JP3817759B2 - Hydrogen storage laminate material - Google Patents
Hydrogen storage laminate material Download PDFInfo
- Publication number
- JP3817759B2 JP3817759B2 JP21340995A JP21340995A JP3817759B2 JP 3817759 B2 JP3817759 B2 JP 3817759B2 JP 21340995 A JP21340995 A JP 21340995A JP 21340995 A JP21340995 A JP 21340995A JP 3817759 B2 JP3817759 B2 JP 3817759B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- layer
- hydrogen
- laminated
- bcc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0084—Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水素吸蔵積層材料に関し、より具体的には、水素吸蔵能力に優れた水素吸蔵積層材料に関するものである。
【0002】
【従来の技術】
近年、水素エネルギーシステムへの関心が高まるに従い、水素貯蔵・輸送用媒体、エネルギー変換および水素ガス分離・精製などの材料として、水素吸蔵合金の材料研究/開発が活発に行なわれてきた。水素吸蔵合金として最も重要な特性は水素吸蔵能力に優れていることである。従来の材料においては、吸蔵水素と金属との原子比(H/M)は、LaNi5 、CaNi5 でH/M=1.00、Mg2 NiでH/M=1.33、ZrV2 でH/M=1.50である。
【0003】
【発明が解決しようとする課題】
水素吸蔵材料が塊状(バルク)の場合には、水素吸収−放出サイクルを繰り返すと、この水素吸蔵材料が微粉化する。この微粉化は、水素吸蔵材料としての実用化に大きな障害になっている。このため、水素吸蔵材料を薄膜化する試みがなされているが、吸収水素量が塊状の試料より少なくなる欠点があった。さらに、水素吸蔵材料をNi−水素二次電池などに用いる場合には、吸収水素量の目安としてH/M=1.50以上の材料を開発することが期待されている。
【0004】
そこで本発明は、水素吸蔵能力に優れた水素吸蔵積層材料を提供することを目的とする。
【0005】
【課題を解決するための手段】
本願発明者は、鋭意検討した結果、hcp構造を持つ4A族元素を含む層と、6A、7A、8A族の元素を有する層とを積層した多層構造が、従来材料と比べて水素吸蔵能力に優れていることを見出した。
【0006】
それゆえ、本発明の水素吸蔵積層材料は、第1および第2の層を積重ねた構造を有している。この第1の層は、Ti,Zr,またはHfよりなる元素からなっており、かつ常温・常圧下で安定な結晶構造がhcp構造である。また第2の層は、Cr,Mo,W,またはFeよりなる元素からなっており、常温・常圧下で安定な結晶構造がbcc構造である。
【0007】
4A族の元素は水素と反応し、金属水素化物を形成しやすい材料である。一方、6A、7A、8A族の元素は水素と反応しにくく、金属水素化物を形成しにくい材料であるが、その層内における水素の移動拡散が容易な材料である。
【0008】
本発明の水素吸蔵積層材料では、このような多層膜構成にしたため、従来のバルクおよび薄膜よりなる水素吸蔵材料と比較して、格段に優れた水素吸蔵能力が得られる。
【0009】
本発明の水素吸蔵積層材料は、たとえば真空蒸着法、イオンプレーティング法およびスパッタリング法などのPVD(物理蒸着)法や、プラズマCVD法などのCVD(化学蒸着)法のような気相法などを用いて基板上に異なる2種の物質を積重ねることで得られる。
【0010】
本発明の好ましい他の局面では、第1および第2の層を含む積層構造が繰り返し積重ねられている。
【0011】
このように積層構造を繰り返し積重ねることにより、より一層水素吸蔵能力を高めることができる。
【0012】
本発明の好ましい一の局面に従えば、上記の第1および第2の層を含む積層構造の厚みは600nm以下である。
【0013】
このように積層構造の厚みを600nm以下とすることにより、実用上十分な水素吸蔵能力を得ることができる。
【0014】
常温・常圧下でbcc構造を有し4A族元素よりも体積弾性率が大である6A、7A、8A族元素を含む層と、4A族元素を含む層とを積層することにより、hcp構造の4A族元素がbcc構造に相転移する。本願発明者らは、鋭意検討した結果、このような4A族のbcc構造を実現することにより、H/M=2.00以上の水素吸蔵積層材料が得られることを見出した。
【0015】
これは、図4に示すように体心立方格子(bcc)構造の四面体格子間位置に水素を入れることができれば、理想的にはH/M=6.00が実現でき、六方最密充填(hcp)構造の場合よりも水素吸蔵能力が向上するためと考えられる。このような相転移の発現した膜では、X線回折法による結晶構造解析により積層材料とは異なるbcc結晶構造を持つ回折ピークが観測される。
【0016】
また、積層周期が短くなることにより、界面の増加(界面数の増加)あるいは界面原子が増加することによる電子構造の変化なども水素吸蔵量の増加に関与している可能性も考えられる。
【0018】
また本発明の好ましいさらに他の局面では、第2の層は第1の層より体積弾性率が大きい材料よりなっている。
【0019】
【実施例】
以下、本発明の1つの実施例として、イオンプレーティング法によるTi(チタン)とCr(クロム)との積層膜(Ti/Cr)について説明する。
【0020】
真空アーク放電を利用したイオンプレーティング法によりTiとCrとの積層膜を形成した。この場合、Crは、Tiよりも大きい体積弾性率を有している。このTiとCrとの多層膜の具体的な作製法について図1を用いて説明する。
【0021】
図1は、成膜装置の構成を示す外観図である。図1を参照して、真空容器1中にTiおよびCrの陰極蒸発材料(蒸発源6および7)を配置し、回転テーブル5に設置した基板ホルダ3上に基板4を取付ける。この基板4はたとえばシリコンよりなっている。十分に真空排気した後、真空中あるいはアルゴンガス雰囲気中でTi、Crをアーク放電により蒸発させながら、回転テーブル5を回転させることにより、Tiの蒸発源6側を向いたときにTiが、Crの蒸発源7側を向いたときにCrが各々成膜される。
【0022】
TiとCrのそれぞれの層厚(積層周期)は回転テーブル5の回転数を制御することにより行なった。また成膜条件は以下の表1に示す。
【0023】
【表1】
【0024】
上記の表1より、TiおよびCrの蒸発源6および7のアーク電流は各々80A、成膜圧力を0.01mTorr以下とし、基板バイアスを−50Vとし、テーブル回転数を1〜30rpmとした。
【0025】
このようにして得られたTiとCrとの積層膜の断面図を図2に示す。
図2を参照して、シリコンよりなる基板4上に、Ti層6aとCr層7aとが順次繰り返し積重ねられて積層膜10を構成している。
【0026】
このTiとCrとの積層膜に電解チャージ法によって水素吸蔵処理を施した。この水素吸蔵処理を行なう装置を図3に示す。
【0027】
図3を参照して、水素吸蔵を行なうにあたって、図2に示す試料10を0.1M−NaOH溶液に浸し、かつPt対極12を0.5M−K2 SO4 溶液に浸した。この試料10には負の電流を、またPt対極12には正の電流を、各々定電流電源11により所定の時間流した。この低電流電源11には、アドバンテスト製TR6120Aを使用した。
【0028】
なお電流値は基本的に10mAとし、電流を流す時間を1時間に設定した。電流(A)×時間(s)が電気量に相当し、この値を用いて電気分解による水素の発生量を計算(ファラデーの法則)した。
【0029】
吸蔵された水素の測定は堀場製EMGA621で実施した。この装置は水素の絶対量の分析と昇温分析のいずれかの分析を行なうことができる。
【0030】
上記の水素吸蔵処理を、以下の表2に示す本発明材A〜Gと比較材H、Iとに施した。その結果を表2に示す。
【0031】
なお、本発明材A〜Gは、各々積層周期(図2のT)を変えたものであり、比較材H、IにはLaNi5 とTiCrの単層構造のものを用いた。
【0032】
また、以下の表2には、X線回折による積層物質とは異なるbcc構造からの回折ピークの有無も併せて示す。
【0033】
なお、水素吸蔵量は具体的には以下の方法で求めた。
まず膜(もしくは積層膜)を昇温し、その膜から出てきた水素をガス分析により定量する。引続き水素の抜けた膜を酸で溶かし、膜原子を化学分析により定量する。この両者の結果からH/Mを求めている。
【0034】
【表2】
【0035】
表2の結果より、TiとCrとを積層することにより、従来の材料より優れた水素吸蔵能力が得られることがわかる。また新たなbcc構造の回折ピークが得られた場合には、水素吸蔵量が急激に増加することもわかる。
【0036】
次に、TiとCr以外の材料の組合せに関しても、Ti/Cr系の膜の作製法および水素吸蔵方法と同様の方法を行なって、水素吸蔵量を調べた。その結果を以下の表3に示す。
【0037】
【表3】
【0038】
表3の結果より、TiとCrとの積層膜以外の材料の組合せでも、常温・常圧下で安定な結晶構造がhcp構造である4A族の元素を含む層と、常温・常圧下で安定な結晶構造がbcc構造である6A、7A、8A族の元素よりなる層とを積層させれば、非常に優れた水素吸蔵能力の得られることが判明した。
【0039】
また、積層材料が単一元素からなるものだけでなく、化合物や合金などでも同様の効果が期待できることは容易に類推できる。
【0040】
上記の表2および表3の結果より、4A族の元素を含む層と6A、7A、8A族の元素を含む層とを積層するだけでも従来の材料よりも優れた水素吸蔵能力が得られるが、特に、新たなbcc構造の回折ピークが得られる場合には水素吸蔵量が急激に増加することがわかる。
【0041】
今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0042】
【発明の効果】
異なる2種の物質を積層した構造を有し、その積層した物質の1種が4A族の元素、あるいは4A族の元素を含む合金もしくは化合物よりなっており、かつ常温・常圧下で安定な結晶構造がhcp構造であり、もう1種の物質が6A、7Aおよび8A族の少なくともいずれかの元素、あるいは6A、7A、および8A族の少なくともいずれかの元素を含む合金もしくは化合物よりなっており、常温・常圧下で安定な結晶構造がbcc構造である水素吸蔵積層材料によって、従来の水素吸蔵材料よりも優れた水素吸蔵量を実現することができる。
【0043】
またX線回折によりbcc結晶構造に起因する積層した2種の物質とは異なる新規な回折ピークが得られる場合には、より一層優れた水素吸蔵量を実現することができる。
【0044】
本発明の水素吸蔵積層材料は、長寿命な2次電池あるいは高感度な水素センサなどの実現に大きな効果をもたらす。
【図面の簡単な説明】
【図1】成膜装置の工程を示す外観図である。
【図2】本発明の一実施例におけるTiとCrとの積層膜の構成を概略的に示す断面図である。
【図3】水素吸蔵処理を実現する装置の構成を示す模式図である。
【図4】fcc、bcc、hcp格子中の水素原子の位置を示す図である。
【符号の説明】
4 基板
6a Ti層
7a Cr層
10 TiとCrとの積層膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage laminate material, and more specifically to a hydrogen storage laminate material excellent in hydrogen storage capability.
[0002]
[Prior art]
In recent years, as interest in hydrogen energy systems has increased, material research / development of hydrogen storage alloys has been actively conducted as materials for hydrogen storage and transport, energy conversion and hydrogen gas separation / purification. The most important characteristic as a hydrogen storage alloy is that it has excellent hydrogen storage capacity. In the conventional material, the atomic ratio (H / M) between the stored hydrogen and the metal is LaNi 5 and CaNi 5 with H / M = 1.00, Mg 2 Ni with H / M = 1.33, and ZrV 2 . H / M = 1.50.
[0003]
[Problems to be solved by the invention]
When the hydrogen storage material is in the form of a bulk (bulk), the hydrogen storage material is pulverized by repeating the hydrogen absorption-release cycle. This pulverization is a great obstacle to practical use as a hydrogen storage material. For this reason, attempts have been made to reduce the thickness of the hydrogen storage material, but there is a drawback in that the amount of absorbed hydrogen is less than that of the bulk sample. Furthermore, when a hydrogen storage material is used for a Ni-hydrogen secondary battery or the like, it is expected to develop a material with H / M = 1.50 or more as a measure of the amount of absorbed hydrogen.
[0004]
Then, an object of this invention is to provide the hydrogen storage laminated material excellent in the hydrogen storage capability.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has found that a multilayer structure in which a layer containing a group 4A element having an hcp structure and a layer containing a group 6A, 7A, or 8A element are stacked has a hydrogen storage capacity compared to conventional materials. I found it excellent.
[0006]
Therefore, the hydrogen storage laminate material of the present invention has a structure in which the first and second layers are stacked. The first layer is made of an element made of Ti, Zr, or Hf , and has a hcp structure that is stable at room temperature and pressure. The second layer is made of an element made of Cr, Mo, W, or Fe , and has a bcc structure that is stable at room temperature and pressure.
[0007]
The group 4A element is a material that reacts with hydrogen and easily forms a metal hydride. On the other hand, elements of Group 6A, 7A, and 8A are materials that do not easily react with hydrogen and do not easily form metal hydrides, but are materials that facilitate the migration and diffusion of hydrogen in the layer.
[0008]
Since the hydrogen storage laminated material of the present invention has such a multilayer film structure, the hydrogen storage capacity much superior to that of conventional bulk and thin film hydrogen storage materials can be obtained.
[0009]
The hydrogen storage laminate material of the present invention can be obtained by, for example, a vapor deposition method such as a PVD (physical vapor deposition) method such as a vacuum deposition method, an ion plating method and a sputtering method, or a CVD (chemical vapor deposition) method such as a plasma CVD method. It is obtained by stacking two different substances on the substrate.
[0010]
In another preferred aspect of the present invention, the laminated structure including the first and second layers is repeatedly stacked.
[0011]
Thus, by repeatedly stacking the stacked structure, the hydrogen storage capacity can be further enhanced.
[0012]
According to a preferred aspect of the present invention, the laminated structure including the first and second layers has a thickness of 600 nm or less.
[0013]
Thus, practically sufficient hydrogen storage capacity can be obtained by setting the thickness of the laminated structure to 600 nm or less.
[0014]
By stacking a layer containing a 6A, 7A, or 8A group element having a bcc structure at room temperature and normal pressure and having a bulk modulus higher than that of the 4A group element, and a layer containing the 4A group element, The 4A group element undergoes phase transition to the bcc structure. As a result of intensive studies, the inventors of the present application have found that a hydrogen storage laminated material having H / M = 2.00 or more can be obtained by realizing such a 4A group bcc structure.
[0015]
As shown in FIG. 4, H / M = 6.00 is ideally realized if hydrogen can be introduced into the tetrahedral interstitial position of the body-centered cubic lattice (bcc) structure, and hexagonal close-packed packing is possible. This is because the hydrogen storage capacity is improved as compared with the case of the (hcp) structure. In a film in which such a phase transition has occurred, a diffraction peak having a bcc crystal structure different from that of the laminated material is observed by crystal structure analysis by X-ray diffraction.
[0016]
In addition, there is a possibility that an increase in interface (increase in the number of interfaces) or a change in electronic structure due to an increase in interface atoms may contribute to an increase in hydrogen storage capacity due to a shortened stacking cycle.
[0018]
In still another preferred aspect of the present invention , the second layer is made of a material having a larger volume modulus of elasticity than the first layer.
[0019]
【Example】
Hereinafter, a laminated film (Ti / Cr) of Ti (titanium) and Cr (chromium) by an ion plating method will be described as one embodiment of the present invention.
[0020]
A laminated film of Ti and Cr was formed by an ion plating method using vacuum arc discharge. In this case, Cr has a larger bulk modulus than Ti. A specific method for manufacturing the multilayer film of Ti and Cr will be described with reference to FIGS.
[0021]
FIG. 1 is an external view showing a configuration of a film forming apparatus. Referring to FIG. 1, Ti and Cr cathode evaporation materials (evaporation sources 6 and 7) are arranged in a vacuum container 1, and a
[0022]
The layer thickness (lamination cycle) of Ti and Cr was determined by controlling the number of rotations of the
[0023]
[Table 1]
[0024]
From Table 1 above, the arc currents of the Ti and Cr evaporation sources 6 and 7 were 80 A, the deposition pressure was 0.01 mTorr or less, the substrate bias was −50 V, and the table rotation speed was 1 to 30 rpm.
[0025]
A cross-sectional view of the laminated film of Ti and Cr thus obtained is shown in FIG.
Referring to FIG. 2, a
[0026]
The laminated film of Ti and Cr was subjected to hydrogen storage treatment by electrolytic charging. An apparatus for performing this hydrogen storage treatment is shown in FIG.
[0027]
Referring to FIG. 3, when performing hydrogen storage, the
[0028]
The current value was basically 10 mA, and the current flow time was set to 1 hour. Current (A) × time (s) corresponds to the amount of electricity, and the amount of hydrogen generated by electrolysis was calculated using this value (Faraday's law).
[0029]
Measurement of the occluded hydrogen was carried out with EMGA621 manufactured by Horiba. This apparatus can perform either analysis of the absolute amount of hydrogen or temperature rising analysis.
[0030]
The above-described hydrogen storage treatment was applied to the inventive materials A to G and the comparative materials H and I shown in Table 2 below. The results are shown in Table 2.
[0031]
Inventive materials A to G each have a different laminating period (T in FIG. 2), and comparative materials H and I have single layer structures of LaNi 5 and TiCr.
[0032]
Table 2 below also shows the presence or absence of a diffraction peak from a bcc structure different from the laminated material by X-ray diffraction.
[0033]
The hydrogen storage amount was specifically determined by the following method.
First, the temperature of the film (or laminated film) is raised, and the hydrogen coming out of the film is quantified by gas analysis. Subsequently, the membrane from which hydrogen has been removed is dissolved with an acid, and the membrane atoms are quantified by chemical analysis. H / M is obtained from the result of both.
[0034]
[Table 2]
[0035]
From the results in Table 2, it can be seen that by stacking Ti and Cr, a hydrogen storage capacity superior to that of the conventional material can be obtained. It can also be seen that when a new diffraction peak of the bcc structure is obtained, the hydrogen storage amount increases rapidly.
[0036]
Next, with respect to the combination of materials other than Ti and Cr, the hydrogen storage amount was examined by performing the same method as the Ti / Cr film preparation method and the hydrogen storage method. The results are shown in Table 3 below.
[0037]
[Table 3]
[0038]
From the results shown in Table 3, even with combinations of materials other than the laminated film of Ti and Cr, a layer containing a 4A group element whose hcp structure is stable at room temperature and pressure, and a stable structure at room temperature and pressure It has been found that if a layer made of a group 6A, 7A, or 8A element having a bcc structure is laminated, a very excellent hydrogen storage capacity can be obtained.
[0039]
Moreover, it can be easily analogized that the same effect can be expected not only when the laminated material is made of a single element but also with a compound or alloy.
[0040]
From the results of Tables 2 and 3 above, it is possible to obtain a hydrogen storage capacity superior to that of the conventional material just by laminating a layer containing a group 4A element and a layer containing a group 6A, 7A, or 8A element. In particular, it can be seen that the hydrogen storage amount increases rapidly when a new diffraction peak having a bcc structure is obtained.
[0041]
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0042]
【The invention's effect】
It has a structure in which two different substances are laminated, and one of the laminated substances is composed of a group 4A element, or an alloy or compound containing a group 4A element, and is stable at normal temperature and pressure. The structure is an hcp structure, and the other substance is made of at least one element of Group 6A, 7A and 8A, or an alloy or compound containing at least one element of Groups 6A, 7A and 8A, A hydrogen storage layer material having a bcc structure and a stable crystal structure at normal temperature and normal pressure can realize a hydrogen storage capacity superior to that of conventional hydrogen storage materials.
[0043]
Further, when a new diffraction peak different from the two kinds of stacked substances resulting from the bcc crystal structure can be obtained by X-ray diffraction, an even better hydrogen storage capacity can be realized.
[0044]
The hydrogen storage laminate material of the present invention has a great effect on realizing a long-life secondary battery or a highly sensitive hydrogen sensor.
[Brief description of the drawings]
FIG. 1 is an external view showing a process of a film forming apparatus.
FIG. 2 is a cross-sectional view schematically showing a configuration of a laminated film of Ti and Cr in one embodiment of the present invention.
FIG. 3 is a schematic diagram showing a configuration of an apparatus for realizing a hydrogen storage process.
FIG. 4 is a diagram showing the positions of hydrogen atoms in fcc, bcc, and hcp lattices.
[Explanation of symbols]
4
Claims (5)
前記第1の層は、Ti,Zr,またはHfよりなる元素からなっており、かつ常温・常圧下で安定な結晶構造がhcp構造であり、
前記第2の層は、Cr,Mo,W,またはFeよりなる元素からなっており、常温・常圧下で安定な結晶構造がbcc構造である、水素吸蔵積層材料。Having a structure in which the first and second layers are stacked;
The first layer is made of an element made of Ti, Zr, or Hf , and a stable crystal structure at normal temperature and pressure is an hcp structure.
The second layer is made of an element made of Cr, Mo, W, or Fe , and has a bcc structure and a stable crystal structure at room temperature and normal pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21340995A JP3817759B2 (en) | 1995-08-22 | 1995-08-22 | Hydrogen storage laminate material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21340995A JP3817759B2 (en) | 1995-08-22 | 1995-08-22 | Hydrogen storage laminate material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0959001A JPH0959001A (en) | 1997-03-04 |
JP3817759B2 true JP3817759B2 (en) | 2006-09-06 |
Family
ID=16638757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21340995A Expired - Fee Related JP3817759B2 (en) | 1995-08-22 | 1995-08-22 | Hydrogen storage laminate material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3817759B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1114874A1 (en) * | 1999-06-11 | 2001-07-11 | Sumitomo Electric Industries, Ltd. | Hydrogen-occluding layered material |
EP1116797A1 (en) | 1999-07-16 | 2001-07-18 | Sumitomo Electric Industries, Ltd. | Hydrogen-occluding material and process for producing the same |
JP4147462B2 (en) | 2002-08-07 | 2008-09-10 | トヨタ自動車株式会社 | Multilayer hydrogen storage |
WO2008018494A1 (en) * | 2006-08-09 | 2008-02-14 | Gs Yuasa Corporation | Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy |
JP5481803B2 (en) * | 2008-05-02 | 2014-04-23 | 株式会社Gsユアサ | Nickel metal hydride storage battery |
JP5405218B2 (en) * | 2008-07-31 | 2014-02-05 | 電子科学株式会社 | Sample analysis method, sample carrying member, sample carrying method, and temperature programmed desorption analyzer |
-
1995
- 1995-08-22 JP JP21340995A patent/JP3817759B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0959001A (en) | 1997-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6337146B1 (en) | Hydrogen-occluding layered material | |
Usui et al. | Anode properties of thick-film electrodes prepared by gas deposition of Ni-coated Si particles | |
WO2001029912A1 (en) | Electrode for lithium cell and lithium secondary cell | |
NO164919B (en) | MATERIALS FOR REVERSIBLE HYDROGEN STORAGE AND PROCEDURE FOR PREPARING THIS. | |
Hwang et al. | Electrochemical characterizations of multi-layer and composite silicon–germanium anodes for Li-ion batteries using magnetron sputtering | |
Kim et al. | All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes | |
CN106252682A (en) | Fuel battery metal pole plate multiple phase coating of suppression column crystal and preparation method thereof | |
JPS61291938A (en) | Amorphous metal alloy composition for reversible hydrogen storage | |
JP3817759B2 (en) | Hydrogen storage laminate material | |
Gao et al. | Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications | |
Pick et al. | Uptake rates for hydrogen by niobium and tantalum: effect of thin metallic overlayers | |
JPS61202420A (en) | Conductive thin film | |
Vermeulen et al. | In situ electrochemical XRD study of (de) hydrogenation of Mg y Ti 100− y thin films | |
JPH0382734A (en) | Rare earth metal-series hydrogen storage alloy | |
JP2004066653A (en) | Multi-ply structured hydrogen storage body | |
US4814002A (en) | Method of forming amorphous metal alloy compositions for reversible hydrogen storage | |
Lin et al. | Investigation of hydriding properties and structure of MlNi5− xSnx system | |
CN1174507C (en) | Film electrode for nickel-hydrogen battery and its prepn | |
CN1283015C (en) | Multi-layer film electrode for nickle-hydrogen cell and preparation method thereof | |
Music et al. | Atomistic growth phenomena of reactively sputtered RuO2 and MnO2 thin films | |
CN114182205A (en) | Nano multilayer structure metal hydrogen absorption film and preparation method and application thereof | |
Li et al. | Preparation and characterization of amorphous and crystalline LaNi5 thin film electrodes | |
CN1026999C (en) | Preparation method of hydrogen storage alloy film | |
Sakai et al. | Metal hydride thin film electrodes prepared by rf sputtering | |
RU217845U1 (en) | Solid State Hydrogen Battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060523 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060605 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |