JP3816470B2 - Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method - Google Patents

Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method Download PDF

Info

Publication number
JP3816470B2
JP3816470B2 JP2003313531A JP2003313531A JP3816470B2 JP 3816470 B2 JP3816470 B2 JP 3816470B2 JP 2003313531 A JP2003313531 A JP 2003313531A JP 2003313531 A JP2003313531 A JP 2003313531A JP 3816470 B2 JP3816470 B2 JP 3816470B2
Authority
JP
Japan
Prior art keywords
transmission
circuit
modulation
subchannels
scheme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003313531A
Other languages
Japanese (ja)
Other versions
JP2004159303A (en
Inventor
和明 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003313531A priority Critical patent/JP3816470B2/en
Publication of JP2004159303A publication Critical patent/JP2004159303A/en
Application granted granted Critical
Publication of JP3816470B2 publication Critical patent/JP3816470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、符号変調多重伝送技術に関し、特に、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、高速な情報或いはデータを効率よく伝送することのできる符号変調適応可変多重伝送方法及び装置に関する。   The present invention relates to a code modulation multiplex transmission technique, and in particular, code modulation capable of efficiently transmitting high-speed information or data corresponding to different transmission conditions such as transmission path conditions, various media, or various services. The present invention relates to an adaptive variable multiplex transmission method and apparatus.

スロット単位あるいは複数スロットからなるパケット単位の送信情報データについて、予め用意した複数の符号化方式及び符号化率から選択して誤り訂正の符号化を行い、予め用意した複数の多値変調方式から選択して1次変調を行い、2次変調で広帯域化した送信信号に変換して伝送を行う、従来の符号変調適応可変伝送装置が例えば特開2000−183849号公報、特開平10−224322号公報、特開平11−234241号公報に開示されている。   Transmission information data in slot units or packet units consisting of a plurality of slots is selected from a plurality of coding schemes and coding rates prepared in advance and encoded for error correction, and selected from a plurality of multilevel modulation schemes prepared in advance. For example, Japanese Laid-Open Patent Publication No. 2000-183849 and Japanese Laid-Open Patent Publication No. 10-224322 disclose conventional code modulation adaptive variable transmission apparatuses that perform primary modulation and convert the transmission signal into a wideband transmission band by secondary modulation. And JP-A-11-234241.

更に、関連する技術に関し、特開平10−145282号公報、WO99/14878(特開2001−517017号公報)、特開平9−135275号公報を参照されたい。   Further, regarding related techniques, refer to Japanese Patent Application Laid-Open No. 10-145282, WO99 / 14878 (Japanese Patent Application Laid-Open No. 2001-517017), and Japanese Patent Application Laid-Open No. 9-135275.

近年のマルチメディア通信においては、インターネットトラヒックの需要が飛躍的に増大しており、更なる高速データパケット伝送技術の要求が高まっている。高速データ伝送を実現するためには、多値変調を導入した適応変調等の技術が導入されており、上述した従来の伝送装置のような符号化器の符号化方式及び符号化率と1次変調器の変調方式を選択的に切替える方式を用いた符号変調適応可能伝送装置が考案されている。   In recent multimedia communication, the demand for Internet traffic has increased dramatically, and the demand for further high-speed data packet transmission technology has increased. In order to realize high-speed data transmission, techniques such as adaptive modulation using multi-level modulation have been introduced, and the encoding method and encoding rate of an encoder such as the above-described conventional transmission apparatus and the first order are used. A code modulation adaptable transmission apparatus using a method of selectively switching the modulation method of a modulator has been devised.

特開2000−183849号公報JP 2000-183849 A

特開平10−224322号公報JP-A-10-224322 特開平11−234241号公報JP-A-11-234241 WO99/14878(特開2001−517017号公報)WO99 / 14878 (Japanese Patent Laid-Open No. 2001-517017) 特開平9−135275号公報JP-A-9-135275

以下で本発明に際し本発明者が検討した符号変調適応可変伝送装置について説明する。   The code modulation adaptive variable transmission apparatus examined by the present inventors in the present invention will be described below.

図3は従来の符号変調適応可変伝送装置の送信部の構成を示し、図4はその受信部の構成を示す。   FIG. 3 shows the configuration of the transmission unit of the conventional code modulation adaptive variable transmission apparatus, and FIG. 4 shows the configuration of the reception unit.

まず、図3に言及し送信部の構成について説明する。図3において、伝送条件識別回路306は、スロットあるいはパケット単位の送信情報データ301が入力されると、送信情報データ301のデータ速度、データ容量、あるいは情報データに含まれている伝送条件の指定情報などにより、データ速度やデータ容量などの伝送条件の情報307を識別して送信部制御回路308に出力する。送信部制御回路308は、この伝送条件情報307に従った送信部制御信号309により、符号化器303の誤り訂正の符号化方式及び符号化率の切替、1次変調器304の多値変調方式の切替、伝送条件識別情報付加回路310の制御を行う。図示を省略したが、伝送路の伝搬状況やトラヒック状況を監視する手段を設け、伝送路の状況に応じた伝送条件を送信部制御回路308に指定する伝送装置もある。   First, the configuration of the transmission unit will be described with reference to FIG. In FIG. 3, when transmission information data 301 in units of slots or packets is input, the transmission condition identification circuit 306 specifies the data rate, the data capacity of the transmission information data 301, or the transmission condition designation information included in the information data. The transmission condition information 307 such as the data rate and the data capacity is identified and output to the transmission unit control circuit 308. The transmission unit control circuit 308 switches the error correction coding scheme and coding rate of the encoder 303 and the multi-level modulation scheme of the primary modulator 304 based on the transmission unit control signal 309 according to the transmission condition information 307. And the transmission condition identification information adding circuit 310 are controlled. Although not shown, there is also a transmission apparatus that provides a means for monitoring the propagation status and traffic status of the transmission path, and designates transmission conditions according to the transmission path status to the transmission unit control circuit 308.

上述した制御により、入力された送信情報データ301は、送信チャネル302において、符号化器303において選択設定された誤り訂正の符号化方式及び符号化率で符号化され、さらに1次変調器304において選択設定された多値変調方式で1次変調され、コマンド等に変換されたデータで伝送条件識別情報311が伝送条件識別情報付加回路310で付加され、2次変調器305においてOFDM(Orthogonal Frequency Division Multiplex)や拡散符号による拡散変調などで広帯域化され、送信信号312が出力される。このようにして送信チャネル302から送信された信号312は受信部で受信される。   Through the control described above, the input transmission information data 301 is encoded in the transmission channel 302 with the error correction encoding method and encoding rate selected and set in the encoder 303, and further in the primary modulator 304. Transmission condition identification information 311 is added by transmission condition identification information adding circuit 310 as data that has been subjected to primary modulation using the selected multi-level modulation method and converted into a command or the like. The transmission signal 312 is output after widening the band by spreading modulation using a multiplex or spreading code. The signal 312 transmitted from the transmission channel 302 in this way is received by the receiving unit.

図4の受信部では、受信チャネル402において、受信信号401が2次復調器403に入力され、OFDMあるいは拡散復調等の2次復調が行われて多値変調された信号に戻される。次に、伝送条件識別回路406は、付加されている伝送条件識別情報407を識別し、該識別した伝送条件情報408を受信部制御回路409に出力する。受信部制御回路409からの受信部制御信号410により、1次復調器404の多値復調が選択切替されて、2次復調器403より出力された多値変調信号は符号化データに変換され、さらに復号器405の誤り訂正の復号化方式及び符号化率が選択切替されて、符号化データは復号器405から受信情報データ411に変換されて出力される。   In the reception unit of FIG. 4, in the reception channel 402, the reception signal 401 is input to the secondary demodulator 403, and is subjected to secondary demodulation such as OFDM or spread demodulation, and returned to a multi-level modulated signal. Next, the transmission condition identification circuit 406 identifies the added transmission condition identification information 407 and outputs the identified transmission condition information 408 to the reception unit control circuit 409. The multilevel demodulation of the primary demodulator 404 is selectively switched by the reception unit control signal 410 from the reception unit control circuit 409, and the multilevel modulation signal output from the secondary demodulator 403 is converted into encoded data, Further, the decoding method and coding rate for error correction of the decoder 405 are selectively switched, and the encoded data is converted from the decoder 405 to received information data 411 and output.

この伝送装置では、上記2次変調器305の変調方式は、1次変調のように選択切替されることは無く固定されている。   In this transmission apparatus, the modulation method of the secondary modulator 305 is fixed without being selectively switched as in the case of primary modulation.

しかし、この符号変調適応可変伝送装置において、より高速なデータを伝送するには、送信チャネルにおける符号化器、1次変調器及び2次変調器の処理動作と共に、受信チャネルにおける復号器、1次復調器及び2次復調器の処理動作をより高速化することが必要となり、処理回路の素子や、特に高速化の難しい送信部のAD(Analog to Digital)変換器と受信部のDA(Digital to Analog)変換器において高速化の開発が必要となる。   However, in this code modulation adaptive variable transmission apparatus, in order to transmit higher-speed data, the processing operation of the encoder, the primary modulator, and the secondary modulator in the transmission channel, the decoder in the reception channel, and the primary It is necessary to speed up the processing operation of the demodulator and the secondary demodulator, and the processing circuit elements, especially the AD (Analog to Digital) converter of the transmitting unit and the DA (Digital to Digital) of the receiving unit, which are difficult to increase in speed. Analog) converters need to be developed at high speed.

また、より高速なデータの伝送においては、符号化器の符号化方式及び符号化率と1次変調器の多値変調方式の選択切替では、情報データの多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して細かな適応制御ができなくなり、周波数利用効率の向上が減少する課題もある。   Further, in higher-speed data transmission, various switching conditions of information data, propagation conditions of the transmission line are selected in the selection switching between the coding method and coding rate of the encoder and the multi-level modulation method of the primary modulator. In addition, there is a problem that fine adaptive control cannot be performed in response to fluctuations in traffic conditions and the frequency utilization efficiency is reduced.

本発明の目的は、送信部の符号化と1次変調及び2次変調、または受信部の復号と1次復調及び2次復調の動作を高速化することなく、より高速なデータ伝送に対応可能とした符号変調適応可変多重伝送方法及び装置を提供することにある。   The object of the present invention is to support higher-speed data transmission without speeding up the encoding and primary modulation and secondary modulation of the transmitter, or the decoding and primary and secondary demodulation of the receiver. The code modulation adaptive variable multiplex transmission method and apparatus are provided.

また、本発明の別の目的は、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応させて、より高速な情報データを効率良く伝送することが可能な符号変調適応可変多重伝送方法及び装置を提供することにある。   Another object of the present invention is to provide a code modulation adaptive variable capable of efficiently transmitting higher-speed information data corresponding to different transmission conditions such as transmission path conditions, various media or various services. It is to provide a multiplex transmission method and apparatus.

本発明の一側面による符号変調適応可変多重伝送装置は、
送信するデータを複数の送信サブチャネルの送信信号に分割するデータ分割回路と、
前記複数の送信サブチャネルの各々毎に設けられ、前記分割回路からの前記送信サブチャネルの送信信号について多値変調を行う1次変調器及び該1次変調器から得られる多値変調信号に伝送帯域の広帯域化を行う2次変調器と、
前記複数の送信サブチャネルの各々毎の1次変調器の多値変調方式と2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加する付加回路と、
前記複数の送信サブチャネルの各2次変調器から得られる広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力する周波数多重化回路とからなる。
A code modulation adaptive variable multiplex transmission apparatus according to an aspect of the present invention is provided.
A data division circuit that divides data to be transmitted into transmission signals of a plurality of transmission subchannels;
A primary modulator that is provided for each of the plurality of transmission subchannels and performs multilevel modulation on the transmission signal of the transmission subchannel from the division circuit, and is transmitted to a multilevel modulation signal obtained from the primary modulator A secondary modulator for widening the bandwidth;
Transmission condition information including a multi-level modulation scheme of a primary modulator, a wideband scheme of a secondary modulator, and the number of the plurality of transmission subchannels for each of the plurality of transmission subchannels is added to a related transmission signal. An additional circuit to
It comprises a frequency multiplexing circuit that frequency-multiplexes the wideband modulated output obtained from each secondary modulator of the plurality of transmission subchannels and outputs it as a channel for the same user.

本発明の好ましい1つの特徴によれば、前記複数の送信サブチャネルの各々毎に設けられた前記1次変調器は複数の多値変調方式から任意の1つを選択するように構成され、前記複数の送信サブチャネルの各々毎に設けられた前記2次変調器は複数の広帯域化方式から任意の1つを選択するように構成されている。   According to a preferred aspect of the present invention, the primary modulator provided for each of the plurality of transmission subchannels is configured to select any one of a plurality of multilevel modulation schemes, The secondary modulator provided for each of a plurality of transmission subchannels is configured to select an arbitrary one from a plurality of wideband systems.

本発明の好ましい別の特徴によれば、前記複数の送信サブチャネルの各々毎に設けられた前記1次変調器の前段に、関連する送信サブチャネルの前記送信信号について誤り訂正符号化を行う符号化器を含み、前記1次変調器は該符号化器からの出力データについて多値変調を行う。   According to still another preferred feature of the present invention, a code for performing error correction coding on the transmission signal of the associated transmission subchannel in a stage preceding the primary modulator provided for each of the plurality of transmission subchannels The primary modulator performs multi-level modulation on the output data from the encoder.

本発明の好ましい別の特徴によれば、前記符号化器は複数の誤り訂正の符号化方式及び複数の符号化率からそれぞれ任意の1つを選択するように構成されている。   According to still another preferred feature of the present invention, the encoder is configured to select any one from a plurality of error correction encoding schemes and a plurality of encoding rates.

また、本発明の別の側面による符号変調適応可変多重伝送装置は、
受信した周波数多重信号から複数の受信サブチャネルの各々毎の変調信号に周波数分割する周波数分離回路と、
伝送側で付加された各受信サブチャネル毎の信号における1次変調の多値変調方式と2次変調の広帯域化方式と前記受信サブチャネルの数とを含む伝送条件情報を識別する伝送条件識別回路と、
該伝送条件識別回路において識別した伝送条件情報に基づいて制御信号を発生する制御回路と、
複数の受信サブチャネルの各々毎に設けられ、前記制御回路に応答して、前記周波数分離回路から得られた関連する受信サブチャネルの変調信号を前記伝送条件識別回路で識別された広帯域化方式に対応する逆広帯域化方式で復調する2次復調器及び前記制御回路に応答して、該2次復調器で復調された各受信チャネル毎の変調信号を前記伝送条件識別回路で識別された多値変調方式に対応する多値復調方式で復調する1次復調器と、
前記複数の受信サブチャネルから得られたデータを合成するデータ合成回路とからなる。
Also, a code modulation adaptive variable multiplex transmission apparatus according to another aspect of the present invention is provided.
A frequency separation circuit that frequency-divides the received frequency-multiplexed signal into modulated signals for each of a plurality of reception subchannels;
Transmission condition identification circuit for identifying transmission condition information including a multi-level modulation scheme for primary modulation, a broadband modulation scheme for secondary modulation, and the number of reception subchannels in a signal for each reception subchannel added on the transmission side When,
A control circuit for generating a control signal based on the transmission condition information identified in the transmission condition identification circuit;
Provided for each of a plurality of reception subchannels, and in response to the control circuit, the modulation signal of the associated reception subchannel obtained from the frequency separation circuit is changed to a wideband system identified by the transmission condition identification circuit. In response to the secondary demodulator demodulating by the corresponding inverse wideband system and the control circuit, the modulation signal for each reception channel demodulated by the secondary demodulator is identified by the transmission condition identifying circuit. A primary demodulator that demodulates using a multi-level demodulation method corresponding to the modulation method;
And a data synthesis circuit for synthesizing data obtained from the plurality of reception subchannels.

また、本発明の別の側面による符号変調適応可変多重伝送方法は、
送信するデータを複数の送信サブチャネルの送信信号に分割するステップと、
前記複数の送信サブチャネルの送信信号の各々について多値変調を行うステップと、
前記複数の送信サブチャネルの多値変調信号の各々について広帯域化を行うステップと、
前記多値変調の変調方式と前記伝送帯域の広帯域化方式と前記送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加するステップと、
前記複数の送信サブチャネルの広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力するステップとを有する。
In addition, a code modulation adaptive variable multiplex transmission method according to another aspect of the present invention provides:
Dividing data to be transmitted into transmission signals of a plurality of transmission subchannels;
Performing multi-level modulation for each of the transmission signals of the plurality of transmission subchannels;
Widening each multi-level modulation signal of the plurality of transmission subchannels;
Adding transmission condition information including the modulation scheme of the multi-level modulation, the transmission bandwidth widening scheme, and the number of transmission subchannels to the associated transmission signal;
And frequency-multiplexing the wideband modulated outputs of the plurality of transmission subchannels to output the same user channel.

以上説明した本発明に係る符号変調適応可変多重伝送装置において、送信部では、送信情報データを複数のサブチャネルに分割し、送信サブチャネル毎に選択切替した誤り訂正の符号化方式及び符号化率による符号化、選択切替した多値変調方式の1次変調、及び選択切替した広帯域化方式の2次変調を行うため、それぞれの送信サブチャネルの処理動作は、複数のサブチャネルに分割することで低速化されて、より高速なデータ伝送に対応可能となる。同様に、受信部においても、受信信号を分離した後の受信サブチャネル毎の2次復調と1次復調及び誤り訂正復号の処理動作は低速化されて、より高速なデータ伝送に対応可能となる。すなわち、送信部の符号化と1次変調及び2次変調、または受信部の復号と1次復調及び2次復調に用いられるAD変換器とDA変換器においても低速素子で対応可能となる。   In the code modulation adaptive variable multiplex transmission apparatus according to the present invention described above, the transmission section divides transmission information data into a plurality of subchannels, and selectively switches the error correction coding scheme and coding rate for each transmission subchannel. Coding, primary switching of the multi-level modulation scheme switched selectively, and secondary modulation of the broadband switching scheme switched selectively, the processing operation of each transmission subchannel is divided into a plurality of subchannels The speed is reduced and it becomes possible to cope with higher-speed data transmission. Similarly, in the reception unit, the processing operations of secondary demodulation, primary demodulation, and error correction decoding for each reception subchannel after separating the reception signal are slowed down, and can cope with higher-speed data transmission. . That is, the low-speed elements can also be used in the AD converter and DA converter used for encoding and primary modulation and secondary modulation of the transmission unit, or decoding and primary demodulation and secondary demodulation of the reception unit.

また、符号化器の符号化方式と符号化率の選択切替、及び1次変調器の多値変調方式の選択切替と共に、サブチャネル数の切替と、2次変調器の広帯域化方式の切替を組合わせて行うことで、多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して細かな適応制御が可能となり、周波数利用効率をさらに向上することができる。   In addition, the switching of the coding method and coding rate of the encoder, and the switching of the selection of the multilevel modulation system of the primary modulator, the switching of the number of subchannels, and the switching of the broadband method of the secondary modulator. By performing the combination, fine adaptive control can be performed in response to various transmission conditions, transmission path propagation conditions and traffic conditions, and frequency utilization efficiency can be further improved.

したがって、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、より高速な情報データを効率良く伝送することが可能となる。   Therefore, it is possible to efficiently transmit higher-speed information data in accordance with different transmission conditions such as transmission path conditions, various media, and various services.

以上説明したように、本発明によれば、送信部の符号化と1次変調及び2次変調、または受信部の復号と1次復調及び2次復調の処理動作を低速化し、高速化の困難なAD変換器とDA変換器においても低速素子で対応可能となり、より高速なデータ伝送に対応可能な伝送装置を実現することができる。   As described above, according to the present invention, the encoding and primary modulation and secondary modulation of the transmission unit, or the decoding and primary demodulation and secondary demodulation processing operations of the reception unit are slowed down and it is difficult to increase the speed. A low-speed element can be used for both the AD converter and the DA converter, and a transmission apparatus that can handle higher-speed data transmission can be realized.

また、本発明によれば、多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して、より細かな適応制御が可能となり、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、より高速な情報データを効率良く伝送することが可能となる伝送装置を実現することができる。   In addition, according to the present invention, finer adaptive control can be performed in response to various transmission conditions, transmission path propagation status and traffic status fluctuations, and different transmission conditions such as various media or various services can be used. Correspondingly, it is possible to realize a transmission apparatus that can efficiently transmit higher-speed information data.

本発明に係る、情報データを複数のサブチャネルの信号に分割し、複数のサブチャネルを周波数多重化し同一ユーザのチャネルとして伝送する、本発明の符号変調適応可変多重伝送装置の実施の形態について、図1および図2を用いて説明する。   According to an embodiment of the code modulation adaptive variable multiplex transmission apparatus of the present invention, which divides information data into signals of a plurality of subchannels, frequency-multiplexes the plurality of subchannels and transmits them as a channel of the same user, according to the present invention. This will be described with reference to FIGS.

図1は、本発明に係る符号変調適応可変多重伝送装置の一実施の形態の送信部の構成を示すブロック図である。送信部は、入力される、スロットあるいはパケット単位の送信情報データ101のデータ速度、データ容量、あるいは情報データに含まれている伝送条件の指定情報などにより、伝送条件情報108を識別する伝送条件識別回路107と、伝送条件識別回路107で識別された伝送条件情報108が供給される送信部制御回路109と、送信部制御回路109からの送信部制御信号110により送信情報データ101を複数の送信サブチャネル(1)〜(n)103に分割するデータ分割回路102と、送信部制御回路109からの送信部制御信号110により、各送信サブチャネル(1)〜(n)103において予め用意した(符号化器の回路として備えられた)複数の符号化方式(畳込み符号化、リードソロモン、BCHなどの符号化方式)と符号化率を選択切替して所望の符号化方式と符号化率により誤り訂正の符号化を行う符号化器104と、送信部制御回路109からの伝送条件情報108に従った送信部制御信号110により、各送信サブチャネル(1)〜(n)103において予め用意した(変調器の回路として備えられた)複数の多値変調方式(BPSKを含めたQPSK、16QAMなどの変調方式)を選択切替して所望の多値変調方式により1次変調を行う1次変調器105と、送信部制御回路109が設定する伝送条件情報108に対応した伝送条件識別情報112を、各送信サブチャネル(1)〜(n)103における送信信号に付加する伝送条件識別情報付加回路111と、送信部制御回路109からの送信部制御信号110により、各送信サブチャネル(1)〜(n)103において予め用意した(変調器の回路として備えられた)OFDM(Orthogonal Frequency Division Multiplex)や拡散変調(スペクトラム拡散)等の広帯域化方式を選択切替して所望の広帯域化方式により2次変調を行う2次変調器106と、複数の送信サブチャネル(1)〜(n)103から得られる送信変調信号113を周波数多重化する周波数多重化回路114から構成される。   FIG. 1 is a block diagram showing a configuration of a transmission section of an embodiment of a code modulation adaptive variable multiplex transmission apparatus according to the present invention. The transmission unit identifies transmission condition information 108 by identifying transmission condition information 108 based on the input data rate, data capacity of transmission information data 101 in units of slots or packets, or transmission condition designation information included in the information data. A transmission unit control circuit 109 to which transmission condition information 108 identified by the transmission condition identification circuit 107 is supplied, and a transmission unit control signal 110 from the transmission unit control circuit 109. Prepared in advance in each transmission subchannel (1) to (n) 103 by the data division circuit 102 that divides the channel (1) to (n) 103 and the transmission unit control signal 110 from the transmission unit control circuit 109 (code Multiple encoding methods (container circuit, convolutional encoding, Reed-Solomon, BCH, etc.) ) And a coding unit 104 that selectively switches the coding rate and performs error correction coding with a desired coding method and coding rate, and transmission unit control according to transmission condition information 108 from the transmission unit control circuit 109 A plurality of multilevel modulation schemes (modulation schemes such as QPSK including BPSK and 16QAM) prepared in advance in each transmission subchannel (1) to (n) 103 (provided as a circuit of the modulator) by the signal 110 A primary modulator 105 that performs selective switching and performs primary modulation according to a desired multi-level modulation scheme, and transmission condition identification information 112 corresponding to transmission condition information 108 set by the transmission unit control circuit 109 are transmitted to each transmission subchannel ( 1) to (n) 103, transmission condition identification information adding circuit 111 added to the transmission signal, and transmission unit control signal 110 from transmission unit control circuit 109. (1) to (n) 103, which is prepared in advance (provided as a circuit of the modulator) and selectively switches between wideband systems such as OFDM (Orthogonal Frequency Division Multiplex) and spread modulation (spread spectrum). A secondary modulator 106 that performs secondary modulation according to a method and a frequency multiplexing circuit 114 that frequency-multiplexes transmission modulation signals 113 obtained from a plurality of transmission subchannels (1) to (n) 103 are configured.

図6は符号化器104の一構成例を示す。この符号化器104は、送信制御回路109からの送信制御信号110によって予め用意した複数の符号化方式(畳込み符号化、リードソロモン、BCHなどの符号化方式)と符号化率から所望の符号化方式と符号化率を選択するよう構成されている。   FIG. 6 shows a configuration example of the encoder 104. The encoder 104 uses a plurality of encoding schemes (encoding schemes such as convolutional encoding, Reed-Solomon, and BCH) prepared in advance by a transmission control signal 110 from the transmission control circuit 109 and a desired code. The coding method and the coding rate are selected.

図7は1次変調器105の一構成例を示す。この1次変調器105は、送信制御回路109からの送信制御信号110によって予め用意した複数の多値変調方式(BPSK,QPSK,16QAMなど)から所望の多値変調方式を選択するよう構成されている。   FIG. 7 shows a configuration example of the primary modulator 105. The primary modulator 105 is configured to select a desired multilevel modulation scheme from a plurality of multilevel modulation schemes (BPSK, QPSK, 16QAM, etc.) prepared in advance by a transmission control signal 110 from the transmission control circuit 109. Yes.

図8は2次変調器106の一構成例を示す。この2次変調器106は、送信制御回路109からの送信制御信号110によって予め用意した複数の広帯域化方式(OFDM、拡散変調(スペクトラム拡散)など)から所望の広帯域化方式を選択するよう構成されている。   FIG. 8 shows a configuration example of the secondary modulator 106. The secondary modulator 106 is configured to select a desired wideband system from a plurality of wideband systems (OFDM, spread modulation (spread spectrum), etc.) prepared in advance by the transmission control signal 110 from the transmission control circuit 109. ing.

データ分割回路102は、送信部制御回路109からの伝送条件情報108に基づく送信部制御信号110により、送信情報データ101を複数の送信サブチャネル(1)〜(n)103に均等あるいは異なる割合で分割する回路である。上記データ分割回路102は、例えば、4個のサブチャネルの場合において均等分割であれば、4個の送信情報データが入力される毎に各サブチャネルに1個ずつ分割し、異なる割合(例えば1:2:3:4の比)で分割するのであれば、10個の送信情報データが入力される毎に、4個のサブチャネルにそれぞれ1個、2個、3個、4個のデータに分割することになる。また、サブチャネルと称したのは、複数チャネルを周波数多重化して1ユーザが1つのチャネルとして使用するためである。   The data division circuit 102 uses the transmission unit control signal 110 based on the transmission condition information 108 from the transmission unit control circuit 109 to distribute the transmission information data 101 to the plurality of transmission subchannels (1) to (n) 103 at equal or different rates. It is a circuit to divide. For example, in the case of four subchannels, the data division circuit 102 divides one transmission channel into each subchannel every time four pieces of transmission information data are input, and a different ratio (for example, 1 : 2: 3: 4 ratio), every time 10 pieces of transmission information data are input, 1 sub-channel, two sub-channels, four sub-channels, and four sub-channels are input. Will be divided. Also, the reason why the sub-channel is referred to is that a plurality of channels are frequency-multiplexed and used by one user as one channel.

ここで、符号化器104と1次変調器105と2次変調器106は送信サブチャネル(1)〜(n)103毎に必要となる。伝送条件識別情報付加回路111は、送信サブチャネル(1)〜(n)103の各々毎に、あるいは一括して指定する1つまたは複数の送信サブチャネルに伝送条件識別情報112の付加を行う(伝送条件識別情報112をコマンド等のなるべく省略したデータとして付加する)。そして、この伝送条件識別情報112については2次変調器106の広帯域化方式を送信側受信側で予め取り決めて指定した方式に固定して付加される。   Here, the encoder 104, the primary modulator 105, and the secondary modulator 106 are required for each of the transmission subchannels (1) to (n) 103. The transmission condition identification information adding circuit 111 adds the transmission condition identification information 112 to each of the transmission subchannels (1) to (n) 103 or to one or a plurality of transmission subchannels designated in a lump ( The transmission condition identification information 112 is added as data such as a command omitted as much as possible). The transmission condition identification information 112 is added by fixing the wideband method of the secondary modulator 106 to a method determined and specified in advance on the transmission side reception side.

このように構成された送信部に、スロットあるいはパケット単位の送信情報データ101が入力されると、伝送条件識別回路107が送信情報データ101のデータ速度、データ容量、あるいは情報データに含まれる伝送条件の指定情報などにより、各サブチャネルの誤り訂正符号の符号化方式(畳込み符号化[convolutional code ]、リードソロモン[Reed-Solomon code]、BCH[Bose-Chaudhuri-Hocquenghem code]などの符号化方式)及び符号化率と、1次変調の多値変調方式と、2次変調の広帯域化方式と、分割し多重化するサブチャネル数とを示す伝送条件情報108を識別し、該識別された伝送条件情報108を送信部制御回路109に出力する。なお、畳み込み符号化は、(誤り訂正符号の一種。複数の情報ブロックに基づいて符号を生成する。この符号は復号法に関連して発展してきた。復号法には、しきい値復号法と最尤復号法とがある。)である。リードソロモンは、(誤り訂正符号の一種。バースト誤り検出/訂正用のブロック符号方式(block code)の一つ。通信やデータ記録で利用する。ブロック符号方式とは伝送する情報ビットをある大きさのブロックに分け、ブロックごとにパリティ・ビット(誤り検出用ビット)を付加する方法をいう。このほか、バースト誤り検出/訂正用には、ファイア符号などがある。また、ランダム誤り訂正用には、BCH符号や、ハミング符号(Hamming Code)、サイクリック符号(cyclic code)、ゴーレイ符号(Golay code)などがある。なお、ブロック符号方式とは別に畳み込み符号がある。これは情報ビットをブロックに分けずに、いくつかの入力ビットごとに排他的論理和の演算処理などを行う方式。)である。ここで、伝送条件識別回路107は、後述する受信部の伝送条件識別回路208からの伝送条件情報210を受けて、上記伝送条件情報108を送信部制御回路109に出力しても良い。また、図示を省略したが、伝送路の伝搬状況やトラヒック状況を監視する手段を設け、伝送路の状況に応じた伝送条件情報108を送信部制御回路109に出力しても良い。   When transmission information data 101 in units of slots or packets is input to the transmission unit configured as described above, the transmission condition identification circuit 107 transmits the data rate, data capacity, or transmission conditions included in the information data of the transmission information data 101. Coding information of each subchannel, such as convolutional coding [convolutional code], Reed-Solomon [Reed-Solomon code], BCH [Bose-Chaudhuri-Hocquenghem code] ) And the coding rate, the primary modulation multi-level modulation scheme, the secondary modulation broadband scheme, and the number of subchannels to be divided and multiplexed are identified, and the identified transmissions are identified. The condition information 108 is output to the transmission unit control circuit 109. Note that convolutional coding (a kind of error correction code. A code is generated based on a plurality of information blocks. This code has been developed in connection with a decoding method. There is a maximum likelihood decoding method). Reed-Solomon (a kind of error correction code. One of the block code systems for burst error detection / correction. It is used for communication and data recording. The block code system is the size of information bits to be transmitted. This is a method of adding a parity bit (error detection bit) to each block, and there are fire codes for burst error detection / correction, and for random error correction. , BCH code, Hamming code, cyclic code, Golay code, etc. In addition to the block code method, there is a convolutional code, which converts information bits into blocks. A method of performing exclusive OR operation processing for each of several input bits without dividing.). Here, the transmission condition identification circuit 107 may receive the transmission condition information 210 from the transmission condition identification circuit 208 of the receiving unit, which will be described later, and output the transmission condition information 108 to the transmission unit control circuit 109. Although not shown, a means for monitoring the propagation status and traffic status of the transmission path may be provided, and transmission condition information 108 corresponding to the status of the transmission path may be output to the transmission unit control circuit 109.

送信部制御回路109では、データ分割回路102に対して伝送条件情報108により、各送信サブチャネル(1)〜(n)103に送信情報データ101を均等にあるいは異なる割合で分割する制御を行い、各送信サブチャネル(1)〜(n)103について、符号化器104の符号化方式及び符号化率と、1次変調器105の多値変調方式と、2次変調器106の広帯域化方式とを、伝送条件情報108に従って選択切替する制御を行い、伝送条件識別情報付加回路111に対しては、送信する伝送条件識別情報112を送信信号に付加させる制御を行う。上述の制御により、各送信サブチャネル103の送信情報は符号化器104に入力されて選択切替された符号化方式及び符号化率で符号化され、1次変調器105において選択切替された多値変調方式で1次変調され、コマンド等に変換された伝送条件識別情報112が伝送条件識別情報付加回路111において付加される。次に、2次変調器106において選択切替された広帯域化方式で2次変調され、送信変調信号113が出力される。   The transmission unit control circuit 109 controls the data division circuit 102 to divide the transmission information data 101 equally or at different ratios into the transmission subchannels (1) to (n) 103 according to the transmission condition information 108. For each transmission subchannel (1) to (n) 103, the coding scheme and coding rate of the encoder 104, the multilevel modulation scheme of the primary modulator 105, and the broadband scheme of the secondary modulator 106, The transmission condition identification information adding circuit 111 is controlled to add the transmission condition identification information 112 to be transmitted to the transmission signal. Through the above-described control, transmission information of each transmission subchannel 103 is input to the encoder 104 and is encoded with the encoding scheme and encoding rate that are selectively switched, and the multi-value that is selectively switched in the primary modulator 105 Transmission condition identification information 112 that is first-order modulated by a modulation method and converted into a command or the like is added by a transmission condition identification information adding circuit 111. Next, secondary modulation is performed by the wideband method selected and switched in the secondary modulator 106, and a transmission modulation signal 113 is output.

そして、これら複数の送信サブチャネル103からの送信変調信号113は、周波数多重化回路114で周波数多重化されて送信多重信号115として送信され、受信部で受信される。   Then, the transmission modulation signals 113 from the plurality of transmission subchannels 103 are frequency-multiplexed by the frequency multiplexing circuit 114 and transmitted as the transmission multiplexed signal 115 and received by the receiving unit.

次に、周波数多重化回路114における周波数多重化について、図9、図10のサブチャネル変調信号の周波数多重化例を用いて説明する。周波数多重化は、各サブチャネルの変調信号に搬送波信号を乗積し、それぞれのサブチャネル変調信号のチャネル帯域がかさならないように周波数方向に並べる処理である。   Next, frequency multiplexing in frequency multiplexing circuit 114 will be described using frequency multiplexing examples of subchannel modulation signals in FIGS. 9 and 10. Frequency multiplexing is a process of multiplying the modulated signal of each subchannel by a carrier signal and arranging it in the frequency direction so that the channel band of each subchannel modulated signal is not increased.

図9は、サブチャネル変調信号のチャネル帯域幅が等間隔の場合であり、サブチャネル変調信号にそれぞれ等間隔の搬送波信号を乗積して、周波数方向に等間隔に並べる処理を行い多重化し、一つの信号に変換する。   FIG. 9 shows a case where the channel bandwidths of the subchannel modulation signals are equally spaced, and each subchannel modulation signal is multiplied by a carrier signal of equal spacing and arranged in the frequency direction so as to be multiplexed. Convert to a single signal.

図10に示すような、OFDM変調方式におけるサブキャリア数の異なるサブチャネル変調信号では、チャネル帯域幅が異なるので、周波数間隔の異なる搬送波信号をそれぞれのサブチャネル変調信号に乗積して、チャネル帯域が重ならないように周波数方向に並べる処理を行い多重化し、一つの信号に変換する。   As shown in FIG. 10, in the subchannel modulation signal with different number of subcarriers in the OFDM modulation system, the channel bandwidth is different. Therefore, carrier signals having different frequency intervals are multiplied with each subchannel modulation signal to obtain the channel bandwidth. The signals are multiplexed in the frequency direction so that they do not overlap, and converted into one signal.

なお、上記実施の形態で示す多重化する全ての複数の送信サブチャネル(1)〜(n)103において、符号化器104としては同じ符号化方式及び符号化率を用い、1次変調器105としては同じ多値変調方式を用い、2次変調器106としては同じ広帯域化方式を用いても良い。この場合には、送信部制御回路109から得られる送信部制御信号110に基づいて、当然、符号化器104としては同じ符号化方式及び符号化率を選択して用いても良いし、1次変調器105としては同じ多値変調方式を選択して用いても良いし、また、2次変調器106としては同じ広帯域化方式を用いても良い。   In all the transmission subchannels (1) to (n) 103 to be multiplexed shown in the above embodiment, the encoder 104 uses the same coding scheme and coding rate, and the primary modulator 105. May be the same multi-level modulation method, and the secondary modulator 106 may be the same wideband method. In this case, of course, the same coding scheme and coding rate may be selected and used as the encoder 104 based on the transmission unit control signal 110 obtained from the transmission unit control circuit 109. As the modulator 105, the same multi-level modulation method may be selected and used, and as the secondary modulator 106, the same wideband method may be used.

また、上記実施の形態で示す多重化する多数の送信サブチャネル(1)〜(n)103を、例えば複数ユーザに対応して、複数のグループに分割し、該分割されたグループ毎の複数のサブチャネルにおいては、符号化器104として同じ符号化方式および符号化率を用い、1次変調器105として同じ多値変調方式を用い、2次変調器106として同じ広帯域化方式を用いても良い。この場合にも(分割されたグループ毎の複数のサブチャネルにおいても)、送信部制御回路109から得られる送信部制御信号110に基づいて、当然、符号化器104としては同じ符号化方式及び符号化率を選択して用いても良いし、1次変調器105としては同じ多値変調方式を選択して用いても良いし、また、2次変調器106としては同じ広帯域化方式を用いても良い。   Further, a large number of transmission subchannels (1) to (n) 103 to be multiplexed shown in the above embodiment are divided into a plurality of groups corresponding to, for example, a plurality of users, and a plurality of divided sub-channels are divided into a plurality of groups. In the subchannel, the same coding scheme and coding rate may be used as the encoder 104, the same multilevel modulation scheme may be used as the primary modulator 105, and the same wideband scheme may be used as the secondary modulator 106. . Also in this case (even in a plurality of subchannels for each divided group), the encoder 104 naturally has the same encoding scheme and code based on the transmission unit control signal 110 obtained from the transmission unit control circuit 109. The primary modulation unit 105 may select and use the same multi-level modulation method, and the secondary modulator 106 may use the same wideband method. Also good.

図2は、本発明に係る符号変調適応可変多重伝送装置の一実施例の受信部の構成を示すブロック図である。受信部は、受信した受信多重信号201から各受信サブチャネル(1)〜(n)204の受信変調信号203に周波数分離する周波数分離回路202と、伝送側で付加された各受信サブチャネル(1)〜(n)204の誤り訂正の符号化方式及び符号化率と1次変調の多値変調方式と2次変調の広帯域化方式とサブチャネル数との伝送条件情報210を識別する伝送条件識別回路208と、識別した伝送条件情報210により、受信サブチャネル毎の2次復調器205と1次復調器206と復号器207との制御及びデータ合成回路213の制御を行う受信部制御回路211と、複数の受信サブチャネル(1)〜(n)204からの情報データを合成するデータ合成回路213から構成される。ここで、2次復調器205と1次復調器206と復号器207は受信サブチャネル(1)〜(n)204毎に必要となる。   FIG. 2 is a block diagram showing the configuration of the receiving unit of one embodiment of the code modulation adaptive variable multiplex transmission apparatus according to the present invention. The receiving unit includes a frequency separation circuit 202 that performs frequency separation from the received reception multiplexed signal 201 into reception modulation signals 203 of the reception subchannels (1) to (n) 204, and each reception subchannel (1) added on the transmission side. ) To (n) 204 transmission condition identification for identifying the transmission condition information 210 of the coding scheme and coding rate of the error correction, the primary modulation multi-level modulation scheme, the secondary modulation broadband scheme, and the number of subchannels. A reception unit control circuit 211 that controls the secondary demodulator 205, the primary demodulator 206, and the decoder 207 for each reception subchannel and the data synthesis circuit 213 according to the circuit 208 and the identified transmission condition information 210; And a data synthesis circuit 213 that synthesizes information data from the plurality of reception subchannels (1) to (n) 204. Here, the secondary demodulator 205, the primary demodulator 206, and the decoder 207 are required for each of the reception subchannels (1) to (n) 204.

このように構成された受信部に受信多重信号201が入力されると、周波数分離回路202で複数の受信サブチャネル(1)〜(n)204の受信変調信号203に分離され、それぞれの受信サブチャネル(1)〜(n)204の2次復調器205において、受信部制御回路211により選択切替される逆広帯域化方式で2次復調されて1次変調信号に戻される。なお、受信サブチャネルの数nは識別された伝送条件情報210に含まれるサブチャネルの数である。   When the reception multiplexed signal 201 is input to the reception unit configured as described above, the frequency separation circuit 202 separates the reception multiplexed signal 201 into the reception modulation signals 203 of the plurality of reception subchannels (1) to (n) 204, and receives each reception subsignal. In the secondary demodulator 205 of the channels (1) to (n) 204, the secondary demodulation is performed by the inverse wideband system that is selectively switched by the reception unit control circuit 211, and returned to the primary modulation signal. The number n of received subchannels is the number of subchannels included in the identified transmission condition information 210.

この1次変調信号は伝送条件識別回路208に供給され、送信部において付加された伝送条件識別情報209が識別されて伝送条件情報210が受信部制御回路211に入力される。受信部制御回路211では、伝送条件情報210に従い送信部の各送信サブチャネル103の2次変調器106の広帯域化方式と1次変調器105の多値変調方式と符号化器104の符号化方式及び符号化率と一致するように、各受信サブチャネル(1)〜(n)204の2次復調器205の逆広帯域化方式と1次復調器206の多値復調方式と復号器207の復号方式及び符号化率とを選択切替する制御を行う。   The primary modulation signal is supplied to the transmission condition identification circuit 208, the transmission condition identification information 209 added in the transmission unit is identified, and the transmission condition information 210 is input to the reception unit control circuit 211. In the reception unit control circuit 211, according to the transmission condition information 210, the wideband modulation scheme of the secondary modulator 106, the multilevel modulation scheme of the primary modulator 105, and the encoding scheme of the encoder 104 in each transmission subchannel 103 of the transmission section. In addition, in order to match the coding rate, the inverse wideband scheme of the secondary demodulator 205, the multilevel demodulation scheme of the primary demodulator 206, and the decoding of the decoder 207 in each of the reception subchannels (1) to (n) 204 Control to selectively switch between a system and a coding rate is performed.

送信部の説明で記述したように、伝送条件識別情報209は2次変調器106の広帯域化方式を送信側受信側で予め取り決めて指定した方式に固定して付加されているので、2次復調器205の逆広帯域化方式は、伝送条件識別情報209については予め取り決めて指定された方式に、情報データについては伝送条件情報210による方式に切替られることになる。また、送信部では、各送信サブチャネルに、あるいは一括して指定する1つまたは複数の送信サブチャネルに伝送条件識別情報を付加しているので、受信部においては、それらに対応する受信サブチャネルから伝送条件識別情報209を伝送条件識別回路208により識別する。   As described in the description of the transmission unit, the transmission condition identification information 209 is added by fixing the wideband method of the secondary modulator 106 to a method determined and specified in advance on the transmission side reception side. The inverse wideband system of the device 205 is switched to a system determined and specified in advance for the transmission condition identification information 209 and to a system based on the transmission condition information 210 for information data. In the transmission unit, transmission condition identification information is added to each transmission subchannel or to one or a plurality of transmission subchannels specified in a lump. Therefore, in the reception unit, reception subchannels corresponding to them are added. The transmission condition identification information 209 is identified by the transmission condition identification circuit 208.

2次復調器205から出力された1次変調信号は、1次復調器206において受信部制御回路211からの受信部制御信号212により選択切替された多値復調方式で1次復調され、さらに復号器207において選択切替された復号方式及び符号化率で復号されて各受信サブチャネル(1)〜(n)204の受信情報が再生される。これら複数の受信サブチャネル(1)〜(n)204の受信情報はデータ合成回路213で合成されて、受信情報データ214が出力される。   The primary modulation signal output from the secondary demodulator 205 is primarily demodulated by the multi-level demodulation method selected and switched by the reception unit control signal 212 from the reception unit control circuit 211 in the primary demodulator 206, and further decoded. The reception information of the reception subchannels (1) to (n) 204 is reproduced by decoding with the decoding method and coding rate selected and switched in the unit 207. The reception information of the plurality of reception subchannels (1) to (n) 204 is combined by the data combining circuit 213, and reception information data 214 is output.

ところで、送信部から受信部への伝送条件識別情報112の伝送方法には、次のような方法がある。第1の方法は、情報データがスロット、あるいは複数スロットのパケットで伝送される場合に、スロットあるいはパケットの先頭(ヘッダ)に伝送条件識別情報112を付加して伝送し、受信スロットあるいはパケットの先頭から伝送条件情報を識別する方法であり、第2の方法は、符号多重あるいは周波数多重されるパイロットチャネルなどに伝送条件識別情報112を付加して伝送し、受信のパイロットチャネルから伝送条件情報を識別する方法である。さらに他の方法としては、1つ前のスロットあるいはパケットで伝送条件識別情報112を送信しておく方法などがある。   Incidentally, there are the following methods for transmitting the transmission condition identification information 112 from the transmission unit to the reception unit. In the first method, when information data is transmitted in a slot or a packet of a plurality of slots, the transmission condition identification information 112 is added to the beginning of the slot or the packet (header) and transmitted. In the second method, transmission condition identification information 112 is added to a pilot channel that is code-multiplexed or frequency-multiplexed for transmission, and transmission condition information is identified from the received pilot channel. It is a method to do. As yet another method, there is a method of transmitting the transmission condition identification information 112 in the previous slot or packet.

図5は、それぞれ上記送信部(図1)および上記受信部(図2)を有するA局とB局の間のパケット送信タイミング動作の一例を示す図である。なお、ここでは、各局は、複数の送信データで構成されるスロット、あるいは複数の上記スロットで構成されるフレームなどのパケット単位でデータを伝送するものとしており、前述のように、各パケットの先頭部分に上記伝送条件情報を付加して送信している。図5において、横軸は時間軸であり、(a)はA局の送信データ、(b)はB局の受信データ、(c)はB局の送信データ、(d)はA局の受信データを示している。ここで、初期状態においては、A局からの当該情報の伝送に用いるチャネル多重数、一次変調および二次変調は当該データの種別などにより予め定められている初期設定値とされているものとする。   FIG. 5 is a diagram illustrating an example of a packet transmission timing operation between the A station and the B station each having the transmitting unit (FIG. 1) and the receiving unit (FIG. 2). Here, each station is assumed to transmit data in packet units such as a slot composed of a plurality of transmission data or a frame composed of a plurality of the above slots. The transmission condition information is added to the part and transmitted. In FIG. 5, the horizontal axis is the time axis, (a) is the transmission data of station A, (b) is the reception data of station B, (c) is the transmission data of station B, and (d) is the reception of station A. Data are shown. Here, in the initial state, it is assumed that the number of multiplexed channels, the primary modulation, and the secondary modulation used for transmission of the information from station A are set to initial setting values that are determined in advance according to the type of the data. .

図5の(a)に示すように、A局は伝送条件情報とデータa1を有する伝送パケットA1を送信し、これが(b)に示すようにB局において受信される。B局の受信部における上記伝送条件識別回路208において、上記伝送パケットA1に含まれている伝送条件情報が取り出され、送信部制御回路109に供給される。これにより、(c)に示すように、上記B局は自局の送信パケットB1を該伝送条件情報により設定された数のチャネルを用い、設定された一次変調および二次変調で送信する。また、上記B局の受信部における信号対干渉雑音電力比算出回路(図示せず)で該受信した伝送パケットA1の受信信号から信号対干渉雑音電力比を算出し、該算出結果等に基づいて折返し送信チャネル伝送条件判定回路(図示せず)で折返し送信チャネル伝送条件情報を生成し、これを受信チャネル伝送条件情報メモリ(図示せず)に格納するとともに、上記送信部の伝送条件識別情報付加回路111に供給する。これにより、(c)に示すように、B局の送信する伝送パケットB1中に上記折返し送信チャネル伝送条件情報が付加されて送信される。   As shown in FIG. 5A, station A transmits a transmission packet A1 having transmission condition information and data a1, which is received at station B as shown in FIG. 5B. In the transmission condition identification circuit 208 in the reception unit of station B, the transmission condition information included in the transmission packet A1 is extracted and supplied to the transmission unit control circuit 109. Thereby, as shown in (c), the B station transmits the transmission packet B1 of its own station using the set number of channels set by the transmission condition information, with the set primary modulation and secondary modulation. Further, a signal-to-interference noise power ratio calculation circuit (not shown) in the reception unit of the B station calculates a signal-to-interference noise power ratio from the received signal of the received transmission packet A1, and based on the calculation result and the like A return transmission channel transmission condition determination circuit (not shown) generates return transmission channel transmission condition information, stores it in a reception channel transmission condition information memory (not shown), and adds transmission condition identification information of the transmitter. Supply to the circuit 111. As a result, as shown in (c), the return transmission channel transmission condition information is added to the transmission packet B1 transmitted by the station B and transmitted.

図5の(d)に示すように、この伝送パケットB1はA局で受信され、該A局の受信部で上記B局の受信部と同様にして、上記伝送条件識別回路208において取り出された伝送条件情報に基づき、次の伝送パケットA2のチャネル多重数、一次変調および二次変調が設定される。また、上記折返し送信チャネル伝送条件判定回路によりB局に対して指定する伝送条件情報を生成して、伝送パケットA2に付加して送信する。この伝送パケットA2を受信したB局は、前述の場合と同様にして、伝送パケットに格納されている伝送条件情報を取り出して、送信部の制御回路109に設定するとともに、A局に対する折返し送信チャネル伝送条件情報を生成する。なお、このとき、上記伝送パケットA1を受信したときに生成し上記受信チャネル伝送条件情報メモリ(図示せず)に格納した上記折返し送信チャネル伝送条件情報を用いて、2次復調器205、1次復調器206およびデータ合成回路213の設定を行う。   As shown in FIG. 5 (d), this transmission packet B1 is received by the A station, and is extracted by the transmission condition identifying circuit 208 in the same manner as the receiving section of the B station at the receiving section of the A station. Based on the transmission condition information, the channel multiplexing number, primary modulation, and secondary modulation of the next transmission packet A2 are set. Also, transmission condition information specified for the station B is generated by the loop transmission channel transmission condition determination circuit, and is added to the transmission packet A2 and transmitted. The station B that has received the transmission packet A2 takes out the transmission condition information stored in the transmission packet and sets it in the control circuit 109 of the transmission unit in the same manner as described above, and also returns the transmission channel to the station A. Generate transmission condition information. At this time, the secondary demodulator 205, the primary demodulator 205, the primary demodulator 205, the primary demodulator 205, the primary demodulator 205, the primary demodulator 205, The demodulator 206 and the data synthesis circuit 213 are set.

以上説明した本発明に係る符号変調適応可変多重伝送装置において、送信部では、送信情報データを複数のサブチャネルに分割し、送信サブチャネル毎に誤り訂正の符号化、多値変調方式の1次変調、及び広帯域化方式の2次変調を行うため、それぞれの送信サブチャネルの処理動作は、複数のサブチャネルに分割することで低速化される。同様に、受信部においても、受信信号を分離した後の受信サブチャネル毎の2次復調と1次復調及び復号の処理動作は低速化される。そして、符号化器と1次変調器及び2次変調器または2次復調器と1次復調器及び復号器におけるAD変換器とDA変換器においても低速素子で対応可能となる。   In the code modulation adaptive variable multiplex transmission apparatus according to the present invention described above, the transmission unit divides transmission information data into a plurality of subchannels, encodes error correction for each transmission subchannel, and performs a primary of a multilevel modulation scheme. Since the modulation and the secondary modulation of the wideband system are performed, the processing operation of each transmission subchannel is slowed by dividing it into a plurality of subchannels. Similarly, in the receiving unit, the processing operations of the secondary demodulation, the primary demodulation, and the decoding for each reception subchannel after separating the reception signal are slowed down. Further, the AD converter and the DA converter in the encoder and the primary modulator and the secondary modulator or the secondary demodulator, the primary demodulator, and the decoder can be handled by low-speed elements.

また、符号化器の符号化方式及び符号化率と1次変調器の多値変調方式の選択切替と共に、サブチャネル数の切替、2次変調器の広帯域化方式の切替を組合わせて行うことで、多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して細かな適応制御が可能となり、周波数利用効率をさらに向上することができる。   In addition to selecting and switching the coding system and coding rate of the encoder and the multilevel modulation system of the primary modulator, switching of the number of subchannels and switching of the broadband system of the secondary modulator are performed in combination. Thus, fine adaptive control is possible in response to various transmission conditions, transmission path propagation conditions, and traffic conditions, and the frequency utilization efficiency can be further improved.

したがって、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、より高速な情報データを効率良く伝送することが可能となる。   Therefore, it is possible to efficiently transmit higher-speed information data in accordance with different transmission conditions such as transmission path conditions, various media, and various services.

本発明に係る符号変調適応可変多重伝送装置の一実施例の送信部の構成を示すブロック図である。It is a block diagram which shows the structure of the transmission part of one Example of the code modulation adaptive variable multiplex transmission apparatus which concerns on this invention. 本発明に係る符号変調適応可変多重伝送装置の一実施例の受信部の構成を示すブロック図である。It is a block diagram which shows the structure of the receiving part of one Example of the code modulation adaptive variable multiplex transmission apparatus which concerns on this invention. 本発明者が本発明をする過程で検討した符号変調適応可変伝送装置の送信部の構成を示すブロック図である。It is a block diagram which shows the structure of the transmission part of the code modulation adaptive variable transmission apparatus which this inventor examined in the process of this invention. 本発明者が本発明をする過程で検討した符号変調適応可変伝送装置の受信部の構成を示すブロック図である。It is a block diagram which shows the structure of the receiving part of the code modulation adaptive variable transmission apparatus which the inventor examined in the process of this invention. 本発明の符号変調適応可変多重伝送装置の一実施例におけるパケット送受信タイミング動作の一例を示す図である。It is a figure which shows an example of the packet transmission / reception timing operation | movement in one Example of the code modulation adaptive variable multiplex transmission apparatus of this invention. 図1の符号変調適応可変多重伝送装置の送信部の符号化器の一例の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of an example of an encoder of a transmission unit of the code modulation adaptive variable multiplex transmission apparatus of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の1次変調器の一例の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of an example of a primary modulator of a transmission unit of the code modulation adaptive variable multiplex transmission apparatus of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の2次変調器の一例の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of an example of a secondary modulator of a transmission unit of the code modulation adaptive variable multiplex transmission apparatus of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の周波数多重化回路におけるサブチャネル周波数多重化の一例を説明するための図である。FIG. 2 is a diagram for explaining an example of subchannel frequency multiplexing in a frequency multiplexing circuit of a transmission unit of the code modulation adaptive variable multiplexing transmission apparatus of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の周波数多重化回路におけるサブチャネル周波数多重化の別の例を説明するための図である。FIG. 6 is a diagram for explaining another example of subchannel frequency multiplexing in the frequency multiplexing circuit of the transmission unit of the code modulation adaptive variable multiplexing transmission apparatus of FIG. 1.

符号の説明Explanation of symbols

101:送信情報データ、 102:データ分割回路、 103:送信サブチャネル、 104:符号化器、 105:1次変調器、 106:2次変調器、 107:送信部の伝送条件識別回路、 108:送信部の伝送条件情報、 109:送信部制御回路、 110:送信部制御信号、 111:伝送条件識別情報付加回路、 112:送信部の伝送条件識別情報、 113:送信変調信号、 114:周波数多重化回路、 115:送信多重信号、 201:受信多重信号、 202:周波数分離回路、 203:受信変調信号、 204:受信サブチャネル、 205:2次復調器、 206:1次復調器、 207:復号器、 208:受信部の伝送条件識別回路、 209:受信部の伝送条件識別情報、 210:受信部の伝送条件情報、 211:受信部制御回路、 212:受信部制御信号、 213:データ合成回路、 214:受信情報データ。
101: Transmission information data, 102: Data division circuit, 103: Transmission subchannel, 104: Encoder, 105: Primary modulator, 106: Secondary modulator, 107: Transmission condition identification circuit of transmission unit, 108: Transmission condition information of transmission section 109: Transmission section control circuit 110: Transmission section control signal 111: Transmission condition identification information addition circuit 112: Transmission condition identification information of transmission section 113: Transmission modulation signal 114: Frequency multiplexing 115: Transmission multiplexed signal, 201: Reception multiplexed signal, 202: Frequency separation circuit, 203: Reception modulation signal, 204: Reception subchannel, 205: Secondary demodulator, 206: Primary demodulator, 207: Decoding 208: Transmission condition identification circuit of reception unit, 209: Transmission condition identification information of reception unit, 210: Transmission condition information of reception unit, 211: Control unit of reception unit Path, 212: reception unit control signal, 213: data synthesis circuit, 214: reception information data.

Claims (6)

送信情報データを複数の送信サブチャネルの送信信号に分割し伝送を行う多重伝送装置であって、
伝送条件情報を識別する伝送条件識別回路と、
該伝送条件識別回路で識別した伝送条件情報に基づいて制御を行う送信部制御回路と、
該送信部制御回路の制御により前記送信情報データを前記複数の送信サブチャネルの送信信号に分割するデータ分割回路と、
前記複数の送信サブチャネル毎に設けられ、前記分割回路で分割された複数の送信サブチャネルの送信信号の各々について並列に符号化方式と符号化率により誤り訂正の符号化を行う複数の符号化器、該複数の符号化器の各々から得られる各送信サブチャネルの送信信号について並列に多値変調を行う複数の1次変調器、及び該複数の1次変調器の各々から得られる各送信サブチャネルの多値変調信号に対して並列に伝送帯域の広帯域化を行う複数の2次変調器と、
前記複数の送信サブチャネル毎の、前記各符号化器の符号化方式及び符号化率と前記各1次変調器の多値変調方式と前記各2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加する付加回路と、
前記複数の送信サブチャネルの各2次変調器から得られる広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力する周波数多重化回路とを備えた送信部を有することを特徴とする符号変調適応可変多重伝送装置。
A multiplex transmission apparatus that divides transmission information data into transmission signals of a plurality of transmission subchannels and performs transmission,
A transmission condition identification circuit for identifying transmission condition information;
A transmitter control circuit that performs control based on the transmission condition information identified by the transmission condition identification circuit;
A data dividing circuit for dividing the transmission information data into a transmission signal for each of said plurality of transmission sub-channel under the control of the transmission unit control circuit,
It provided for each of the plurality of transmission subchannel, a plurality of coding for encoding error correction by each coding scheme and a coding rate in parallel for the transmission signal of the divided by the division circuit a plurality of transmission sub-channel vessel, a plurality of primary modulators performs multilevel modulation in parallel for transmission signals of each transmission sub-channel obtained from each of the plurality of encoders, and each transmission obtained from each of said plurality of primary modulators a plurality of secondary modulator for performing broadband transmission band in parallel for the multilevel modulation signal of sub-channels,
For each of the plurality of transmission subchannels , the coding scheme and coding rate of each encoder, the multilevel modulation scheme of each primary modulator, the wideband scheme of each secondary modulator, and the plurality of transmissions An additional circuit for adding transmission condition information including the number of subchannels to the related transmission signal;
Characterized in that it has a transmission unit and a frequency multiplexing circuit for outputting as the channel of the same user by frequency-multiplexing the modulated output which is widened obtained from each secondary modulator of said plurality of transmission sub-channel Code modulation adaptive variable multiplex transmission apparatus.
請求項1記載の符号変調適応可変多重伝送装置において、前記複数の送信サブチャネル毎に設けられた前記各符号化器は前記送信部制御回路の制御により複数種類の符号化方式(畳み込み符号化、リードソロモン及びBCHを含む)及び複数種類の符号化率から任意の1つの符号化方式及び任意の一つの符号化率を選択するように構成され、前記複数の送信サブチャネル毎に設けられた前記1次変調器は前記送信部制御回路の制御により複数種類の多値変調方式(BPSKを含めたQPSK及び16QAMを含む)から任意の1つを選択するように構成され、前記複数の送信サブチャネル毎に設けられた前記2次変調器は前記送信部制御回路の制御により複数種類の広帯域化方式(OFDM及び拡散変調を含む)から任意の1つを選択するように構成されていることを特徴とする符号変調適応可変多重伝送装置。 The code modulation adaptive variable multiplex transmission apparatus according to claim 1 , wherein each of the encoders provided for each of the plurality of transmission subchannels includes a plurality of types of encoding schemes (convolutional encoding, (Including Reed-Solomon and BCH) and a plurality of types of coding rates, and any one coding scheme and any one coding rate are selected, and each of the plurality of transmission subchannels is provided with the coding rate Each primary modulator is configured to select any one of a plurality of types of multilevel modulation schemes (including QPSK and 16QAM including BPSK) under the control of the transmitter control circuit, and select the respective secondary modulator provided for each channel one of any of a plurality of types of broad-band scheme (including OFDM and spreading modulation) by the control of the transmission unit control circuit Code modulation adaptive variable multiplex transmission apparatus characterized by being configured to. 送信情報データを複数の送信サブチャネルの送信信号に分割し伝送を行う多重伝送装置であって、
伝送条件情報を識別する伝送条件識別回路と、
該伝送条件識別回路で識別した伝送条件情報に基づいて制御を行う送信部制御回路と、
該送信部制御回路の制御により前記送信情報データを前記複数の送信サブチャネル毎送信信号に分割するデータ分割回路と、
前記複数の送信サブチャネル毎に設けられ、前記送信部制御回路の制御に応答して複数種類の符号化方式(畳み込み符号化、リードソロモン及びBCHを含む)及び複数種類の符号化率から任意の1つの符号化方式及び任意の一つの符号化率を選択して前記分割回路で分割された複数の送信サブチャネルの送信信号の各々について並列に誤り訂正の符号化を行う複数の符号化器、前記送信部制御回路の制御に応答して複数種類の多値変調方式(BPSKを含めたQPSK及び16QAMを含む)から1つの多値変調方式を選択して前記複数の符号化器の各々から得られる各送信サブチャネルの送信信号を並列に変調する複数の1次変調器、及び前記送信部制御回路の制御に応答して複数種類の広帯域化方式(OFDM及び拡散変調を含む)から1つの広帯域化方式を選択して前記複数の1次変調器の各々から得られる各送信サブチャネルの多値変調信号を並列に広帯域化する複数の2次変調器と、
前記複数の送信サブチャネル、前記各符号化器の符号化方式及び符号化率と前記各1次変調器の多値変調方式と前記各2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加する付加回路と、
前記複数の送信サブチャネルの各2次変調器から得られる広帯域化された変調出力を周波数多重化して同一ユーザのチャネルとして出力する周波数多重化回路とを備えた送信部を有することを特徴とする符号変調適応可変多重伝送装置。
A multiplex transmission apparatus that divides transmission information data into transmission signals of a plurality of transmission subchannels and performs transmission,
A transmission condition identification circuit for identifying transmission condition information;
A transmitter control circuit that performs control based on the transmission condition information identified by the transmission condition identification circuit;
A data dividing circuit for dividing the transmission information data into a transmission signal for each of said plurality of transmission sub-channel under the control of the transmission unit control circuit,
Wherein the plurality of provided for each transmission sub-channel coding scheme of a plurality of types in response to the control of the transmission unit control circuit (convolutional coding, Reed including Solomon and BCH) and any of a plurality of types of coding rates A plurality of encoders for performing error correction coding in parallel for each of transmission signals of a plurality of transmission subchannels divided by the dividing circuit by selecting one coding method and any one coding rate; In response to the control of the transmission unit control circuit , one multilevel modulation scheme is selected from a plurality of types of multilevel modulation schemes (including QPSK and 16QAM including BPSK) and obtained from each of the plurality of encoders. a plurality of primary modulators for modulating the transmission signals in parallel for each transmission subchannels, and the or a plurality of types of broad-band scheme in response to the control of the transmission unit control circuit (including OFDM and spreading modulation) A plurality of secondary modulators for broadband in parallel M-ary modulation signal of each transmission sub-channel obtained from each of the plurality of primary modulators select one wideband scheme,
For each of the plurality of transmission subchannels , the coding scheme and coding rate of each encoder, the multilevel modulation scheme of each primary modulator, the wideband scheme of each secondary modulator, and the plurality of transmissions An additional circuit for adding transmission condition information including the number of subchannels to the associated transmission signal;
Characterized in that it has a transmission unit and a frequency multiplexing circuit for outputting as the channel of the same user by frequency multiplexing the modulated output which is widened obtained from each secondary modulator of said plurality of transmission sub-channel Code modulation adaptive variable multiplex transmission apparatus.
請求項1記載の符号変調適応可変多重伝送装置において、
受信した周波数多重信号から複数の受信サブチャネルの変調信号に周波数分割する周波数分離回路と、
伝送側で付加され受信サブチャネル毎の信号における各符号化器の符号化方式及び符号化率と各1次変調器の多値変調方式と2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を識別する伝送条件識別回路と、
該伝送条件識別回路において識別した伝送条件情報に基づいて制御を行う受信部制御回路と、
複数の受信サブチャネルに設けられ、前記受信部制御回路の制御に応答して前記周波数分離回路から周波数分割して得られた複数の受信サブチャネルの変調信号の各々のの伝送帯域を並列に前記伝送条件識別回路で識別された広帯域化方式に対応する逆広帯域化方式で復調する複数の2次復調器、前記受信部制御回路の制御に応答して前記複数の2次復調器の各々で復調された受信サブチャネル変調信号を並列に前記伝送条件識別回路で識別された多値変調方式に対応する多値復調方式で復調する複数の1次復調器、及び前記受信部制御回路の制御に応答して前記複数の1次復調器の各々で復調された各受信サブチャネルの受信信号を並列に前記伝送条件識別回路で識別された符号化方式に対応する復号方式及び符号化率で復号する複数の復号器と、
該複数の受信サブチャネルの各復号器から得られた受信情報データを前記受信部制御回路の制御により合成するデータ合成回路とを備えた受信部を有することを特徴とする符号変調適応可変多重伝送装置。
The code modulation adaptive variable multiplex transmission apparatus according to claim 1,
A frequency separation circuit for frequency dividing the modulation signal for each of the plurality of received sub-channel from the frequency-multiplexed signal received,
It is added on the transmission side receiving the respective encoders in the sub-channel for each of the signal encoding method and the encoding rate and the primary modulator multilevel modulation and wideband scheme and the plurality of the second-order modulator A transmission condition identification circuit for identifying transmission condition information including the number of transmission subchannels;
A receiver control circuit that performs control based on the transmission condition information identified in the transmission condition identification circuit;
Provided for each of the plurality of reception subchannels, and in parallel with each of the transmission bands of the modulation signals of the plurality of reception subchannels obtained by frequency division from the frequency separation circuit in response to the control of the reception unit control circuit a plurality of secondary demodulators for demodulating the reverse wideband mode corresponding to the wideband scheme identified by the transmission condition identification circuit, in each of the secondary demodulators of said plurality in response to the control of the receiver control circuit a plurality of primary demodulators for demodulating multi-level demodulation method corresponding to the multi-level modulation scheme identified by the transmission condition identification circuit a modulation signal of each received sub-channel which is demodulated in parallel, and the receiver control circuit In response to the control, the reception signals of the reception subchannels demodulated by each of the plurality of primary demodulators are decoded in parallel with the decoding scheme and the coding rate corresponding to the coding scheme identified by the transmission condition identification circuit. Decrypt And decoder,
Code modulation adaptive variable multiplexing transmission characterized by having a receiving section and a data combining circuit for combining the received information data obtained from the decoder of the plurality of received sub-channel under the control of the receiver control circuit apparatus.
送信情報データを複数の送信サブチャネルの送信信号に分割し伝送を行う多重伝送方法であって、
伝送条件識別回路により伝送条件情報を識別する伝送条件識別ステップと、
該伝送条件識別ステップで識別した伝送条件情報に基づいて送信部制御回路において制御を行う制御ステップと、
該送信部制御回路の制御により前記送信情報データをデータ分割回路により前記複数の送信サブチャネルの送信信号に分割する分割ステップと、
前記複数の送信サブチャネルの各々において、前記分割ステップで分割された各送信サブチャネルの送信信号について各符号化器を用いて符号化方式と符号化率により誤り訂正の符号化を行い、該符号化から得られる各送信サブチャネルの送信信号について各1次変調器を用いて多値変調を行い、該多値変調から得られる各送信サブチャネルの多値変調信号に対して各2次変調器を用いて伝送帯域の広帯域化を行うステップと、
前記複数の送信サブチャネル毎の、前記各符号化器の符号化方式及び符号化率と前記各1次変調器の多値変調方式と前記各2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を付加回路において関連する送信信号に付加する付加ステップと、
前記複数の送信サブチャネルの各2次変調器から得られた広帯域化された変調出力を周波数多重化回路を用いて周波数多重して同一ユーザのチャネルとして出力する周波数多重化ステップとを有し、送信することを特徴とする符号変調適応可変多重伝送方法。
A multiplex transmission method in which transmission information data is divided into transmission signals of a plurality of transmission subchannels and transmitted,
A transmission condition identification step for identifying transmission condition information by a transmission condition identification circuit;
A control step of performing control in the transmission unit control circuit based on the transmission condition information identified in the transmission condition identification step;
A division step of dividing the transmission information data into transmission signals of the plurality of transmission subchannels by a data division circuit under the control of the transmission unit control circuit ;
In each of the plurality of transmission subchannels, the transmission signals of the transmission subchannels divided in the division step are encoded for error correction by the encoding method and coding rate using the respective encoders. each primary modulators have line M-ary modulation using a multi-level modulation signal to each of the secondary modulation for each transmit sub-channel obtained from the multi-value modulation for transmission signal of each transmission sub-channel obtained from the reduction Step of widening the transmission band using a device ;
For each of the plurality of transmission subchannels, the coding scheme and coding rate of each encoder, the multilevel modulation scheme of each primary modulator, the wideband scheme of each secondary modulator, and the plurality of transmissions An additional step of adding transmission condition information including the number of subchannels to an associated transmission signal in an additional circuit ;
Have a frequency multiplexing step of outputting as the channel of the same user and frequency multiplexed using frequency multiplexing circuit a modulated output which is broadband obtained from each secondary modulator of said plurality of transmission sub-channel, code modulation adaptive variable multiplex transmission method and transmitting.
請求項5記載の符号変調適応可変多重伝送方法において、
周波数分離回路を用いて、受信した周波数多重信号から複数の受信サブチャネルの変調信号に周波数分割するステップと、
伝送側で付加された受信サブチャネル毎の信号における各符号化器の符号化方式及び符号化率と各1次変調器の多値変調方式と2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を送条件識別回路において識別する伝送条件識別ステップと、
該伝送条件識別ステップにおいて識別した伝送条件情報に基づいて受信部制御回路において制御を行う制御ステップと、
前記複数の受信サブチャネルの各々において前記受信部制御回路の制御に応答して前記周波数分離ステップから周波数分割して得られた各受信サブチャネルの変調信号を各2次復調器を用いて前記伝送条件識別ステップで識別された広帯域化方式に対応する逆広帯域化方式で復調し、前記受信部制御回路の制御に応答して前記2次復調された各受信サブチャネルの変調信号を各1次復調器を用いて前記伝送条件識別ステップで識別された多値変調方式に対応する多値復調方式で復調し、前記受信部制御回路の制御に応答して前記1次復調された各受信サブチャネルの受信信号を各復号器を用いて前記伝送条件識別ステップで識別された符号化方式に対応する復号方式及び符号化率で復号するステップと、
該複数の受信サブチャネルの各復号器から得られた受信情報データをデータ合成回路を用いて前記受信部制御回路の制御により合成するデータ合成ステップとを有し、受信することを特徴とする符号変調適応可変多重伝送方法。
The code modulation adaptive variable multiplex transmission method according to claim 5,
Using a frequency separation circuit to frequency-divide the received frequency multiplexed signal into a modulated signal for each of a plurality of reception subchannels;
The coding method and coding rate of each encoder in the signal for each reception subchannel added on the transmission side, the multilevel modulation method of each primary modulator, the wideband method of each secondary modulator, and the plurality of a transmission condition identification step of identifying the heat transmission conditions identification circuit transmission condition information including the number of transmission sub-channel,
A control step of performing control in the receiver control circuit based on the transmission condition information identified in the transmission condition identification step;
In each of the plurality of reception subchannels, the modulation signal of each reception subchannel obtained by frequency division from the frequency separation step in response to the control of the reception unit control circuit is obtained using each secondary demodulator. Demodulated by an inverse wideband system corresponding to the wideband system identified in the transmission condition identification step, and each of the modulated signals of each received subchannel demodulated in response to the control of the receiver control circuit Receiving subchannels demodulated by a multilevel demodulation scheme corresponding to the multilevel modulation scheme identified in the transmission condition identification step using a demodulator, and subjected to the primary demodulation in response to control of the receiver control circuit Decoding the received signal with a decoding scheme and a coding rate corresponding to the coding scheme identified in the transmission condition identifying step using each decoder ;
Code, characterized in that have a data synthesizing step of synthesizing the control of the receiver control circuit using the data combining circuit receiving information data obtained from the decoder of the plurality of received sub channels, receives Modulation adaptive variable multiplex transmission method.
JP2003313531A 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method Expired - Fee Related JP3816470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313531A JP3816470B2 (en) 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002303798 2002-10-18
JP2003313531A JP3816470B2 (en) 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method

Publications (2)

Publication Number Publication Date
JP2004159303A JP2004159303A (en) 2004-06-03
JP3816470B2 true JP3816470B2 (en) 2006-08-30

Family

ID=32827978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313531A Expired - Fee Related JP3816470B2 (en) 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method

Country Status (1)

Country Link
JP (1) JP3816470B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089855B2 (en) 2004-06-04 2012-01-03 Qualcomm Incorporated Transmission of overhead information for broadcast and multicast services in a wireless communication system
JP2006067266A (en) * 2004-08-27 2006-03-09 Sony Corp Wireless communication system, apparatus and method
US8179876B2 (en) 2004-12-22 2012-05-15 Qualcomm Incorporated Multiple modulation technique for use in a communication system
WO2006114855A1 (en) 2005-04-18 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Sending station, receiving station, and radio communication method
JP4065283B2 (en) 2005-07-06 2008-03-19 松下電器産業株式会社 Sending method
JP4537286B2 (en) * 2005-07-26 2010-09-01 株式会社日立国際電気 Transmission equipment
WO2007029406A1 (en) * 2005-09-07 2007-03-15 Nec Corporation Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system and wireless communication method
US8566676B2 (en) * 2007-01-05 2013-10-22 Qualcomm Incorporated FEC code and code rate selection based on packet size
US8418035B2 (en) * 2007-01-19 2013-04-09 Koninklijke Philips Electronics N.V. Method and system of single carrier block transmission with parallel encoding and decoding
KR20090024623A (en) 2007-09-04 2009-03-09 한국전자통신연구원 Frame structure for fast wireless communication system and apparatus for fast wireless communication using the frame
JP4583432B2 (en) * 2007-11-13 2010-11-17 パナソニック株式会社 Modulator and modulation method
JP4994297B2 (en) * 2008-04-28 2012-08-08 三菱電機株式会社 Digital broadcast radio system
US8718021B2 (en) 2008-07-07 2014-05-06 Apple Inc. Uplink control signal design for wireless system
BRPI0920413B1 (en) * 2008-10-29 2020-09-24 Sharp Kabushiki Kaisha MOBILE STATION DEVICE AND BASE STATION DEVICE
EP2449842B1 (en) * 2009-07-03 2019-03-20 Apple Inc. Uplink control signal design for wireless system
JP2010098745A (en) * 2009-11-19 2010-04-30 Mitsubishi Electric Corp Cdma wireless communication method

Also Published As

Publication number Publication date
JP2004159303A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US7502424B2 (en) Maximizing data rate by adjusting codes and code rates
JP3816470B2 (en) Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method
EP2141850B1 (en) Variable rate decoding for forward link
US20180006792A1 (en) Method, apparatus, and system for transmitting and receiving information of an uncoded channel in an orthogonal frequency division multiplexing system
JP4665035B2 (en) Control channel transmission / reception method and apparatus
KR101002247B1 (en) A method and an apparatus for transmitting/receiving data and control information on uplink in wireless telecommunication system
EP0962064B1 (en) Out of channel cyclic redundancy code method for a discrete multitone spread spectrum communications system
JP2004531166A (en) Data transmission method and data transmission device using ARQ method
US20040081075A1 (en) Code modulation adaptive and variable multiplexing transmission method and code modulation adaptive and variable multiplexing transmission apparatus
JPWO2006035841A1 (en) Transmitting apparatus, receiving apparatus, communication system, and communication method
WO2009036416A2 (en) Rate matching to maintain code block resource element boundaries
JP4091827B2 (en) Wireless transmission device and wireless reception device
US7606196B2 (en) Radio communication system, radio communication method, and transmitter apparatus and receiver apparatus suitable for use in the same
JP2866642B1 (en) Spread spectrum multiplex transmission equipment
JP2005086479A (en) Transmission device
JP2003244092A (en) Transmission apparatus for multicarrier - cdma modulation system and receiving apparatus for multicarrier - cdma modulation system
JP3819389B2 (en) Carrier variable multiplex transmission equipment
JP2006211172A (en) Transmission carrier variable multiplexing transmitting system
JP2005252786A (en) Transmitting carrier variable multiplexing transmitting system
JP2013128236A (en) Data transmission device, data receiving device, data transmission/reception device, and data transmission/reception system
JP2806920B2 (en) Spread spectrum multiplex transmission equipment
JP2004032380A (en) Adaptive variable multiplex transmitter
KR101358134B1 (en) Wireless communication method with air-interface encoder packets configured for more efficient use of network resources

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Ref document number: 3816470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees