JP3816774B2 - Hydrocarbon-utilized microalgae and bioremediation method using the same - Google Patents

Hydrocarbon-utilized microalgae and bioremediation method using the same Download PDF

Info

Publication number
JP3816774B2
JP3816774B2 JP2001305283A JP2001305283A JP3816774B2 JP 3816774 B2 JP3816774 B2 JP 3816774B2 JP 2001305283 A JP2001305283 A JP 2001305283A JP 2001305283 A JP2001305283 A JP 2001305283A JP 3816774 B2 JP3816774 B2 JP 3816774B2
Authority
JP
Japan
Prior art keywords
microalgae
oil
hydrocarbon
application
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001305283A
Other languages
Japanese (ja)
Other versions
JP2003102467A (en
Inventor
直人 浦野
良平 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001305283A priority Critical patent/JP3816774B2/en
Publication of JP2003102467A publication Critical patent/JP2003102467A/en
Application granted granted Critical
Publication of JP3816774B2 publication Critical patent/JP3816774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、炭化水素を資化できる微細藻類とそれを用いた排水の浄化方法に関するものである。さらに詳しくは、この出願の発明は高温度、高塩濃度を含む広い塩濃度範囲、さらには広いpH範囲において、炭化水素を資化できる微細藻類と、それを用いたバイオレメディエーション方法に関するものである。
【0002】
【従来技術とその課題】
近年大きな社会問題となっている海洋汚染では、その発生源として、有害化学物質、油類、放射性物質、廃棄物の投棄、富栄養価物などが知られている。
【0003】
中でも、油類による汚染は、原油生産地域のみならず、油脂を使用あるいは生産する工場、たとえば食品加工場等の周辺においても問題となっている。また、油田から原油を搬送する際にタンカーの事故が起これば、広い海域に渡り水質汚染が起こり、海鳥、哺乳動物、魚介類等の周辺環境に甚大な被害をもたらす。例えば、海鳥や海洋性の哺乳動物は、羽毛や皮膚表面に疎水性物質を有し、海水との直接接触を防止して体温を維持しているが、油が付着すると、この疎水性物質が失われるため体温が低下し、生存できなくなる。また、これらの動物は海水から余分な塩分を排出しながら水分を補給するが、油の付着によりこの機能も失われるため、脱水症状を起こす。さらに、海草や魚介類は、表面に油が付着することにより光合成や呼吸ができなくなり、死滅する。
【0004】
従来、タンカーや油田の事故により一過的に水域に流出した原油や石油は、オイルフェンスによりその広がりを防止し、界面活性剤や有機溶剤からなる油処理剤を散布することにより、油が水と混合するようにして処理していた。しかし、油処理剤を使用する方法では、流出した油類は、小さな油滴となり、水と混合され、やがて海洋中に希釈されてその被害の規模を縮小できるものの、根本的な解決にはならない。また、工業排水等に少量含まれる油類の処理には適用できるものではなかった。
【0005】
そこで、光や熱により油を分解する方法や、活性炭や薬剤を用いた物理化学的吸着等の方法も提案され、一部で使用されている。しかし、これらの方法は、光や熱、あるいは大量の試薬を用いる上、浄化のための機械設備等を必要とするため、コストが高い、タンカー事故等の遠洋における油の処理には適用しにくい、広範に渡る汚染には対応できないなどの問題があった。
【0006】
そこで、近年、環境適応性の高い方法として、バイオレメディエーションが注目されている。バイオレメディエーションは、浄化機能を有する各種の微生物を用いて、環境汚染の著しい水域や土壌における油等の炭化水素や富栄養価物等を乳化、分解、資化する方法であり、常温・常圧で行うためにエネルギーをほとんど必要としない。したがって、コストが低い、汚染の現場で直接的に処理を行うことができる、油田や工場の操業中であっても浄化処理を行うことができる、広範囲に渡る汚染を浄化することができる、などの利点を有する。
【0007】
このようなバイオレメディエーションで用いられる微生物としては、各種のものが知られている。たとえば、Agrobacterium属やRodococcas属の油分解性バクテリアが、高い炭化水素分解性を示すものとして報告されている(Biosci.Biotechnol.Biochem., 59, 11, 2159-2161 (1995))。また、石油分解酵母(Candida maltosa)は、低いpH領域においても高い活性を示すものとして報告されている(Wolf, K., ed, Non-conventional Yeast in Biotechnology, pp.426-430 (1996))。しかし、これらのバクテリアは、低いpHにおける分解能が低く、酵母は、30℃以上の高温およびpH6.5以上では活性が著しく低下するため、高温地域では使用できないという問題があった。
【0008】
さらに、酵母様の形態を示す真核微生物であるPrototheca属、中でもPrototheca hydrocarboneaやPrototheca zopfii等の緑藻が石油分解性を有することが報告されているが、これらの育成及び分解の条件は、pH3〜9、塩化ナトリウム濃度0.8〜2.4重量%、25℃以下であり、限られた環境下においてのみ、活性を示す。とくに30℃以上を超える温度では、生育及び油成分の分解は不可能とされていた(Appl.Environ.Microb., p.333-336 (1983); System.Appl.Microbiol.5, 119-123 (1984))。一般的に海水の塩濃度は約3.5重量%であるため、従来報告されているPrototheca属の藻類は、海水からの油成分の分解・浄化には使用できない。また土壌汚染に対しては、使用できる温度と塩濃度の範囲が限定されているため、沿岸地域や気温の高い地域では使用できなかったのが実情である。
【0009】
したがって、この出願の発明は、以上のとおりの問題点を解決し、広範囲なpH、温度および塩濃度の土壌や河川、湖沼、海洋等において実施できるバイオレメディエーションの方法と、それに適用するための微生物として、高温度、高塩濃度を含む広い塩濃度範囲、あるいは広いpH範囲においても炭化水素を資化できる微生物を提供することを課題としている。
【0010】
【課題を解決するための手段】
この出願の発明は、以上のとおりの課題を解決するものとして、まず、第1には、炭化水素を資化する微細藻類であって、30〜40℃の温度領域において炭化水素を資化できることを特徴とする微細藻類を提供する。
【0011】
この出願の発明は、第2には、0〜2Mの塩濃度範囲で炭化水素を資化できる前記の微細藻類を、第3には、pH3〜9の範囲で炭化水素を資化できる前記いずれかの微細藻類を、第4には、バイオサーファクタント能を有する前記いずれかの微細藻類を提供する。
【0012】
この出願の発明は、また、第5には、前記の微細藻類がPrototheca属の微細藻類であること、および、第6には、前記のPrototheca属に属する微細藻類がPrototheca zopfii RND-16(Ferm P-18543)であることをその態様として提供する。
【0013】
さらに、第7には、この出願の発明は、少なくとも前記いずれかの微細藻類を用いることを特徴とするバイオレメディエーション方法を提供する。
【0014】
そして、この出願の発明は、第8には、炭化水素を含有する排水を浄化する方法であって、少なくとも、排水に前記いずれかの微細藻類を接触させる工程を有することを特徴とするバイオレメディエーション方法を、第9には、炭化水素によって汚染された土壌を浄化する方法であって、少なくとも、汚染土壌に前記いずれかの微細藻類を接触させる工程を有することを特徴とするバイオレメディエーション方法をも提供する。
【0015】
【発明の実施の形態】
この出願の発明者らは、鋭意研究により、静岡県伊豆蓮台寺温泉の40℃および35.5℃の排水中から分離した酵母様微生物12株の中に、広範囲なpH領域および塩濃度において炭素水素を資化する微細藻類を見出し、本願発明に至ったものである。具体的には、本願発明の微細藻類は、30〜40℃の温度範囲、pH3〜9の範囲、0〜2Mの塩濃度範囲で炭化水素を資化できるものである。
【0016】
また、後述の実施例からも明らかなように、本願発明の微細藻類は、炭化水素を資化する際に、界面活性剤成分を分泌し、石油等の炭化水素成分を乳化して油滴を形成した後、その油滴に入り込み増殖する。すなわち、この発明の微細藻類は、バイオサーファクタント能を有するものでもある。
【0017】
本発明者らは、この微細藻類についてさらに研究を進め、18SrDNAの塩基配列による系統解析からこの微細藻類がPrototheca zopfii var. hydrocaroneaに属することを明らかにした。また、この微細藻類は、Prototheca zopfiiと100%の確率で単系統を形成すると同時に、同じ従属栄養のPrototheca属であるPrototheca wickerhamiiよりも独立栄養のクロレラであるAuxenochlorella protothecoidesに近縁であることも明らかにされている。
【0018】
さらに、この出願の発明の微細藻類は、従来報告されているPrototheca zopfiiには見られない次のような特徴を有するものである。
【0019】
(a)炭化水素を資化してエタノールとする
(b)一般培地で、40℃以上の高い温度範囲で増殖する
(c)炭化水素を炭素源とする培地で、40℃までの高い温度範囲で増殖する
(d)静置培養における炭化水素の最大資化速度が従来公知の菌株の2倍以上である
そして、本願の発明者らは、以上のとおりの特性を有する微細藻類を特許寄託している(受託番号:FERM P-18543)。
【0020】
したがって、この出願の発明の微細藻類を原油の流出した海洋や土壌、油等の炭化水素成分を含有する排水や土壌と接触させれば、迅速にかつ効率よく、炭化水素成分が分解され、浄化処理が行える。この出願の発明の排水および汚染土壌の浄化方法では、微細藻類と排水または土壌の接触方法はとくに限定されず、浄化対象の地域や水域に前記微細藻類を散布する方法や、排水や汚泥を該微細藻類を含有する浄化槽に導入する方法等のさまざまな方法が適用できる。もちろん、これらの浄化方法では、排水または土壌を微細藻類と接触させる工程以外に、洗浄、沈降、ろ過、攪拌、培養等の様々な工程を有していてもよい。
【0021】
この出願の発明の微細藻類を用いるバイオレメディエーション方法は、従来公知の微生物を用いる方法に比べ、温度、塩濃度、pH等の浄化条件が広いため、海洋や高温地域、低pH土壌、沿岸地域等のあらゆる環境において適用できる。
【0022】
なお、この出願の発明の微細藻類は、炭化水素を資化するだけでなく、グルコースからガスを発生する嫌気代謝を行うことも明らかになっている。そして、このようなガスの発生を伴う糖の発酵(エタノール発酵)は、従来のPrototheca属藻類においては知られていなかった性質である。
【0023】
以下、実施例を示してこの出願の発明についてさらに詳細に説明する。もちろん、この出願の発明は、以下の実施例に限定されるものではないことはいうまでもない。
【0024】
【実施例】
<実施例1>
静岡県の伊豆連光寺温泉の40℃および35.5℃の排水から分離した微細藻類Prototheca zopfii RND-16株(FERM P-18543)を4%(v/v)n−ヘキサデカン(C16:和光純薬製、#080-03685)を含むYNB培地(Difco製、#291940)中に添加し、25、30、35℃でそれぞれ20日間培養した。
【0025】
培養開始から微細藻類の数をトーマ血球計により数えた。
【0026】
図1に各温度における増殖曲線を示した。
【0027】
これより、本願の微細藻類がN−ヘキサデカンの存在下で35℃においても良好な増殖を示し、その速度が25℃よりも明らかに大きいことが確認された。
【0028】
また、N−ヘキサデカンを活発に資化、分解している微細藻類を顕微鏡で観察し、写真を撮影した。図2に、微細藻類の顕微鏡写真を示した。
【0029】
図2より、本願発明の微細藻類は、界面活性剤成分を分泌し、水中のn−ヘキサデカンを乳化して油滴を形成した後その油滴中に入り込み、n−ヘキサデカンを分解、資化することが確認された。
<実施例2>
実施例1と同様に、微細藻類Prototheca zopfii RND-16株(FERM P-18543)をテトラデカン(C14)、ペンタデカン(C15)、ヘキサデカン(C16)、ヘプタデカン(C17)中にそれぞれ添加し(1%(v/v))、35℃で培養した。
【0030】
培養液中に残存する各n−アルカンの濃度をガスクロマトグラフにより分析した。図3(a)に培養前、図3(b)に10日間培養後の結果を示した。
【0031】
図3より、培養10日目で4種類のn−アルカンがほとんど分解されることが確認された。
【0032】
以上の試験結果から、この出願の発明の微細藻が、従来知られているPrototheca zopfiiとは全く異なる性質を示す新規微生物であることが示された。また、この微細藻類は、高温度範囲でも炭化水素である各種n−アルカンを迅速に、効率よく分解、浄化できることが確認された。
【0033】
【発明の効果】
以上詳しく説明したとおり、この出願の発明により、新規な炭化水素資化微細藻類と、それを用いた炭化水素含有排水の浄化方法が提供される。この微細藻類は、広範囲なpH、温度及び塩濃度において炭化水素成分を分解浄化できるものであり、油田や原油タンカーの事故等によって油が流出した海洋や土壌や、炭化水素成分を含有する工業排水等のバイオレメディエーションに適用できる微生物として有用性が高い。
【図面の簡単な説明】
【図1】この出願の発明の実施例において、本願発明の微細藻類をn−ヘキサデカン存在下、各温度で培養した際の増殖曲線を示した図である。
【図2】この出願の発明の微細藻類がヘキサデカンを資化、分解している様子の顕微鏡写真を示した図である。
【図3】この出願の発明の実施例において、本願発明の微細藻類を各種n−アルカンの存在下に培養した際のガスクロマトグラフを示した図である。(a:培養前、b:培養後)
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a microalgae capable of assimilating hydrocarbons and a method for purifying wastewater using the same. More specifically, the invention of this application relates to a microalgae capable of assimilating hydrocarbons in a wide salt concentration range including a high temperature and a high salt concentration, and further in a wide pH range, and a bioremediation method using the same. .
[0002]
[Prior art and its problems]
Marine pollution, which has become a major social problem in recent years, is known to be caused by harmful chemical substances, oils, radioactive substances, waste dumping, eutrophication products, and the like.
[0003]
In particular, contamination by oils is a problem not only in crude oil production areas but also in the vicinity of factories that use or produce oils, such as food processing plants. In addition, if a tanker accident occurs when transporting crude oil from an oil field, water pollution will occur over a wide area, causing serious damage to the surrounding environment such as seabirds, mammals and seafood. For example, seabirds and marine mammals have a hydrophobic substance on their feathers and skin surface, and maintain body temperature by preventing direct contact with seawater. Loss of body temperature decreases and it cannot survive. In addition, these animals replenish water while discharging excess salt from seawater, but this function is lost due to the adhesion of oil, causing dehydration. In addition, seaweed and seafood are killed by the loss of photosynthesis and respiration due to oil adhering to the surface.
[0004]
Conventionally, crude oil and petroleum that have flowed into water bodies temporarily due to accidents in tankers and oil fields are prevented from spreading by oil fences, and oil is sprayed with an oil treatment agent consisting of surfactants and organic solvents. And mixed with. However, in the method using an oil treatment agent, the spilled oil becomes small oil droplets that can be mixed with water and eventually diluted in the ocean to reduce the scale of the damage, but this is not a fundamental solution. . Moreover, it was not applicable to the treatment of oils contained in a small amount in industrial wastewater.
[0005]
Therefore, a method of decomposing oil by light or heat and a method such as physicochemical adsorption using activated carbon or chemicals have been proposed and used in part. However, these methods use light, heat, or a large amount of reagents, and require mechanical equipment for purification. Therefore, these methods are expensive and difficult to apply to oil treatment in the ocean such as a tanker accident. There were problems such as being unable to cope with widespread pollution.
[0006]
Therefore, in recent years, bioremediation has attracted attention as a method with high environmental adaptability. Bioremediation is a method of emulsifying, decomposing, and assimilating hydrocarbons such as oils and eutrophications in water areas and soils with significant environmental pollution using various microorganisms that have a purification function. Requires little energy to do in Therefore, the cost is low, the treatment can be performed directly at the site of the contamination, the purification treatment can be performed even during the operation of the oil field or the factory, the contamination over a wide range can be purified, etc. Has the advantage of
[0007]
Various microorganisms are known as microorganisms used in such bioremediation. For example, oil-degrading bacteria belonging to the genus Agrobacterium and Rodococcas have been reported to exhibit high hydrocarbon degradability (Biosci. Biotechnol. Biochem., 59, 11, 2159-2161 (1995)). In addition, petroleum degrading yeast (Candida maltosa) has been reported to exhibit high activity even in a low pH range (Wolf, K., ed, Non-conventional Yeast in Biotechnology, pp.426-430 (1996)). . However, these bacteria have a low resolution at a low pH, and yeast has a problem that its activity is significantly reduced at a high temperature of 30 ° C. or higher and at a pH of 6.5 or higher, and therefore cannot be used in a high temperature region.
[0008]
Furthermore, it is reported that Prototheca genus, which is a eukaryotic microorganism showing a yeast-like form, especially green algae such as Prototheca hydrocarbonea and Prototheca zopfii, has oil degradability, but the conditions for their growth and decomposition are pH 3 to 3 9. Sodium chloride concentration of 0.8 to 2.4% by weight, 25 ° C. or less, showing activity only in a limited environment. In particular, at temperatures exceeding 30 ° C., it was impossible to grow and decompose oil components (Appl. Environ. Microb., P.333-336 (1983); System.Appl.Microbiol.5, 119-123). (1984)). Generally, since the salt concentration of seawater is about 3.5% by weight, the conventionally reported algae of the genus Prototheca cannot be used for decomposition and purification of oil components from seawater. Moreover, since the range of the temperature and salt concentration which can be used is limited with respect to soil contamination, it is the fact that it was not able to be used in a coastal area or an area with high temperature.
[0009]
Therefore, the invention of this application solves the problems as described above, and a bioremediation method that can be carried out in soils, rivers, lakes, oceans, etc. in a wide range of pH, temperature, and salt concentration, and microorganisms to be applied thereto It is an object of the present invention to provide a microorganism that can assimilate hydrocarbons even in a wide salt concentration range including a high temperature and a high salt concentration, or in a wide pH range.
[0010]
[Means for Solving the Problems]
In order to solve the problems as described above, the invention of this application is firstly a microalgae that assimilate hydrocarbons, and can assimilate hydrocarbons in a temperature range of 30 to 40 ° C. A microalgae characterized by the above is provided.
[0011]
The invention of this application is, secondly, the above-mentioned microalgae that can assimilate hydrocarbons in the salt concentration range of 0-2M, and thirdly, any of the above that can assimilate hydrocarbons in the range of pH 3-9 Fourthly, any one of the above-mentioned microalgae having biosurfactant ability is provided.
[0012]
The invention of this application is that, in the fifth aspect, the microalga is a microalga belonging to the genus Prototheca, and in the sixth, the microalga belonging to the genus Prototheca is a Prototheca zopfii RND-16 (Ferm P-18543) is provided as an embodiment thereof.
[0013]
Furthermore, seventhly, the invention of this application provides a bioremediation method characterized by using at least any one of the above-mentioned microalgae.
[0014]
An eighth aspect of the invention of the present application is a method for purifying a wastewater containing hydrocarbons, comprising at least a step of bringing any one of the microalgae into contact with the wastewater. Ninth, a method for purifying soil contaminated with hydrocarbons, comprising at least a step of bringing any of the above-mentioned microalgae into contact with the contaminated soil. provide.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of this application have conducted intensive research on carbon hydrogen in a wide range of pH and salt concentrations in 12 strains of yeast-like microorganisms isolated from 40 ° C and 35.5 ° C drainage of Izu Rendaiji hot spring in Shizuoka Prefecture. The present inventors have found microalgae that assimilate the water and have arrived at the present invention. Specifically, the microalgae of the present invention can assimilate hydrocarbons in a temperature range of 30 to 40 ° C., a pH range of 3 to 9, and a salt concentration range of 0 to 2M.
[0016]
In addition, as will be apparent from the examples described later, when the microalgae of the present invention assimilate hydrocarbons, the microalgae secrete surfactant components, emulsify hydrocarbon components such as petroleum, and form oil droplets. After forming, it enters the oil droplets and proliferates. That is, the microalgae of the present invention has a biosurfactant ability.
[0017]
The present inventors further studied this microalgae, and revealed that the microalgae belong to Prototheca zopfii var. Hydrocaronea from phylogenetic analysis based on the 18S rDNA base sequence. It is also clear that this microalgae forms a single lineage with Prototheca zopfii with a 100% probability and is more closely related to the autotrophic chlorella Auxenochlorella protothecoides than the same heterotrophic Prototheca genus Prototheca wickerhamii Has been.
[0018]
Furthermore, the microalgae of the invention of this application has the following characteristics not found in Prototheca zopfii that has been conventionally reported.
[0019]
(A) assimilate hydrocarbons into ethanol (b) grow in a general medium at a high temperature range of 40 ° C or higher (c) medium with hydrocarbons as a carbon source in a high temperature range up to 40 ° C (D) The maximum assimilation rate of hydrocarbons in stationary culture is more than twice that of conventionally known strains. The inventors of the present application have made a patent deposit on microalgae having the above characteristics. (Accession number: FERM P-18543).
[0020]
Therefore, if the microalgae of the invention of this application is brought into contact with wastewater or soil containing hydrocarbon components such as the ocean, soil, and oil from which crude oil has flowed out, the hydrocarbon components are quickly and efficiently decomposed and purified. Can be processed. In the method for purifying drainage and contaminated soil of the invention of this application, the method for contacting microalgae with drainage or soil is not particularly limited, and the method for spraying the microalgae to the region or water area to be purified, or Various methods such as a method of introducing into a septic tank containing microalgae can be applied. Of course, these purification methods may have various steps such as washing, sedimentation, filtration, stirring, and culturing in addition to the step of bringing wastewater or soil into contact with microalgae.
[0021]
The bioremediation method using the microalgae of the invention of this application has wider purification conditions such as temperature, salt concentration, pH and the like than the conventional method using microorganisms, so the ocean, high temperature region, low pH soil, coastal region, etc. Applicable in any environment.
[0022]
In addition, it has become clear that the microalgae of the invention of this application not only assimilate hydrocarbons but also perform anaerobic metabolism that generates gas from glucose. Such sugar fermentation (ethanol fermentation) accompanied by the generation of gas is a property that has not been known in conventional Prototheca algae.
[0023]
Hereinafter, the present invention will be described in more detail with reference to examples. Of course, it goes without saying that the invention of this application is not limited to the following examples.
[0024]
【Example】
<Example 1>
The microalgae Prototheca zopfii RND-16 strain (FERM P-18543) isolated from the 40 ° C and 35.5 ° C drainage of Izu Renkoji hot spring in Shizuoka Prefecture is 4% (v / v) n-hexadecane (C 16 : Jun Wako) It was added to YNB medium (manufactured by Yakuhin, # 080-03685) (Difco, # 291940) and cultured at 25, 30 and 35 ° C. for 20 days.
[0025]
From the start of culture, the number of microalgae was counted with a toma hemocytometer.
[0026]
FIG. 1 shows a growth curve at each temperature.
[0027]
From this, it was confirmed that the microalgae of the present application showed good growth even at 35 ° C. in the presence of N-hexadecane, and the rate was clearly higher than 25 ° C.
[0028]
In addition, microalgae actively utilizing and decomposing N-hexadecane were observed with a microscope, and photographs were taken. FIG. 2 shows a microphotograph of the microalgae.
[0029]
From FIG. 2, the microalgae of the present invention secretes a surfactant component, emulsifies n-hexadecane in water to form oil droplets, and then enters the oil droplets to decompose and assimilate n-hexadecane. It was confirmed.
<Example 2>
As in Example 1, the microalgae Prototheca zopfii RND-16 strain (FERM P-18543) was added to tetradecane (C 14 ), pentadecane (C 15 ), hexadecane (C 16 ), and heptadecane (C 17 ), respectively. (1% (v / v)) and cultured at 35 ° C.
[0030]
The concentration of each n-alkane remaining in the culture solution was analyzed by gas chromatography. FIG. 3 (a) shows the result before culturing, and FIG. 3 (b) shows the result after culturing for 10 days.
[0031]
From FIG. 3, it was confirmed that four types of n-alkanes were almost decomposed on the 10th day of culture.
[0032]
From the above test results, it was shown that the microalgae of the invention of this application is a novel microorganism exhibiting completely different properties from the conventionally known Prototheca zopfii. Moreover, it was confirmed that this microalgae can decompose and purify various n-alkanes which are hydrocarbons quickly and efficiently even in a high temperature range.
[0033]
【The invention's effect】
As described in detail above, the invention of this application provides a novel hydrocarbon-utilizing microalgae and a method for purifying hydrocarbon-containing wastewater using the same. This microalgae can decompose and purify hydrocarbon components over a wide range of pH, temperature, and salt concentration, and the ocean and soil from which oil has flowed out due to accidents in oil fields and crude oil tankers, and industrial wastewater containing hydrocarbon components. It is highly useful as a microorganism applicable to bioremediation such as
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing a growth curve when the microalgae of the present invention is cultured at various temperatures in the presence of n-hexadecane in the examples of the invention of this application.
FIG. 2 is a view showing a photomicrograph showing that the microalgae of the invention of this application assimilate and decompose hexadecane.
FIG. 3 is a diagram showing a gas chromatograph when the microalgae of the present invention is cultured in the presence of various n-alkanes in the examples of the invention of this application. (A: before culture, b: after culture)

Claims (4)

炭化水素を資化する微細藻類であ Prototheca zopfii RND-16 (FERM P-18543) Ru microalgae der assimilates hydrocarbon Prototheca zopfii RND-16 (FERM P -18543). 炭化水素による汚染物に Prototheca zopfii RND-16 (FERM P-18543) を接触させる工程を有することを特徴とするバイオレメディエーション方法 A bioremediation method comprising a step of bringing Prototheca zopfii RND-16 (FERM P-18543) into contact with a hydrocarbon contaminant . 汚染物が、炭化水素を含有する排水である請求項2のバイオレメディエーション方法 The bioremediation method according to claim 2, wherein the contaminant is a wastewater containing hydrocarbons . 汚染物が、炭化水素を含有する土壌とである請求項2のバイオレメディエーション方法 The bioremediation method according to claim 2, wherein the pollutant is a soil containing hydrocarbons .
JP2001305283A 2001-10-01 2001-10-01 Hydrocarbon-utilized microalgae and bioremediation method using the same Expired - Fee Related JP3816774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305283A JP3816774B2 (en) 2001-10-01 2001-10-01 Hydrocarbon-utilized microalgae and bioremediation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305283A JP3816774B2 (en) 2001-10-01 2001-10-01 Hydrocarbon-utilized microalgae and bioremediation method using the same

Publications (2)

Publication Number Publication Date
JP2003102467A JP2003102467A (en) 2003-04-08
JP3816774B2 true JP3816774B2 (en) 2006-08-30

Family

ID=19125095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305283A Expired - Fee Related JP3816774B2 (en) 2001-10-01 2001-10-01 Hydrocarbon-utilized microalgae and bioremediation method using the same

Country Status (1)

Country Link
JP (1) JP3816774B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523255B1 (en) 2007-06-01 2015-05-29 솔라짐, 인코포레이티드 Production of oil in microorganisms
KR101888973B1 (en) 2008-11-28 2018-08-16 테라비아 홀딩스 인코포레이티드 Production of tailored oils in heterotrophic microorganisms
MX352746B (en) 2010-05-28 2017-12-06 Terravia Holdings Inc Tailored oils produced from recombinant heterotrophic microorganisms.
CN108823254A (en) 2010-11-03 2018-11-16 柯碧恩生物技术公司 With reduce pour point microbial oil, from the dielectric fluid wherein generated, and associated method
AU2012212079B2 (en) 2011-02-02 2016-07-28 Corbion Biotech, Inc. Tailored oils produced from recombinant oleaginous microorganisms
US8945908B2 (en) 2012-04-18 2015-02-03 Solazyme, Inc. Tailored oils
WO2015017794A1 (en) * 2013-08-02 2015-02-05 The University Of Akron Treatment/cleaning of oily water/wastewater using algae
CN105829521A (en) 2013-10-04 2016-08-03 索拉兹米公司 Tailored oils
WO2016007862A2 (en) 2014-07-10 2016-01-14 Solazyme, Inc. Novel ketoacyl acp synthase genes and uses thereof
CN109626584A (en) * 2018-12-29 2019-04-16 南昌大学 A kind of method of microalgae processing sauce waste water

Also Published As

Publication number Publication date
JP2003102467A (en) 2003-04-08

Similar Documents

Publication Publication Date Title
Imron et al. Future challenges in diesel biodegradation by bacteria isolates: a review
DE102007003644B4 (en) Bioremediation process for the accelerated biodegradation of petroleum hydrocarbons in the polar sea ice-covered regions and bacterial and enzyme mixtures as a means of carrying out the process
WO2014152350A1 (en) Composition and methods of use
JPH0436758B2 (en)
DK2051784T3 (en) PROCEDURE FOR BIOLOGICAL SUPPORTED TREATMENT OF CARBON HYDROID POLLUTED SOIL
JP3816774B2 (en) Hydrocarbon-utilized microalgae and bioremediation method using the same
Nwinyi et al. Biostimulation of spent engine oil contaminated soil using Ananas comosus and Solanum tuberosum peels
Rosenberg Hydrocarbon-oxidizing bacteria
Inobeme et al. Ecorestoration of soil treated with biosurfactant during greenhouse and field trials
JP3308537B2 (en) Acinetobacter (Bicoccam), Arthrobacter and Rhodococcus strains, and methods for microbiologically cleaning oil leaks and contamination using these strains
Hashem Bioremediation of petroleum contaminated soils in the Arabian Gulf region: a review
JP2003102469A (en) Oil component-degrading bacterium and method for degrading oil component by using the strain
Martienssen et al. Use of surfactants to improve the biological degradation of petroleum hydrocarbons in a field site study
Atyah et al. Biodegradation of Crude Oil by Anabaena variabilis Isolated from Al-Dora Refinery
Kaida et al. Biodegradation of Petroleum hydrocarbons by Bacillus spp.: a review
Sivakumar et al. Relative Bioremediation of Used engine oil Contaminated soil from an Industrialised area by Various microbes
Goncharova et al. Screening and characterization of emulsifying hydrocarbon-degrading bacteria from coastal waters of the Caspian sea
Bharathi et al. Biodegradation of crude oil by bacteria isolated from crude oil contaminated soil–a review
RU2053204C1 (en) Method of treatment of environment objects from petroleum products
KR20150062130A (en) Culture method for increasing the biosurfactant production and growth of oil-degradable strain Bacillus pumilus IJ-1
CN114644997B (en) Efficient petroleum degradation strain and application thereof
JP2004194567A (en) Method for producing chlorella variant having hydrocarbon assimilative capability
Amran Biodegradation of Petroleum Hydrocarbons in Seawater and Bacterial Communities Associated with Degradation
Shakya et al. Microbes: A Novel Source of Bioremediation for Degradation of Hydrocarbons
Bharathi Biodegradation of Crude Oil Contaminated Soil by Microbial Inoculants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees