assistance tool in bed with floor lifting mechanism
TW387963B (en) Reinforced effect liquid damper for civil engineering structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150623

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees