JP2004159303A - Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method - Google Patents

Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method Download PDF

Info

Publication number
JP2004159303A
JP2004159303A JP2003313531A JP2003313531A JP2004159303A JP 2004159303 A JP2004159303 A JP 2004159303A JP 2003313531 A JP2003313531 A JP 2003313531A JP 2003313531 A JP2003313531 A JP 2003313531A JP 2004159303 A JP2004159303 A JP 2004159303A
Authority
JP
Japan
Prior art keywords
transmission
modulation
sub
channels
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003313531A
Other languages
Japanese (ja)
Other versions
JP3816470B2 (en
Inventor
Kazuaki Tsukagoshi
和明 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003313531A priority Critical patent/JP3816470B2/en
Publication of JP2004159303A publication Critical patent/JP2004159303A/en
Application granted granted Critical
Publication of JP3816470B2 publication Critical patent/JP3816470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a code modulation adaptive variable multiplex transmission apparatus capable of efficiently transmitting high-speed information data. <P>SOLUTION: The code modulation adaptive variable multiplex transmission apparatus is provided with: a data dividing circuit 102 for dividing transmission information data into a plurality of subchannel signals, an encoder 104 for selecting a plurality of encoding systems and encoding rates for each subchannel and performing error-correcting encoding; a primary modulator 105 for selecting a plurality of multilevel modulation systems and performing modulation; a secondary modulator 106 for selecting a plurality of band widening systems and widening a band; a transmission condition identification information adding circuit 111 for adding transmission condition identification information indicating the encoding system and the encoding rate for encoding each of subchannels, the multilevel modulation system for primary modulation, and the band widening system and the number of subchannels for secondary modulation; and a frequency multiplexer circuit 114 for frequency-multiplexing a plurality of modulated outputs, and the modulated outputs of the plurality of subchannels are frequency-multiplexed and transmitted. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、符号変調多重伝送技術に関し、特に、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、高速な情報或いはデータを効率よく伝送することのできる符号変調適応可変多重伝送方法及び装置に関する。   The present invention relates to a code modulation multiplex transmission technique, and in particular, to a code modulation capable of efficiently transmitting high-speed information or data in accordance with different transmission conditions such as transmission path conditions, various types of media or various types of services. The present invention relates to an adaptive variable multiplex transmission method and apparatus.

スロット単位あるいは複数スロットからなるパケット単位の送信情報データについて、予め用意した複数の符号化方式及び符号化率から選択して誤り訂正の符号化を行い、予め用意した複数の多値変調方式から選択して1次変調を行い、2次変調で広帯域化した送信信号に変換して伝送を行う、従来の符号変調適応可変伝送装置が例えば特開2000−183849号公報、特開平10−224322号公報、特開平11−234241号公報に開示されている。   For transmission information data in a slot unit or a packet unit consisting of a plurality of slots, error correction coding is performed by selecting from a plurality of coding methods and coding rates prepared in advance, and selecting from a plurality of multi-level modulation methods prepared in advance. A conventional code modulation adaptive variable transmission device that performs primary modulation and converts the signal to a transmission signal whose band has been widened by secondary modulation and transmits the signal is disclosed in, for example, JP-A-2000-183849 and JP-A-10-224322. And JP-A-11-234241.

更に、関連する技術に関し、特開平10−145282号公報、WO99/14878(特開2001−517017号公報)、特開平9−135275号公報を参照されたい。   Further, for related technologies, refer to JP-A-10-145282, WO99 / 14878 (JP-A-2001-517017), and JP-A-9-135275.

近年のマルチメディア通信においては、インターネットトラヒックの需要が飛躍的に増大しており、更なる高速データパケット伝送技術の要求が高まっている。高速データ伝送を実現するためには、多値変調を導入した適応変調等の技術が導入されており、上述した従来の伝送装置のような符号化器の符号化方式及び符号化率と1次変調器の変調方式を選択的に切替える方式を用いた符号変調適応可能伝送装置が考案されている。   2. Description of the Related Art In multimedia communication in recent years, the demand for Internet traffic has increased dramatically, and the demand for a further high-speed data packet transmission technology has been increasing. In order to realize high-speed data transmission, techniques such as adaptive modulation using multi-level modulation have been introduced, and the coding method and coding rate of an encoder such as the above-described conventional transmission apparatus and the primary A code-modulation-adaptive transmission apparatus using a method of selectively switching the modulation method of a modulator has been devised.

特開2000−183849号公報JP 2000-183849 A

特開平10−224322号公報JP-A-10-224322 特開平11−234241号公報JP-A-11-234241 WO99/14878(特開2001−517017号公報)WO 99/14878 (Japanese Patent Application Laid-Open No. 2001-517017) 特開平9−135275号公報JP-A-9-135275

以下で本発明に際し本発明者が検討した符号変調適応可変伝送装置について説明する。   In the following, a description will be given of a code modulation adaptive variable transmission device studied by the inventor of the present invention.

図3は従来の符号変調適応可変伝送装置の送信部の構成を示し、図4はその受信部の構成を示す。   FIG. 3 shows a configuration of a transmission section of the conventional code modulation adaptive variable transmission device, and FIG. 4 shows a configuration of the reception section.

まず、図3に言及し送信部の構成について説明する。図3において、伝送条件識別回路306は、スロットあるいはパケット単位の送信情報データ301が入力されると、送信情報データ301のデータ速度、データ容量、あるいは情報データに含まれている伝送条件の指定情報などにより、データ速度やデータ容量などの伝送条件の情報307を識別して送信部制御回路308に出力する。送信部制御回路308は、この伝送条件情報307に従った送信部制御信号309により、符号化器303の誤り訂正の符号化方式及び符号化率の切替、1次変調器304の多値変調方式の切替、伝送条件識別情報付加回路310の制御を行う。図示を省略したが、伝送路の伝搬状況やトラヒック状況を監視する手段を設け、伝送路の状況に応じた伝送条件を送信部制御回路308に指定する伝送装置もある。   First, the configuration of the transmission unit will be described with reference to FIG. In FIG. 3, when transmission information data 301 in units of slots or packets is input, transmission condition identification circuit 306 specifies data rate, data capacity of transmission information data 301 or transmission condition designation information included in the information data. For example, transmission condition information 307 such as data rate and data capacity is identified and output to the transmission unit control circuit 308. The transmission unit control circuit 308 switches the error correction coding method and coding rate of the encoder 303 by using the transmission unit control signal 309 according to the transmission condition information 307, and the multi-level modulation method of the primary modulator 304. , And controls the transmission condition identification information adding circuit 310. Although not shown, there is also a transmission device that includes means for monitoring the propagation status and traffic status of the transmission path, and specifies transmission conditions according to the status of the transmission path to the transmission unit control circuit 308.

上述した制御により、入力された送信情報データ301は、送信チャネル302において、符号化器303において選択設定された誤り訂正の符号化方式及び符号化率で符号化され、さらに1次変調器304において選択設定された多値変調方式で1次変調され、コマンド等に変換されたデータで伝送条件識別情報311が伝送条件識別情報付加回路310で付加され、2次変調器305においてOFDM(Orthogonal Frequency Division Multiplex)や拡散符号による拡散変調などで広帯域化され、送信信号312が出力される。このようにして送信チャネル302から送信された信号312は受信部で受信される。   With the above-described control, the input transmission information data 301 is encoded on the transmission channel 302 by the error correction encoding method and encoding rate selected and set by the encoder 303, and further encoded by the primary modulator 304. The transmission condition identification information 311 is added by the transmission condition identification information adding circuit 310 with data that has been primarily modulated by the selected and set multi-level modulation scheme and converted into a command or the like, and the secondary modulator 305 has OFDM (Orthogonal Frequency Division). Multiplex) or spread modulation by a spread code is performed, and the transmission signal 312 is output. The signal 312 transmitted from the transmission channel 302 in this way is received by the receiving unit.

図4の受信部では、受信チャネル402において、受信信号401が2次復調器403に入力され、OFDMあるいは拡散復調等の2次復調が行われて多値変調された信号に戻される。次に、伝送条件識別回路406は、付加されている伝送条件識別情報407を識別し、該識別した伝送条件情報408を受信部制御回路409に出力する。受信部制御回路409からの受信部制御信号410により、1次復調器404の多値復調が選択切替されて、2次復調器403より出力された多値変調信号は符号化データに変換され、さらに復号器405の誤り訂正の復号化方式及び符号化率が選択切替されて、符号化データは復号器405から受信情報データ411に変換されて出力される。   In the receiving unit in FIG. 4, a received signal 401 is input to a secondary demodulator 403 in a receiving channel 402, and is subjected to secondary demodulation such as OFDM or spread demodulation, and is returned to a multilevel modulated signal. Next, the transmission condition identification circuit 406 identifies the added transmission condition identification information 407, and outputs the identified transmission condition information 408 to the receiving unit control circuit 409. The multi-level demodulation of the primary demodulator 404 is selectively switched by the receiving unit control signal 410 from the receiving unit control circuit 409, and the multi-level modulated signal output from the secondary demodulator 403 is converted into encoded data. Further, the decoding method and the coding rate of the error correction of the decoder 405 are selectively switched, and the coded data is converted from the decoder 405 into the reception information data 411 and output.

この伝送装置では、上記2次変調器305の変調方式は、1次変調のように選択切替されることは無く固定されている。   In this transmission device, the modulation method of the secondary modulator 305 is fixed without being selectively switched as in primary modulation.

しかし、この符号変調適応可変伝送装置において、より高速なデータを伝送するには、送信チャネルにおける符号化器、1次変調器及び2次変調器の処理動作と共に、受信チャネルにおける復号器、1次復調器及び2次復調器の処理動作をより高速化することが必要となり、処理回路の素子や、特に高速化の難しい送信部のAD(Analog to Digital)変換器と受信部のDA(Digital to Analog)変換器において高速化の開発が必要となる。   However, in order to transmit data at a higher speed in this code modulation adaptive variable transmission apparatus, the processing operations of the encoder, the primary modulator, and the secondary modulator in the transmission channel, as well as the decoder in the reception channel, It is necessary to further speed up the processing operation of the demodulator and the secondary demodulator, and the elements of the processing circuit, and especially the AD (Analog to Digital) converter of the transmission section and the DA (Digital to Analog) Converters need to be developed at higher speeds.

また、より高速なデータの伝送においては、符号化器の符号化方式及び符号化率と1次変調器の多値変調方式の選択切替では、情報データの多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して細かな適応制御ができなくなり、周波数利用効率の向上が減少する課題もある。   Further, in high-speed data transmission, in the selection switching of the coding method and coding rate of the encoder and the multi-level modulation method of the primary modulator, various transmission conditions of information data and propagation conditions of a transmission path are used. There is also a problem that fine adaptive control cannot be performed in response to fluctuations in traffic conditions or traffic conditions, and the improvement in frequency use efficiency decreases.

本発明の目的は、送信部の符号化と1次変調及び2次変調、または受信部の復号と1次復調及び2次復調の動作を高速化することなく、より高速なデータ伝送に対応可能とした符号変調適応可変多重伝送方法及び装置を提供することにある。   An object of the present invention is to cope with higher-speed data transmission without speeding up the operations of the encoding and the primary modulation and the secondary modulation of the transmitting unit, or the decoding and the primary and secondary demodulation of the receiving unit. And a code modulation adaptive variable multiplex transmission method and apparatus.

また、本発明の別の目的は、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応させて、より高速な情報データを効率良く伝送することが可能な符号変調適応可変多重伝送方法及び装置を提供することにある。   Another object of the present invention is to provide a code modulation adaptive variable capable of efficiently transmitting higher-speed information data in accordance with different transmission conditions such as transmission path conditions, various types of media or various types of services. A multiplex transmission method and apparatus are provided.

本発明の一側面による符号変調適応可変多重伝送装置は、
送信するデータを複数の送信サブチャネルの送信信号に分割するデータ分割回路と、
前記複数の送信サブチャネルの各々毎に設けられ、前記分割回路からの前記送信サブチャネルの送信信号について多値変調を行う1次変調器及び該1次変調器から得られる多値変調信号に伝送帯域の広帯域化を行う2次変調器と、
前記複数の送信サブチャネルの各々毎の1次変調器の多値変調方式と2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加する付加回路と、
前記複数の送信サブチャネルの各2次変調器から得られる広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力する周波数多重化回路とからなる。
A code modulation adaptive variable multiplex transmission apparatus according to one aspect of the present invention includes:
A data division circuit for dividing data to be transmitted into transmission signals of a plurality of transmission sub-channels,
A primary modulator that is provided for each of the plurality of transmission sub-channels and that performs multi-level modulation on a transmission signal of the transmission sub-channel from the division circuit; and transmits a multi-level modulation signal obtained from the primary modulator. A secondary modulator for widening the band,
Transmission condition information including a multi-level modulation scheme of a primary modulator, a broadband scheme of a secondary modulator, and the number of the plurality of transmission sub-channels for each of the plurality of transmission sub-channels is added to an associated transmission signal. Additional circuit
A frequency multiplexing circuit for frequency-multiplexing the wideband modulated output obtained from each of the secondary modulators of the plurality of transmission sub-channels and outputting the result as a channel for the same user.

本発明の好ましい1つの特徴によれば、前記複数の送信サブチャネルの各々毎に設けられた前記1次変調器は複数の多値変調方式から任意の1つを選択するように構成され、前記複数の送信サブチャネルの各々毎に設けられた前記2次変調器は複数の広帯域化方式から任意の1つを選択するように構成されている。   According to a preferred feature of the present invention, the primary modulator provided for each of the plurality of transmission sub-channels is configured to select any one from a plurality of multi-level modulation schemes, The secondary modulator provided for each of a plurality of transmission sub-channels is configured to select an arbitrary one from a plurality of broadband schemes.

本発明の好ましい別の特徴によれば、前記複数の送信サブチャネルの各々毎に設けられた前記1次変調器の前段に、関連する送信サブチャネルの前記送信信号について誤り訂正符号化を行う符号化器を含み、前記1次変調器は該符号化器からの出力データについて多値変調を行う。   According to another preferred feature of the present invention, a code for performing error correction coding on the transmission signal of an associated transmission sub-channel at a stage preceding the primary modulator provided for each of the plurality of transmission sub-channels. And the primary modulator performs multi-level modulation on output data from the encoder.

本発明の好ましい別の特徴によれば、前記符号化器は複数の誤り訂正の符号化方式及び複数の符号化率からそれぞれ任意の1つを選択するように構成されている。   According to another preferred feature of the present invention, the encoder is configured to select any one of a plurality of error correction coding schemes and a plurality of coding rates.

また、本発明の別の側面による符号変調適応可変多重伝送装置は、
受信した周波数多重信号から複数の受信サブチャネルの各々毎の変調信号に周波数分割する周波数分離回路と、
伝送側で付加された各受信サブチャネル毎の信号における1次変調の多値変調方式と2次変調の広帯域化方式と前記受信サブチャネルの数とを含む伝送条件情報を識別する伝送条件識別回路と、
該伝送条件識別回路において識別した伝送条件情報に基づいて制御信号を発生する制御回路と、
複数の受信サブチャネルの各々毎に設けられ、前記制御回路に応答して、前記周波数分離回路から得られた関連する受信サブチャネルの変調信号を前記伝送条件識別回路で識別された広帯域化方式に対応する逆広帯域化方式で復調する2次復調器及び前記制御回路に応答して、該2次復調器で復調された各受信チャネル毎の変調信号を前記伝送条件識別回路で識別された多値変調方式に対応する多値復調方式で復調する1次復調器と、
前記複数の受信サブチャネルから得られたデータを合成するデータ合成回路とからなる。
Also, a code modulation adaptive variable multiplex transmission apparatus according to another aspect of the present invention,
A frequency separation circuit that frequency-divides the received frequency multiplexed signal into modulated signals for each of a plurality of reception sub-channels,
A transmission condition identification circuit for identifying transmission condition information including a primary modulation multilevel modulation system, a secondary modulation broadband system, and the number of reception subchannels in a signal for each reception subchannel added on the transmission side. When,
A control circuit for generating a control signal based on the transmission condition information identified in the transmission condition identification circuit,
Provided for each of a plurality of reception sub-channels, in response to the control circuit, the modulation signal of the relevant reception sub-channel obtained from the frequency separation circuit to the wideband system identified by the transmission condition identification circuit In response to the secondary demodulator for demodulating in the corresponding inverse wideband system and the control circuit, the modulated signal for each reception channel demodulated by the secondary demodulator is multi-valued by the transmission condition identification circuit. A primary demodulator for demodulating by a multi-level demodulation method corresponding to the modulation method;
A data combining circuit for combining data obtained from the plurality of receiving sub-channels.

また、本発明の別の側面による符号変調適応可変多重伝送方法は、
送信するデータを複数の送信サブチャネルの送信信号に分割するステップと、
前記複数の送信サブチャネルの送信信号の各々について多値変調を行うステップと、
前記複数の送信サブチャネルの多値変調信号の各々について広帯域化を行うステップと、
前記多値変調の変調方式と前記伝送帯域の広帯域化方式と前記送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加するステップと、
前記複数の送信サブチャネルの広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力するステップとを有する。
Also, a code modulation adaptive variable multiplex transmission method according to another aspect of the present invention,
Dividing data to be transmitted into transmission signals of a plurality of transmission sub-channels;
Performing multi-level modulation on each of the transmission signals of the plurality of transmission sub-channels,
Performing a broadband for each of the multi-level modulation signals of the plurality of transmission sub-channels,
A step of adding transmission condition information including a modulation scheme of the multi-level modulation, a broadband scheme of the transmission band, and the number of the transmission sub-channels to an associated transmission signal,
Frequency multiplexing the modulated outputs of the plurality of transmission sub-channels and outputting the same as a channel for the same user.

以上説明した本発明に係る符号変調適応可変多重伝送装置において、送信部では、送信情報データを複数のサブチャネルに分割し、送信サブチャネル毎に選択切替した誤り訂正の符号化方式及び符号化率による符号化、選択切替した多値変調方式の1次変調、及び選択切替した広帯域化方式の2次変調を行うため、それぞれの送信サブチャネルの処理動作は、複数のサブチャネルに分割することで低速化されて、より高速なデータ伝送に対応可能となる。同様に、受信部においても、受信信号を分離した後の受信サブチャネル毎の2次復調と1次復調及び誤り訂正復号の処理動作は低速化されて、より高速なデータ伝送に対応可能となる。すなわち、送信部の符号化と1次変調及び2次変調、または受信部の復号と1次復調及び2次復調に用いられるAD変換器とDA変換器においても低速素子で対応可能となる。   In the above-described code modulation adaptive variable multiplex transmission apparatus according to the present invention, the transmission unit divides transmission information data into a plurality of subchannels, and selects and switches an error correction coding method and a coding rate for each transmission subchannel. In order to perform the primary modulation of the multi-level modulation scheme selectively switched and the secondary modulation of the wideband scheme selectively switched, the processing operation of each transmission sub-channel is performed by dividing the transmission sub-channel into a plurality of sub-channels. The speed is reduced, so that higher-speed data transmission can be supported. Similarly, also in the receiving unit, the processing operations of the secondary demodulation, the primary demodulation, and the error correction decoding for each reception sub-channel after separating the reception signal are reduced in speed, so that higher-speed data transmission can be supported. . That is, the AD converter and the DA converter used for the encoding and the primary modulation and the secondary modulation of the transmitting unit or the decoding and the primary and secondary demodulation of the receiving unit can be supported by the low-speed elements.

また、符号化器の符号化方式と符号化率の選択切替、及び1次変調器の多値変調方式の選択切替と共に、サブチャネル数の切替と、2次変調器の広帯域化方式の切替を組合わせて行うことで、多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して細かな適応制御が可能となり、周波数利用効率をさらに向上することができる。   In addition, switching of the coding method and coding rate of the encoder, and selection and switching of the multi-level modulation method of the primary modulator, switching of the number of sub-channels, and switching of the broadband method of the secondary modulator are also performed. By performing this in combination, it is possible to perform fine adaptive control in response to various transmission conditions, fluctuations in the propagation conditions of the transmission path, and changes in the traffic conditions, thereby further improving the frequency use efficiency.

したがって、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、より高速な情報データを効率良く伝送することが可能となる。   Therefore, it is possible to efficiently transmit higher-speed information data in accordance with different transmission conditions such as transmission path conditions, various media, and various services.

以上説明したように、本発明によれば、送信部の符号化と1次変調及び2次変調、または受信部の復号と1次復調及び2次復調の処理動作を低速化し、高速化の困難なAD変換器とDA変換器においても低速素子で対応可能となり、より高速なデータ伝送に対応可能な伝送装置を実現することができる。   As described above, according to the present invention, the processing operations of encoding and primary modulation and secondary modulation of a transmitting unit, or decoding and primary demodulation and secondary demodulation of a receiving unit are slowed down, and it is difficult to increase the speed. A simple AD converter and DA converter can be supported by low-speed elements, and a transmission device that can support higher-speed data transmission can be realized.

また、本発明によれば、多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して、より細かな適応制御が可能となり、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、より高速な情報データを効率良く伝送することが可能となる伝送装置を実現することができる。   Further, according to the present invention, it is possible to perform finer adaptive control in response to various transmission conditions, fluctuations in the propagation conditions and traffic conditions of the transmission path, and to adapt to different transmission conditions such as various media or various services. Correspondingly, a transmission device capable of efficiently transmitting higher-speed information data can be realized.

本発明に係る、情報データを複数のサブチャネルの信号に分割し、複数のサブチャネルを周波数多重化し同一ユーザのチャネルとして伝送する、本発明の符号変調適応可変多重伝送装置の実施の形態について、図1および図2を用いて説明する。   According to the present invention, information data is divided into a plurality of sub-channel signals, a plurality of sub-channels are frequency-multiplexed and transmitted as the same user channel, the embodiment of the code modulation adaptive variable multiplex transmission apparatus of the present invention, This will be described with reference to FIGS.

図1は、本発明に係る符号変調適応可変多重伝送装置の一実施の形態の送信部の構成を示すブロック図である。送信部は、入力される、スロットあるいはパケット単位の送信情報データ101のデータ速度、データ容量、あるいは情報データに含まれている伝送条件の指定情報などにより、伝送条件情報108を識別する伝送条件識別回路107と、伝送条件識別回路107で識別された伝送条件情報108が供給される送信部制御回路109と、送信部制御回路109からの送信部制御信号110により送信情報データ101を複数の送信サブチャネル(1)〜(n)103に分割するデータ分割回路102と、送信部制御回路109からの送信部制御信号110により、各送信サブチャネル(1)〜(n)103において予め用意した(符号化器の回路として備えられた)複数の符号化方式(畳込み符号化、リードソロモン、BCHなどの符号化方式)と符号化率を選択切替して所望の符号化方式と符号化率により誤り訂正の符号化を行う符号化器104と、送信部制御回路109からの伝送条件情報108に従った送信部制御信号110により、各送信サブチャネル(1)〜(n)103において予め用意した(変調器の回路として備えられた)複数の多値変調方式(BPSKを含めたQPSK、16QAMなどの変調方式)を選択切替して所望の多値変調方式により1次変調を行う1次変調器105と、送信部制御回路109が設定する伝送条件情報108に対応した伝送条件識別情報112を、各送信サブチャネル(1)〜(n)103における送信信号に付加する伝送条件識別情報付加回路111と、送信部制御回路109からの送信部制御信号110により、各送信サブチャネル(1)〜(n)103において予め用意した(変調器の回路として備えられた)OFDM(Orthogonal Frequency Division Multiplex)や拡散変調(スペクトラム拡散)等の広帯域化方式を選択切替して所望の広帯域化方式により2次変調を行う2次変調器106と、複数の送信サブチャネル(1)〜(n)103から得られる送信変調信号113を周波数多重化する周波数多重化回路114から構成される。   FIG. 1 is a block diagram showing a configuration of a transmission unit of a code modulation adaptive variable multiplex transmission apparatus according to an embodiment of the present invention. The transmission unit identifies transmission condition information 108 based on the input data rate, data capacity of transmission information data 101 in slot or packet units, or transmission condition designation information included in the information data. A transmission unit control circuit 109 to which the transmission condition information 108 identified by the transmission condition identification circuit 107 is supplied; and a transmission unit control signal 110 from the transmission unit control circuit 109 to transmit the transmission information data 101 to a plurality of transmission sub-units. A data division circuit 102 for dividing the data into channels (1) to (n) 103 and a transmission unit control signal 110 from a transmission unit control circuit 109 prepare in advance in each of the transmission subchannels (1) to (n) 103 (code Coding methods (convolutional coding, Reed-Solomon, BCH, etc.) ) And an encoder 104 for selectively switching an encoding rate to perform error correction encoding according to a desired encoding method and encoding rate, and a transmission unit control according to transmission condition information 108 from a transmission unit control circuit 109. According to the signal 110, a plurality of multi-level modulation schemes (modulation schemes such as QPSK including BPSK and 16QAM) prepared in advance (provided as a modulator circuit) in each of the transmission sub-channels (1) to (n) 103. A primary modulator 105 that selectively performs switching and performs primary modulation according to a desired multi-level modulation scheme, and transmission condition identification information 112 corresponding to transmission condition information 108 set by the transmission unit control circuit 109 are transmitted to each transmission subchannel ( 1) to (n), a transmission condition identification information adding circuit 111 added to the transmission signal and a transmission unit control signal 110 from the transmission unit control circuit 109 are used to transmit each transmission sub-channel. In (1) to (n) 103, a wideband system such as OFDM (Orthogonal Frequency Division Multiplex) or spread modulation (spread spectrum) prepared in advance (provided as a modulator circuit) is selectively switched to achieve a desired wideband. It comprises a secondary modulator 106 that performs secondary modulation according to a system, and a frequency multiplexing circuit 114 that frequency multiplexes a transmission modulation signal 113 obtained from a plurality of transmission sub-channels (1) to (n) 103.

図6は符号化器104の一構成例を示す。この符号化器104は、送信制御回路109からの送信制御信号110によって予め用意した複数の符号化方式(畳込み符号化、リードソロモン、BCHなどの符号化方式)と符号化率から所望の符号化方式と符号化率を選択するよう構成されている。   FIG. 6 shows a configuration example of the encoder 104. The coder 104 uses a transmission control signal 110 from the transmission control circuit 109 to prepare a desired code from a plurality of coding schemes (encoding schemes such as convolutional coding, Reed-Solomon, and BCH) prepared in advance and a coding rate. It is configured to select a coding scheme and a coding rate.

図7は1次変調器105の一構成例を示す。この1次変調器105は、送信制御回路109からの送信制御信号110によって予め用意した複数の多値変調方式(BPSK,QPSK,16QAMなど)から所望の多値変調方式を選択するよう構成されている。   FIG. 7 shows a configuration example of the primary modulator 105. The primary modulator 105 is configured to select a desired multi-level modulation scheme from a plurality of multi-level modulation schemes (BPSK, QPSK, 16QAM, etc.) prepared in advance by a transmission control signal 110 from a transmission control circuit 109. I have.

図8は2次変調器106の一構成例を示す。この2次変調器106は、送信制御回路109からの送信制御信号110によって予め用意した複数の広帯域化方式(OFDM、拡散変調(スペクトラム拡散)など)から所望の広帯域化方式を選択するよう構成されている。   FIG. 8 shows a configuration example of the secondary modulator 106. The secondary modulator 106 is configured to select a desired broadband system from a plurality of wideband systems (OFDM, spread modulation (spread spectrum), etc.) prepared in advance by a transmission control signal 110 from a transmission control circuit 109. ing.

データ分割回路102は、送信部制御回路109からの伝送条件情報108に基づく送信部制御信号110により、送信情報データ101を複数の送信サブチャネル(1)〜(n)103に均等あるいは異なる割合で分割する回路である。上記データ分割回路102は、例えば、4個のサブチャネルの場合において均等分割であれば、4個の送信情報データが入力される毎に各サブチャネルに1個ずつ分割し、異なる割合(例えば1:2:3:4の比)で分割するのであれば、10個の送信情報データが入力される毎に、4個のサブチャネルにそれぞれ1個、2個、3個、4個のデータに分割することになる。また、サブチャネルと称したのは、複数チャネルを周波数多重化して1ユーザが1つのチャネルとして使用するためである。   The data division circuit 102 divides the transmission information data 101 into a plurality of transmission sub-channels (1) to (n) 103 at equal or different rates by a transmission unit control signal 110 based on the transmission condition information 108 from the transmission unit control circuit 109. It is a circuit to divide. For example, if the data division circuit 102 is equally divided in the case of four sub-channels, the data division circuit 102 divides one by one into each sub-channel every time four pieces of transmission information data are input, and different ratios (for example, 1 : 2: 3: 4), every time 10 pieces of transmission information data are input, each of the four sub-channels is divided into 1, 2, 3, and 4 data. Will be split. The term “sub-channel” is used because a plurality of channels are frequency-multiplexed and used by one user as one channel.

ここで、符号化器104と1次変調器105と2次変調器106は送信サブチャネル(1)〜(n)103毎に必要となる。伝送条件識別情報付加回路111は、送信サブチャネル(1)〜(n)103の各々毎に、あるいは一括して指定する1つまたは複数の送信サブチャネルに伝送条件識別情報112の付加を行う(伝送条件識別情報112をコマンド等のなるべく省略したデータとして付加する)。そして、この伝送条件識別情報112については2次変調器106の広帯域化方式を送信側受信側で予め取り決めて指定した方式に固定して付加される。   Here, the encoder 104, the primary modulator 105, and the secondary modulator 106 are required for each of the transmission sub-channels (1) to (n) 103. The transmission condition identification information adding circuit 111 adds the transmission condition identification information 112 to each of the transmission sub-channels (1) to (n) 103 or to one or more transmission sub-channels designated collectively (see FIG. The transmission condition identification information 112 is added as abbreviated data such as a command). Then, the transmission condition identification information 112 is fixedly added to the system specified and determined in advance by the transmitting side and the receiving side on the broadband system of the secondary modulator 106.

このように構成された送信部に、スロットあるいはパケット単位の送信情報データ101が入力されると、伝送条件識別回路107が送信情報データ101のデータ速度、データ容量、あるいは情報データに含まれる伝送条件の指定情報などにより、各サブチャネルの誤り訂正符号の符号化方式(畳込み符号化[convolutional code ]、リードソロモン[Reed-Solomon code]、BCH[Bose-Chaudhuri-Hocquenghem code]などの符号化方式)及び符号化率と、1次変調の多値変調方式と、2次変調の広帯域化方式と、分割し多重化するサブチャネル数とを示す伝送条件情報108を識別し、該識別された伝送条件情報108を送信部制御回路109に出力する。なお、畳み込み符号化は、(誤り訂正符号の一種。複数の情報ブロックに基づいて符号を生成する。この符号は復号法に関連して発展してきた。復号法には、しきい値復号法と最尤復号法とがある。)である。リードソロモンは、(誤り訂正符号の一種。バースト誤り検出/訂正用のブロック符号方式(block code)の一つ。通信やデータ記録で利用する。ブロック符号方式とは伝送する情報ビットをある大きさのブロックに分け、ブロックごとにパリティ・ビット(誤り検出用ビット)を付加する方法をいう。このほか、バースト誤り検出/訂正用には、ファイア符号などがある。また、ランダム誤り訂正用には、BCH符号や、ハミング符号(Hamming Code)、サイクリック符号(cyclic code)、ゴーレイ符号(Golay code)などがある。なお、ブロック符号方式とは別に畳み込み符号がある。これは情報ビットをブロックに分けずに、いくつかの入力ビットごとに排他的論理和の演算処理などを行う方式。)である。ここで、伝送条件識別回路107は、後述する受信部の伝送条件識別回路208からの伝送条件情報210を受けて、上記伝送条件情報108を送信部制御回路109に出力しても良い。また、図示を省略したが、伝送路の伝搬状況やトラヒック状況を監視する手段を設け、伝送路の状況に応じた伝送条件情報108を送信部制御回路109に出力しても良い。   When transmission information data 101 in units of slots or packets is input to the transmission unit configured as described above, the transmission condition identification circuit 107 determines the data rate and data capacity of the transmission information data 101 or the transmission conditions included in the information data. Encoding method (convolutional code [convolutional code], Reed-Solomon [Reed-Solomon code], BCH [Bose-Chaudhuri-Hocquenghem code], etc.] ) And the coding rate, the primary modulation multi-level modulation scheme, the secondary modulation broadband scheme, and the transmission condition information 108 indicating the number of sub-channels to be divided and multiplexed. The condition information 108 is output to the transmission unit control circuit 109. Note that convolutional coding is a type of error correction code that generates a code based on a plurality of information blocks. This code has been developed in connection with a decoding method. There is a maximum likelihood decoding method.). Reed-Solomon is a type of error correction code. It is one of the block code systems for detecting and correcting burst errors. It is used in communication and data recording. And a method of adding a parity bit (bit for error detection) for each block. In addition, there is a fire code for burst error detection / correction, and a method for random error correction. , A BCH code, a Hamming code, a cyclic code, a Golay code, etc. In addition to the block coding method, there is a convolutional code. Without performing the division, a method of performing an exclusive OR operation or the like is performed for each of several input bits.) Here, the transmission condition identification circuit 107 may receive the transmission condition information 210 from the transmission condition identification circuit 208 of the receiving unit described later and output the transmission condition information 108 to the transmission unit control circuit 109. Although not shown, means for monitoring the propagation state and traffic state of the transmission line may be provided, and the transmission condition information 108 according to the state of the transmission line may be output to the transmission unit control circuit 109.

送信部制御回路109では、データ分割回路102に対して伝送条件情報108により、各送信サブチャネル(1)〜(n)103に送信情報データ101を均等にあるいは異なる割合で分割する制御を行い、各送信サブチャネル(1)〜(n)103について、符号化器104の符号化方式及び符号化率と、1次変調器105の多値変調方式と、2次変調器106の広帯域化方式とを、伝送条件情報108に従って選択切替する制御を行い、伝送条件識別情報付加回路111に対しては、送信する伝送条件識別情報112を送信信号に付加させる制御を行う。上述の制御により、各送信サブチャネル103の送信情報は符号化器104に入力されて選択切替された符号化方式及び符号化率で符号化され、1次変調器105において選択切替された多値変調方式で1次変調され、コマンド等に変換された伝送条件識別情報112が伝送条件識別情報付加回路111において付加される。次に、2次変調器106において選択切替された広帯域化方式で2次変調され、送信変調信号113が出力される。   The transmission unit control circuit 109 controls the data division circuit 102 to divide the transmission information data 101 into the transmission sub-channels (1) to (n) 103 at equal or different rates by the transmission condition information 108. For each of the transmission sub-channels (1) to (n) 103, the coding scheme and coding rate of the encoder 104, the multi-level modulation scheme of the primary modulator 105, and the wideband scheme of the secondary modulator 106 Is controlled in accordance with the transmission condition information 108, and the transmission condition identification information adding circuit 111 is controlled to add the transmission condition identification information 112 to be transmitted to the transmission signal. According to the above control, the transmission information of each transmission sub-channel 103 is input to the encoder 104 and is encoded by the selected and switched coding scheme and coding rate, and the multi-valued data is selectively switched by the primary modulator 105. The transmission condition identification information 112 that has been primarily modulated by the modulation method and converted into a command or the like is added in the transmission condition identification information addition circuit 111. Next, secondary modulation is performed by the secondary modulator 106 in the selected and switched wideband system, and a transmission modulation signal 113 is output.

そして、これら複数の送信サブチャネル103からの送信変調信号113は、周波数多重化回路114で周波数多重化されて送信多重信号115として送信され、受信部で受信される。   Then, the transmission modulation signals 113 from the plurality of transmission sub-channels 103 are frequency-multiplexed by the frequency multiplexing circuit 114, transmitted as transmission multiplexed signals 115, and received by the receiving unit.

次に、周波数多重化回路114における周波数多重化について、図9、図10のサブチャネル変調信号の周波数多重化例を用いて説明する。周波数多重化は、各サブチャネルの変調信号に搬送波信号を乗積し、それぞれのサブチャネル変調信号のチャネル帯域がかさならないように周波数方向に並べる処理である。   Next, the frequency multiplexing in the frequency multiplexing circuit 114 will be described with reference to the frequency multiplexing example of the sub-channel modulation signal shown in FIGS. Frequency multiplexing is a process of multiplying a modulated signal of each sub-channel by a carrier signal and arranging the modulated signals in the frequency direction so that the channel band of each modulated sub-channel does not become large.

図9は、サブチャネル変調信号のチャネル帯域幅が等間隔の場合であり、サブチャネル変調信号にそれぞれ等間隔の搬送波信号を乗積して、周波数方向に等間隔に並べる処理を行い多重化し、一つの信号に変換する。   FIG. 9 shows a case where the channel bandwidths of the sub-channel modulated signals are equally spaced, and the sub-channel modulated signals are multiplied by equally spaced carrier signals, and are arranged at regular intervals in the frequency direction and multiplexed. Convert to one signal.

図10に示すような、OFDM変調方式におけるサブキャリア数の異なるサブチャネル変調信号では、チャネル帯域幅が異なるので、周波数間隔の異なる搬送波信号をそれぞれのサブチャネル変調信号に乗積して、チャネル帯域が重ならないように周波数方向に並べる処理を行い多重化し、一つの信号に変換する。   As shown in FIG. 10, the sub-band modulated signals having different numbers of sub-carriers in the OFDM modulation scheme have different channel bandwidths. Therefore, the carrier signals having different frequency intervals are multiplied by the respective sub-channel modulated signals to obtain the channel bandwidth. Are arranged in the frequency direction so that they do not overlap, multiplexed, and converted into one signal.

なお、上記実施の形態で示す多重化する全ての複数の送信サブチャネル(1)〜(n)103において、符号化器104としては同じ符号化方式及び符号化率を用い、1次変調器105としては同じ多値変調方式を用い、2次変調器106としては同じ広帯域化方式を用いても良い。この場合には、送信部制御回路109から得られる送信部制御信号110に基づいて、当然、符号化器104としては同じ符号化方式及び符号化率を選択して用いても良いし、1次変調器105としては同じ多値変調方式を選択して用いても良いし、また、2次変調器106としては同じ広帯域化方式を用いても良い。   In all of the plurality of transmission sub-channels (1) to (n) 103 to be multiplexed described in the above embodiment, the same coding scheme and coding rate are used as encoder 104, and primary modulator 105 , The same multi-level modulation scheme may be used, and the secondary modulator 106 may use the same wideband scheme. In this case, based on the transmission unit control signal 110 obtained from the transmission unit control circuit 109, the encoder 104 may, of course, select and use the same encoding method and encoding rate, The same multi-level modulation scheme may be selected and used as the modulator 105, and the same wideband scheme may be used as the secondary modulator 106.

また、上記実施の形態で示す多重化する多数の送信サブチャネル(1)〜(n)103を、例えば複数ユーザに対応して、複数のグループに分割し、該分割されたグループ毎の複数のサブチャネルにおいては、符号化器104として同じ符号化方式および符号化率を用い、1次変調器105として同じ多値変調方式を用い、2次変調器106として同じ広帯域化方式を用いても良い。この場合にも(分割されたグループ毎の複数のサブチャネルにおいても)、送信部制御回路109から得られる送信部制御信号110に基づいて、当然、符号化器104としては同じ符号化方式及び符号化率を選択して用いても良いし、1次変調器105としては同じ多値変調方式を選択して用いても良いし、また、2次変調器106としては同じ広帯域化方式を用いても良い。   Also, a large number of transmission sub-channels (1) to (n) 103 to be multiplexed shown in the above embodiment are divided into a plurality of groups corresponding to a plurality of users, for example, and a plurality of In the sub-channel, the same coding scheme and coding rate may be used as encoder 104, the same multi-level modulation scheme may be used as primary modulator 105, and the same wideband scheme may be used as secondary modulator 106. . Also in this case (even in a plurality of sub-channels of each divided group), the same coding scheme and code as the encoder 104 are used based on the transmitter control signal 110 obtained from the transmitter controller 109. The modulation rate may be selected and used, the same multi-level modulation scheme may be selected and used as the primary modulator 105, and the same wideband scheme may be used as the secondary modulator 106. Is also good.

図2は、本発明に係る符号変調適応可変多重伝送装置の一実施例の受信部の構成を示すブロック図である。受信部は、受信した受信多重信号201から各受信サブチャネル(1)〜(n)204の受信変調信号203に周波数分離する周波数分離回路202と、伝送側で付加された各受信サブチャネル(1)〜(n)204の誤り訂正の符号化方式及び符号化率と1次変調の多値変調方式と2次変調の広帯域化方式とサブチャネル数との伝送条件情報210を識別する伝送条件識別回路208と、識別した伝送条件情報210により、受信サブチャネル毎の2次復調器205と1次復調器206と復号器207との制御及びデータ合成回路213の制御を行う受信部制御回路211と、複数の受信サブチャネル(1)〜(n)204からの情報データを合成するデータ合成回路213から構成される。ここで、2次復調器205と1次復調器206と復号器207は受信サブチャネル(1)〜(n)204毎に必要となる。   FIG. 2 is a block diagram showing a configuration of a receiving section of one embodiment of the code modulation adaptive variable multiplex transmission apparatus according to the present invention. The receiving section includes a frequency separation circuit 202 for frequency-separating the received multiplexed signal 201 into reception modulation signals 203 of the respective reception sub-channels (1) to (n) 204, and a reception sub-channel (1) added on the transmission side. ) To (n) 204: Transmission condition identification for identifying transmission condition information 210 for error correction coding system, coding rate, multi-level modulation system for primary modulation, wideband system for secondary modulation, and number of sub-channels. A receiving unit control circuit 211 for controlling the secondary demodulator 205, the primary demodulator 206, and the decoder 207 and controlling the data synthesizing circuit 213 for each reception sub-channel based on the circuit 208 and the identified transmission condition information 210; , A data synthesizing circuit 213 for synthesizing information data from the plurality of reception sub-channels (1) to (n) 204. Here, the secondary demodulator 205, the primary demodulator 206, and the decoder 207 are required for each of the reception sub-channels (1) to (n) 204.

このように構成された受信部に受信多重信号201が入力されると、周波数分離回路202で複数の受信サブチャネル(1)〜(n)204の受信変調信号203に分離され、それぞれの受信サブチャネル(1)〜(n)204の2次復調器205において、受信部制御回路211により選択切替される逆広帯域化方式で2次復調されて1次変調信号に戻される。なお、受信サブチャネルの数nは識別された伝送条件情報210に含まれるサブチャネルの数である。   When the reception multiplexed signal 201 is input to the receiving unit configured as described above, the frequency separation circuit 202 separates the received multiplexed signal 201 into reception modulation signals 203 of a plurality of reception sub-channels (1) to (n) 204, In the secondary demodulator 205 of the channels (1) to (n) 204, the signal is subjected to the secondary demodulation by the inverse wideband system selected and switched by the reception unit control circuit 211, and is returned to the primary modulation signal. Note that the number n of reception sub-channels is the number of sub-channels included in the identified transmission condition information 210.

この1次変調信号は伝送条件識別回路208に供給され、送信部において付加された伝送条件識別情報209が識別されて伝送条件情報210が受信部制御回路211に入力される。受信部制御回路211では、伝送条件情報210に従い送信部の各送信サブチャネル103の2次変調器106の広帯域化方式と1次変調器105の多値変調方式と符号化器104の符号化方式及び符号化率と一致するように、各受信サブチャネル(1)〜(n)204の2次復調器205の逆広帯域化方式と1次復調器206の多値復調方式と復号器207の復号方式及び符号化率とを選択切替する制御を行う。   The primary modulation signal is supplied to the transmission condition identification circuit 208, where the transmission condition identification information 209 added in the transmission unit is identified, and the transmission condition information 210 is input to the reception unit control circuit 211. In the receiving unit control circuit 211, the band widening system of the secondary modulator 106, the multi-level modulation system of the primary modulator 105, and the encoding system of the encoder 104 in each transmission sub-channel 103 of the transmission unit according to the transmission condition information 210. And the decoding rate of the secondary demodulator 205, the multi-level demodulation method of the primary demodulator 206, and the decoding of the decoder 207 in each of the reception subchannels (1) to (n) 204 so as to match the coding rate. Control for selectively switching between the system and the coding rate is performed.

送信部の説明で記述したように、伝送条件識別情報209は2次変調器106の広帯域化方式を送信側受信側で予め取り決めて指定した方式に固定して付加されているので、2次復調器205の逆広帯域化方式は、伝送条件識別情報209については予め取り決めて指定された方式に、情報データについては伝送条件情報210による方式に切替られることになる。また、送信部では、各送信サブチャネルに、あるいは一括して指定する1つまたは複数の送信サブチャネルに伝送条件識別情報を付加しているので、受信部においては、それらに対応する受信サブチャネルから伝送条件識別情報209を伝送条件識別回路208により識別する。   As described in the description of the transmission unit, the transmission condition identification information 209 is fixedly added to the system specified in advance in the transmission side and reception side on the broadband system of the secondary modulator 106, so that the secondary demodulation is performed. The reverse band widening method of the device 205 is switched to a method prearranged and specified for the transmission condition identification information 209 and to a method based on the transmission condition information 210 for information data. Also, the transmission unit adds transmission condition identification information to each transmission sub-channel or to one or more transmission sub-channels designated collectively, so that the reception unit From the transmission condition identification circuit 208 by the transmission condition identification circuit 208.

2次復調器205から出力された1次変調信号は、1次復調器206において受信部制御回路211からの受信部制御信号212により選択切替された多値復調方式で1次復調され、さらに復号器207において選択切替された復号方式及び符号化率で復号されて各受信サブチャネル(1)〜(n)204の受信情報が再生される。これら複数の受信サブチャネル(1)〜(n)204の受信情報はデータ合成回路213で合成されて、受信情報データ214が出力される。   The primary modulation signal output from the secondary demodulator 205 is subjected to primary demodulation in the primary demodulator 206 by the multi-level demodulation method selectively switched by the reception control signal 212 from the reception control circuit 211, and further decoded. The signal is decoded by the decoding method and the coding rate selected and switched in the unit 207, and the reception information of each of the reception sub-channels (1) to (n) 204 is reproduced. The reception information of the plurality of reception sub-channels (1) to (n) 204 is synthesized by the data synthesis circuit 213, and the reception information data 214 is output.

ところで、送信部から受信部への伝送条件識別情報112の伝送方法には、次のような方法がある。第1の方法は、情報データがスロット、あるいは複数スロットのパケットで伝送される場合に、スロットあるいはパケットの先頭(ヘッダ)に伝送条件識別情報112を付加して伝送し、受信スロットあるいはパケットの先頭から伝送条件情報を識別する方法であり、第2の方法は、符号多重あるいは周波数多重されるパイロットチャネルなどに伝送条件識別情報112を付加して伝送し、受信のパイロットチャネルから伝送条件情報を識別する方法である。さらに他の方法としては、1つ前のスロットあるいはパケットで伝送条件識別情報112を送信しておく方法などがある。   The transmission method of the transmission condition identification information 112 from the transmission unit to the reception unit includes the following method. The first method is that, when information data is transmitted in a slot or a packet of a plurality of slots, the transmission condition identification information 112 is added to the head (header) of the slot or packet, and the data is transmitted. In the second method, transmission condition identification information 112 is added to a code-multiplexed or frequency-multiplexed pilot channel and the like, and the transmission condition information is identified from the received pilot channel. How to As still another method, there is a method of transmitting the transmission condition identification information 112 in the immediately preceding slot or packet.

図5は、それぞれ上記送信部(図1)および上記受信部(図2)を有するA局とB局の間のパケット送信タイミング動作の一例を示す図である。なお、ここでは、各局は、複数の送信データで構成されるスロット、あるいは複数の上記スロットで構成されるフレームなどのパケット単位でデータを伝送するものとしており、前述のように、各パケットの先頭部分に上記伝送条件情報を付加して送信している。図5において、横軸は時間軸であり、(a)はA局の送信データ、(b)はB局の受信データ、(c)はB局の送信データ、(d)はA局の受信データを示している。ここで、初期状態においては、A局からの当該情報の伝送に用いるチャネル多重数、一次変調および二次変調は当該データの種別などにより予め定められている初期設定値とされているものとする。   FIG. 5 is a diagram showing an example of a packet transmission timing operation between the stations A and B each having the transmitting section (FIG. 1) and the receiving section (FIG. 2). Here, it is assumed that each station transmits data in a packet unit such as a slot composed of a plurality of transmission data or a frame composed of a plurality of the above-described slots. The transmission condition information is added to the transmission portion. In FIG. 5, the horizontal axis is a time axis, (a) is transmission data of station A, (b) is reception data of station B, (c) is transmission data of station B, and (d) is reception of station A. Shows the data. Here, in the initial state, it is assumed that the number of multiplexed channels, primary modulation, and secondary modulation used for transmission of the information from the station A have been set to the initial setting values which are predetermined according to the type of the data. .

図5の(a)に示すように、A局は伝送条件情報とデータa1を有する伝送パケットA1を送信し、これが(b)に示すようにB局において受信される。B局の受信部における上記伝送条件識別回路208において、上記伝送パケットA1に含まれている伝送条件情報が取り出され、送信部制御回路109に供給される。これにより、(c)に示すように、上記B局は自局の送信パケットB1を該伝送条件情報により設定された数のチャネルを用い、設定された一次変調および二次変調で送信する。また、上記B局の受信部における信号対干渉雑音電力比算出回路(図示せず)で該受信した伝送パケットA1の受信信号から信号対干渉雑音電力比を算出し、該算出結果等に基づいて折返し送信チャネル伝送条件判定回路(図示せず)で折返し送信チャネル伝送条件情報を生成し、これを受信チャネル伝送条件情報メモリ(図示せず)に格納するとともに、上記送信部の伝送条件識別情報付加回路111に供給する。これにより、(c)に示すように、B局の送信する伝送パケットB1中に上記折返し送信チャネル伝送条件情報が付加されて送信される。   As shown in FIG. 5A, the station A transmits a transmission packet A1 having transmission condition information and data a1, which is received by the station B as shown in FIG. 5B. In the transmission condition identification circuit 208 in the receiving unit of the station B, the transmission condition information included in the transmission packet A1 is extracted and supplied to the transmission unit control circuit 109. As a result, as shown in (c), the B station transmits its own transmission packet B1 by the set primary modulation and secondary modulation using the number of channels set by the transmission condition information. A signal-to-interference noise power ratio is calculated from a received signal of the received transmission packet A1 by a signal-to-interference noise power ratio calculation circuit (not shown) in the receiving unit of the station B, and based on the calculation result and the like. A return transmission channel transmission condition determining circuit (not shown) generates return transmission channel transmission condition information, stores it in a reception channel transmission condition information memory (not shown), and adds transmission condition identification information of the transmission unit. The signal is supplied to the circuit 111. As a result, as shown in (c), the return transmission channel transmission condition information is added to the transmission packet B1 transmitted by the station B and transmitted.

図5の(d)に示すように、この伝送パケットB1はA局で受信され、該A局の受信部で上記B局の受信部と同様にして、上記伝送条件識別回路208において取り出された伝送条件情報に基づき、次の伝送パケットA2のチャネル多重数、一次変調および二次変調が設定される。また、上記折返し送信チャネル伝送条件判定回路によりB局に対して指定する伝送条件情報を生成して、伝送パケットA2に付加して送信する。この伝送パケットA2を受信したB局は、前述の場合と同様にして、伝送パケットに格納されている伝送条件情報を取り出して、送信部の制御回路109に設定するとともに、A局に対する折返し送信チャネル伝送条件情報を生成する。なお、このとき、上記伝送パケットA1を受信したときに生成し上記受信チャネル伝送条件情報メモリ(図示せず)に格納した上記折返し送信チャネル伝送条件情報を用いて、2次復調器205、1次復調器206およびデータ合成回路213の設定を行う。   As shown in FIG. 5D, the transmission packet B1 is received by the station A, and is extracted by the transmission condition identification circuit 208 by the reception unit of the station A in the same manner as the reception unit of the station B. Based on the transmission condition information, the number of multiplexed channels, primary modulation, and secondary modulation of the next transmission packet A2 are set. Further, the transmission condition information to be specified for the station B is generated by the loopback transmission channel transmission condition determination circuit, added to the transmission packet A2, and transmitted. The station B that has received the transmission packet A2 takes out the transmission condition information stored in the transmission packet and sets it in the control circuit 109 of the transmission unit in the same manner as described above. Generate transmission condition information. At this time, the secondary demodulator 205 and the primary demodulator 205 are used by using the return transmission channel transmission condition information generated when the transmission packet A1 is received and stored in the reception channel transmission condition information memory (not shown). The demodulator 206 and the data synthesis circuit 213 are set.

以上説明した本発明に係る符号変調適応可変多重伝送装置において、送信部では、送信情報データを複数のサブチャネルに分割し、送信サブチャネル毎に誤り訂正の符号化、多値変調方式の1次変調、及び広帯域化方式の2次変調を行うため、それぞれの送信サブチャネルの処理動作は、複数のサブチャネルに分割することで低速化される。同様に、受信部においても、受信信号を分離した後の受信サブチャネル毎の2次復調と1次復調及び復号の処理動作は低速化される。そして、符号化器と1次変調器及び2次変調器または2次復調器と1次復調器及び復号器におけるAD変換器とDA変換器においても低速素子で対応可能となる。   In the code modulation adaptive variable multiplex transmission apparatus according to the present invention described above, the transmission unit divides transmission information data into a plurality of sub-channels, performs error correction coding for each transmission sub-channel, In order to perform the modulation and the secondary modulation of the broadband method, the processing operation of each transmission sub-channel is slowed down by dividing it into a plurality of sub-channels. Similarly, also in the receiving section, the processing operations of the secondary demodulation, the primary demodulation, and the decoding for each reception sub-channel after separating the reception signal are reduced. The AD converter and the DA converter in the encoder, the primary modulator and the secondary modulator, or the secondary demodulator and the primary demodulator and the decoder can be supported by low-speed elements.

また、符号化器の符号化方式及び符号化率と1次変調器の多値変調方式の選択切替と共に、サブチャネル数の切替、2次変調器の広帯域化方式の切替を組合わせて行うことで、多様な伝送条件、伝送路の伝搬状況やトラヒック状況の変動に対応して細かな適応制御が可能となり、周波数利用効率をさらに向上することができる。   In addition, the switching of the number of sub-channels and the switching of the wideband system of the secondary modulator are performed in combination with the selection and switching of the encoding system and coding rate of the encoder and the multi-level modulation system of the primary modulator. Thus, fine adaptive control can be performed in response to various transmission conditions, fluctuations in the propagation conditions of the transmission path, and traffic conditions, and the frequency use efficiency can be further improved.

したがって、伝送路の状況、多種のメディアあるいは多種のサービス等の異なる伝送条件に対応して、より高速な情報データを効率良く伝送することが可能となる。   Therefore, it is possible to efficiently transmit higher-speed information data in accordance with different transmission conditions such as transmission path conditions, various media, and various services.

本発明に係る符号変調適応可変多重伝送装置の一実施例の送信部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a transmission unit of the code modulation adaptive variable multiplex transmission apparatus according to one embodiment of the present invention. 本発明に係る符号変調適応可変多重伝送装置の一実施例の受信部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a receiving unit of one embodiment of the code modulation adaptive variable multiplex transmission apparatus according to the present invention. 本発明者が本発明をする過程で検討した符号変調適応可変伝送装置の送信部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a transmission unit of a code modulation adaptive variable transmission device studied in the course of performing the present invention by the inventor. 本発明者が本発明をする過程で検討した符号変調適応可変伝送装置の受信部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a receiving unit of the code modulation adaptive variable transmission device studied in the course of performing the present invention by the inventor. 本発明の符号変調適応可変多重伝送装置の一実施例におけるパケット送受信タイミング動作の一例を示す図である。It is a figure which shows an example of the packet transmission / reception timing operation | movement in one Example of the code modulation adaptive variable multiplex transmission apparatus of this invention. 図1の符号変調適応可変多重伝送装置の送信部の符号化器の一例の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of an example of an encoder of a transmission unit of the code modulation adaptive variable multiplex transmission device of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の1次変調器の一例の構成を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a configuration of a primary modulator of a transmission unit of the code modulation adaptive variable multiplex transmission apparatus of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の2次変調器の一例の構成を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a configuration of a secondary modulator of a transmission unit of the code modulation adaptive variable multiplex transmission device of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の周波数多重化回路におけるサブチャネル周波数多重化の一例を説明するための図である。FIG. 2 is a diagram for explaining an example of sub-channel frequency multiplexing in a frequency multiplexing circuit of a transmission unit of the code modulation adaptive variable multiplex transmission device of FIG. 1. 図1の符号変調適応可変多重伝送装置の送信部の周波数多重化回路におけるサブチャネル周波数多重化の別の例を説明するための図である。FIG. 2 is a diagram for explaining another example of sub-channel frequency multiplexing in a frequency multiplexing circuit of a transmission unit of the code modulation adaptive variable multiplex transmission device of FIG. 1.

符号の説明Explanation of reference numerals

101:送信情報データ、 102:データ分割回路、 103:送信サブチャネル、 104:符号化器、 105:1次変調器、 106:2次変調器、 107:送信部の伝送条件識別回路、 108:送信部の伝送条件情報、 109:送信部制御回路、 110:送信部制御信号、 111:伝送条件識別情報付加回路、 112:送信部の伝送条件識別情報、 113:送信変調信号、 114:周波数多重化回路、 115:送信多重信号、 201:受信多重信号、 202:周波数分離回路、 203:受信変調信号、 204:受信サブチャネル、 205:2次復調器、 206:1次復調器、 207:復号器、 208:受信部の伝送条件識別回路、 209:受信部の伝送条件識別情報、 210:受信部の伝送条件情報、 211:受信部制御回路、 212:受信部制御信号、 213:データ合成回路、 214:受信情報データ。
101: transmission information data, 102: data division circuit, 103: transmission sub-channel, 104: encoder, 105: primary modulator, 106: secondary modulator, 107: transmission condition identification circuit of the transmission unit, 108: Transmission condition information of the transmission unit, 109: Transmission unit control circuit, 110: Transmission unit control signal, 111: Transmission condition identification information addition circuit, 112: Transmission condition identification information of the transmission unit, 113: Transmission modulation signal, 114: Frequency multiplexing , 115: transmission multiplex signal, 201: reception multiplex signal, 202: frequency separation circuit, 203: reception modulation signal, 204: reception subchannel, 205: secondary demodulator, 206: primary demodulator, 207: decoding 208: Transmission condition identification circuit of the receiving unit, 209: Transmission condition identification information of the receiving unit, 210: Transmission condition information of the receiving unit, 211: Control unit of the receiving unit , 212: receiving unit control signal, 213: data combining circuit, 214: received information data.

Claims (6)

送信するデータを複数の送信サブチャネルの送信信号に分割するデータ分割回路と、
前記複数の送信サブチャネルの各々毎に設けられ、前記分割回路からの前記送信サブチャネルの送信信号について多値変調を行う1次変調器及び該1次変調器から得られる多値変調信号に伝送帯域の広帯域化を行う2次変調器と、
前記複数の送信サブチャネルの各々毎の1次変調器の多値変調方式と2次変調器の広帯域化方式と前記複数の送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加する付加回路と、
前記複数の送信サブチャネルの各2次変調器から得られる広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力する周波数多重化回路とを備えたことを特徴とする符号変調適応可変多重伝送装置。
A data division circuit for dividing data to be transmitted into transmission signals of a plurality of transmission sub-channels,
A primary modulator that is provided for each of the plurality of transmission sub-channels and that performs multi-level modulation on a transmission signal of the transmission sub-channel from the division circuit; and transmits a multi-level modulation signal obtained from the primary modulator. A secondary modulator for widening the band,
Transmission condition information including a multi-level modulation scheme of a primary modulator, a broadband scheme of a secondary modulator, and the number of the plurality of transmission sub-channels for each of the plurality of transmission sub-channels is added to an associated transmission signal. Additional circuit
A frequency multiplexing circuit for frequency-multiplexing a wideband modulated output obtained from each of the secondary modulators of the plurality of transmission sub-channels and outputting the multiplexed output as a channel for the same user. Multiplex transmission equipment.
請求項1において、前記複数の送信サブチャネルの各々毎に設けられた前記1次変調器は複数の多値変調方式から任意の1つを選択するように構成され、前記複数の送信サブチャネルの各々毎に設けられた前記2次変調器は複数の広帯域化方式から任意の1つを選択するように構成されていることを特徴とする符号変調適応可変多重伝送装置。   2. The method according to claim 1, wherein the primary modulator provided for each of the plurality of transmission sub-channels is configured to select an arbitrary one from a plurality of multi-level modulation schemes. A code modulation adaptive variable multiplex transmission apparatus, wherein the secondary modulator provided for each is configured to select an arbitrary one from a plurality of broadband schemes. 伝送条件情報に基づいて制御信号を発生する制御回路と、
送信するデータを複数の送信サブチャネルの各々毎の送信信号に分割するデータ分割回路と、
前記複数の送信サブチャネルの各々毎に設けられ、前記制御回路に応答して複数の多値変調方式から1つの多値変調方式を選択して関連する送信信号を変調する1次変調器及び前記制御回路に応答して複数の広帯域化方式から1つの広帯域化方式を選択して、前記1次変調器から得られる多値変調信号を広帯域化する2次変調器と、
前記複数の送信サブチャネルの各々毎の1次変調器の変調方式と2次変調器の広帯域化方式と前記送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加する付加回路と、
前記複数の送信サブチャネルの各2次変調器から得られる広帯域化された変調出力を周波数多重化して同一ユーザのチャネルとして出力する周波数多重化回路とを備えたことを特徴とする符号変調適応可変多重伝送装置。
A control circuit that generates a control signal based on transmission condition information;
A data division circuit for dividing data to be transmitted into transmission signals for each of a plurality of transmission sub-channels,
A primary modulator that is provided for each of the plurality of transmission sub-channels, selects one multi-level modulation scheme from a plurality of multi-level modulation schemes in response to the control circuit, and modulates a related transmission signal; A secondary modulator that selects one broadband system from a plurality of wideband systems in response to a control circuit, and widens a multi-level modulation signal obtained from the primary modulator;
An additional circuit for adding transmission condition information including a modulation scheme of a primary modulator, a broadband scheme of a secondary modulator, and the number of the transmission sub-channels to a related transmission signal for each of the plurality of transmission sub-channels; ,
A frequency multiplexing circuit for frequency-multiplexing a wideband modulation output obtained from each of the secondary modulators of the plurality of transmission subchannels and outputting the multiplexed output as a channel of the same user. Multiplex transmission equipment.
受信した周波数多重信号から複数の受信サブチャネルの各々毎の変調信号に周波数分割する周波数分離回路と、
伝送側で付加された各受信サブチャネル毎の信号における1次変調の多値変調方式と2次変調の広帯域化方式と前記受信サブチャネルの数とを含む伝送条件情報を識別する伝送条件識別回路と、
該伝送条件識別回路において識別した伝送条件情報に基づいて制御信号を発生する制御回路と、
複数の受信サブチャネルの各々毎に設けられ、前記制御回路に応答して、前記周波数分離回路から得られた関連する受信サブチャネルの変調信号の伝送帯域を前記伝送条件識別回路で識別された広帯域化方式に対応する逆広帯域化方式で復調する2次復調器及び前記制御回路に応答して、該2次復調器で復調された各受信チャネル毎の変調信号を前記伝送条件識別回路で識別された多値変調方式に対応する多値復調方式で復調する1次復調器と、
前記複数の受信サブチャネルから得られたデータを合成するデータ合成回路とを備えたことを特徴とする符号変調適応可変多重伝送装置。
A frequency separation circuit that frequency-divides the received frequency multiplexed signal into modulated signals for each of a plurality of reception sub-channels,
A transmission condition identification circuit for identifying transmission condition information including a primary modulation multilevel modulation system, a secondary modulation broadband system, and the number of reception subchannels in a signal for each reception subchannel added on the transmission side. When,
A control circuit for generating a control signal based on the transmission condition information identified in the transmission condition identification circuit,
Provided in each of a plurality of reception sub-channels, in response to the control circuit, a transmission band of a modulation signal of an associated reception sub-channel obtained from the frequency separation circuit, a wide band identified by the transmission condition identification circuit. In response to the secondary demodulator that demodulates by the inverse wideband system corresponding to the demodulation system and the control circuit, the modulation signal for each reception channel demodulated by the secondary demodulator is identified by the transmission condition identification circuit. A primary demodulator for demodulating with a multi-level demodulation scheme corresponding to the multi-level modulation scheme,
A data combining circuit for combining data obtained from the plurality of receiving sub-channels.
送信するデータを複数の送信サブチャネルの送信信号に分割するステップと、
前記複数の送信サブチャネルの送信信号の各々について多値変調を行うステップと、
前記複数の送信サブチャネルの多値変調信号の各々について伝送帯域の広帯域化を行うステップと、
前記多値変調の変調方式と前記広帯域化方式と前記送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加するステップと、
前記複数の送信サブチャネルの広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力するステップとを有することを特徴とする符号変調適応可変多重伝送方法。
Dividing data to be transmitted into transmission signals of a plurality of transmission sub-channels;
Performing multi-level modulation on each of the transmission signals of the plurality of transmission sub-channels,
Performing a broadening of the transmission band for each of the multi-level modulation signals of the plurality of transmission sub-channels,
A step of adding transmission condition information including the modulation scheme of the multi-level modulation, the wideband scheme, and the number of the transmission sub-channels to an associated transmission signal,
Frequency multiplexing the modulated outputs of the plurality of transmission sub-channels and outputting the same as a channel for the same user.
周波数分離回路を用いて、受信した周波数多重信号から複数の受信サブチャネルの各々毎の変調信号に周波数分割するステップと、
伝送側で付加した各受信サブチャネル毎の信号における1次変調の多値変調方式と2次変調の広帯域化方式と前記受信サブチャネルの数とを含む伝送条件情報を伝送条件識別回路で識別するステップと、
前記複数の受信サブチャネルの各々毎に設けられた2次復調器で、前記周波数分離回路から得られた各受信サブチャネル毎の変調信号を前記伝送条件識別回路で識別された広帯域化方式に対応する逆広帯域化方式で復調するステップと、
前記複数の受信サブチャネルの各々毎に設けられた1次復調器で、前記2次復調器で復調された各受信チャネル毎の変調信号を前記伝送条件識別回路で識別された多値変調方式に対応する多値復調方式で復調するステップと、
前記複数の受信サブチャネルから得られたデータを合成するステップとを有することを特徴とする符号変調適応可変多重伝送方法。
Using a frequency separation circuit, frequency dividing the received frequency multiplexed signal into a modulated signal for each of a plurality of receiving sub-channels,
A transmission condition identification circuit identifies transmission condition information including a multi-level modulation system of primary modulation, a broadband system of secondary modulation, and the number of reception subchannels in a signal for each reception subchannel added on the transmission side. Steps and
A secondary demodulator provided for each of the plurality of reception sub-channels, the modulation signal for each reception sub-channel obtained from the frequency separation circuit corresponding to the wideband system identified by the transmission condition identification circuit Demodulating with an inverse wideband system,
In the primary demodulator provided for each of the plurality of reception sub-channels, a modulation signal for each reception channel demodulated by the secondary demodulator is converted into a multi-level modulation scheme identified by the transmission condition identification circuit. Demodulating with a corresponding multi-level demodulation scheme;
Combining the data obtained from the plurality of reception sub-channels.
JP2003313531A 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method Expired - Fee Related JP3816470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313531A JP3816470B2 (en) 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002303798 2002-10-18
JP2003313531A JP3816470B2 (en) 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method

Publications (2)

Publication Number Publication Date
JP2004159303A true JP2004159303A (en) 2004-06-03
JP3816470B2 JP3816470B2 (en) 2006-08-30

Family

ID=32827978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313531A Expired - Fee Related JP3816470B2 (en) 2002-10-18 2003-09-05 Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method

Country Status (1)

Country Link
JP (1) JP3816470B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067266A (en) * 2004-08-27 2006-03-09 Sony Corp Wireless communication system, apparatus and method
JP2007036511A (en) * 2005-07-26 2007-02-08 Hitachi Kokusai Electric Inc Transmitter
WO2007029406A1 (en) * 2005-09-07 2007-03-15 Nec Corporation Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system and wireless communication method
JP2008502225A (en) * 2004-06-04 2008-01-24 クゥアルコム・インコーポレイテッド Frame structure for a wireless communication system using multiple radio technologies
JP2008109679A (en) * 2007-11-13 2008-05-08 Matsushita Electric Ind Co Ltd Modulator, and modulating method
JP2008526139A (en) * 2004-12-22 2008-07-17 クゥアルコム・インコーポレイテッド Method for communicating frames with multiple modulation schemes
JP2009267897A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Digital wireless broadcast system
JP2010098745A (en) * 2009-11-19 2010-04-30 Mitsubishi Electric Corp Cdma wireless communication method
JP2010538568A (en) * 2007-09-04 2010-12-09 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート FRAME CONFIGURATION METHOD FOR HIGH SPEED WIRELESS COMMUNICATION AND HIGH SPEED WIRELESS COMMUNICATION DEVICE USING THE SAME
US8010858B2 (en) 2005-07-06 2011-08-30 Panasonic Corporation Transmitter apparatus and multiantenna transmitter apparatus
JPWO2010050105A1 (en) * 2008-10-29 2012-03-29 シャープ株式会社 Mobile station apparatus, base station apparatus, radio communication system, control method, control program
US8175110B2 (en) 2005-04-18 2012-05-08 Mitsubishi Electric Corporation Sending station, receiving station, and radio communication method
JP2012165416A (en) * 2007-01-05 2012-08-30 Qualcomm Inc Fec code and code rate selection based on packet size
JP2012531842A (en) * 2009-07-03 2012-12-10 ノーテル・ネットワークス・リミテッド Design of uplink control signals for wireless systems
JP2015043566A (en) * 2007-01-19 2015-03-05 コーニンクレッカ フィリップス エヌ ヴェ Method and system of single carrier block transmission with parallel encoding and parallel decoding
US9088385B2 (en) 2008-07-07 2015-07-21 Apple Inc. Uplink control signal design for wireless system

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687617B2 (en) 2004-06-04 2014-04-01 Qualcomm Incorporated Wireless communication system with improved broadcast coverage
US8582596B2 (en) 2004-06-04 2013-11-12 Qualcomm Incorporated Coding and modulation for broadcast and multicast services in a wireless communication system
US8577299B2 (en) 2004-06-04 2013-11-05 Qualcomm Incorporated Wireless communication system with configurable cyclic prefix length
JP2008502225A (en) * 2004-06-04 2008-01-24 クゥアルコム・インコーポレイテッド Frame structure for a wireless communication system using multiple radio technologies
US8588203B2 (en) 2004-06-04 2013-11-19 Qualcomm Incorporated Wireless communication system with improved broadcast coverage
US7920884B2 (en) 2004-06-04 2011-04-05 Qualcomm Incorporated Frame structures for a wireless communication system with multiple radio technologies
US8089855B2 (en) 2004-06-04 2012-01-03 Qualcomm Incorporated Transmission of overhead information for broadcast and multicast services in a wireless communication system
JP2006067266A (en) * 2004-08-27 2006-03-09 Sony Corp Wireless communication system, apparatus and method
US8010047B2 (en) 2004-08-27 2011-08-30 Sony Corporation Radio communication system, radio communication device, and radio communication method
US8179876B2 (en) 2004-12-22 2012-05-15 Qualcomm Incorporated Multiple modulation technique for use in a communication system
JP2008526139A (en) * 2004-12-22 2008-07-17 クゥアルコム・インコーポレイテッド Method for communicating frames with multiple modulation schemes
JP2011193484A (en) * 2004-12-22 2011-09-29 Qualcomm Inc Method for performing communication of frame having a plurality of modulation schemes
US8175110B2 (en) 2005-04-18 2012-05-08 Mitsubishi Electric Corporation Sending station, receiving station, and radio communication method
US8219865B2 (en) 2005-07-06 2012-07-10 Panasonic Corporation Transmitter apparatus
US9059743B2 (en) 2005-07-06 2015-06-16 Panasonic Intellectual Property Corporation Of America Transmission apparatus and reception apparatus
US8453042B2 (en) 2005-07-06 2013-05-28 Panasonic Corporation Modulator and modulation method
US8010858B2 (en) 2005-07-06 2011-08-30 Panasonic Corporation Transmitter apparatus and multiantenna transmitter apparatus
US9374195B2 (en) 2005-07-06 2016-06-21 Panasonic Intellectual Property Corporation Of America Transmission signal generating apparatus and method, and reception data generating apparatus and method
JP2007036511A (en) * 2005-07-26 2007-02-08 Hitachi Kokusai Electric Inc Transmitter
JP4537286B2 (en) * 2005-07-26 2010-09-01 株式会社日立国際電気 Transmission equipment
JP4867918B2 (en) * 2005-09-07 2012-02-01 日本電気株式会社 Adaptive radio / modulation apparatus, reception apparatus, radio communication system, and radio communication method
WO2007029406A1 (en) * 2005-09-07 2007-03-15 Nec Corporation Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system and wireless communication method
US7961800B2 (en) 2005-09-07 2011-06-14 Nec Corporation Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system, and wireless communication method
JP2012165416A (en) * 2007-01-05 2012-08-30 Qualcomm Inc Fec code and code rate selection based on packet size
JP2012165417A (en) * 2007-01-05 2012-08-30 Qualcomm Inc Fec code and code rate selection based on packet size
JP2015043566A (en) * 2007-01-19 2015-03-05 コーニンクレッカ フィリップス エヌ ヴェ Method and system of single carrier block transmission with parallel encoding and parallel decoding
US8605802B2 (en) 2007-09-04 2013-12-10 Electronics And Telecommunications Research Institute Frame structure for fast wireless communication system and apparatus for fast wireless communication using the frame
JP2010538568A (en) * 2007-09-04 2010-12-09 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート FRAME CONFIGURATION METHOD FOR HIGH SPEED WIRELESS COMMUNICATION AND HIGH SPEED WIRELESS COMMUNICATION DEVICE USING THE SAME
JP4583432B2 (en) * 2007-11-13 2010-11-17 パナソニック株式会社 Modulator and modulation method
JP2008109679A (en) * 2007-11-13 2008-05-08 Matsushita Electric Ind Co Ltd Modulator, and modulating method
JP2009267897A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Digital wireless broadcast system
US9088385B2 (en) 2008-07-07 2015-07-21 Apple Inc. Uplink control signal design for wireless system
JPWO2010050105A1 (en) * 2008-10-29 2012-03-29 シャープ株式会社 Mobile station apparatus, base station apparatus, radio communication system, control method, control program
JP5545666B2 (en) * 2008-10-29 2014-07-09 シャープ株式会社 Mobile station apparatus, base station apparatus, control method in mobile station apparatus, and control method in base station apparatus
US9479968B2 (en) 2008-10-29 2016-10-25 Sharp Kabushiki Kaisha Wireless communication system, mobile station device, and base station device
JP2012531842A (en) * 2009-07-03 2012-12-10 ノーテル・ネットワークス・リミテッド Design of uplink control signals for wireless systems
JP2010098745A (en) * 2009-11-19 2010-04-30 Mitsubishi Electric Corp Cdma wireless communication method

Also Published As

Publication number Publication date
JP3816470B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US6973140B2 (en) Maximizing data rate by adjusting codes and code rates in CDMA system
EP2141850B1 (en) Variable rate decoding for forward link
JP3801584B2 (en) Wireless communication system with adaptive interleaver
JP3816470B2 (en) Code modulation adaptive variable multiplex transmission method and code modulation adaptive variable multiplex transmission apparatus using the method
JP4665035B2 (en) Control channel transmission / reception method and apparatus
US7286501B2 (en) Apparatus for transmitting/receiving data on packet data control channel in a communication system
US20040081075A1 (en) Code modulation adaptive and variable multiplexing transmission method and code modulation adaptive and variable multiplexing transmission apparatus
US20070263737A1 (en) Transmitting Apparatus, Receiving Apparatus, Communication System and Communication Method
CN103703711A (en) Low bandwidth phy for wlan
JP2001519134A (en) Channel coding and demultiplexing systems and methods for multi-carrier CDMA systems
US7346020B2 (en) Apparatus for transmitting/receiving data on a packet data control channel in a communication system
JP3336836B2 (en) Synchronization determination circuit, demodulator and communication system
US7003045B2 (en) Method and apparatus for error correction
JP2005086479A (en) Transmission device
EP2040406A2 (en) Data communication device and data communication method
JP3819389B2 (en) Carrier variable multiplex transmission equipment
JP2008066778A (en) Wireless communication system and wireless communication terminal
US6888804B1 (en) Apparatus and method for inserting side information in communication system
JP2006211172A (en) Transmission carrier variable multiplexing transmitting system
JP2005252786A (en) Transmitting carrier variable multiplexing transmitting system
KR100856198B1 (en) Control information transmitting/receiving apparatus and method in packet data transmission system
JP2806920B2 (en) Spread spectrum multiplex transmission equipment
JP2004032380A (en) Adaptive variable multiplex transmitter
JPH11177528A (en) Hierarchical delay multiplex spread spectrum communication equipment
WO2008032381A1 (en) Transmitter, receiver, and multicarrier transmitting/receiving system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Ref document number: 3816470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees