JP3815616B2 - Upflow filter - Google Patents

Upflow filter Download PDF

Info

Publication number
JP3815616B2
JP3815616B2 JP2002361864A JP2002361864A JP3815616B2 JP 3815616 B2 JP3815616 B2 JP 3815616B2 JP 2002361864 A JP2002361864 A JP 2002361864A JP 2002361864 A JP2002361864 A JP 2002361864A JP 3815616 B2 JP3815616 B2 JP 3815616B2
Authority
JP
Japan
Prior art keywords
filter medium
filtration
filter
tank
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002361864A
Other languages
Japanese (ja)
Other versions
JP2004188364A (en
Inventor
三平 中浦
邦夫 藤田
康隆 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2002361864A priority Critical patent/JP3815616B2/en
Publication of JP2004188364A publication Critical patent/JP2004188364A/en
Application granted granted Critical
Publication of JP3815616B2 publication Critical patent/JP3815616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、下水処理場で発生する汚水や産業廃水の処理、あるいは湖沼や河川等の浄化を行なうろ過装置に関し、特に、高速ろ過と精密ろ過を可能とする上向流式ろ過装置の改良に関する。
【0002】
【従来の技術】
従来、砂ろ過装置は周知であり、樹脂性ろ材や繊維ろ材等を用いて上向流で固液分離を行なう上向流式ろ過装置もよく知られている。樹脂ろ材や繊維ろ材等を用いたろ過装置は、ろ材の比重が軽く、目詰まりしたろ材層が容易に撹拌でき、洗浄水も少ない利点がある。そして、ろ過槽に上向流で供給した原液を、浮上ろ材のろ材層で固液分離を行なったろ液を集水ノズルから取出し、目詰まりしたろ材層を撹拌機で洗浄撹拌してろ材を再生する装置は、特許文献1において、この発明の出願人が提案している。また、密閉ろ過塔に柔軟性のある多孔質ろ材を収納し、上下の集散水板でろ材を圧縮してろ材層を形成し、洗浄時には下部集散水板を数回昇降させて、ろ材が捕捉していた濁質を剥離する装置も、特許文献2に記載してあるように公知である。
【0003】
【特許文献1】
特開平9−155116号公報(請求項1、段落番号0008、図1)
【0004】
【特許文献2】
特開平10−28811号公報(段落番号0011、0012、図1)
【0005】
【発明が解決しようとする課題】
従来の浮上ろ材を用いたろ過装置は、ろ過槽内に浮上したろ過材でろ材層を形成し、原液を上向流でろ過層中を通過させる構造である。浮上ろ材を用いたろ過装置は、ろ材が軽いため洗浄が容易であり、高速ろ過が可能である。これらの装置は、ろ材層の下面の面積がろ過槽のろ過面積となっている。大規模な浮上ろ材を用いたろ過装置を製作する場合、ろ過槽の直径を大きくして対応する必要があり、設置スペースの関係で問題があった。この発明は、上記のろ過装置を改良したもので、ろ過面積を大きくして、同時に、対設置面積当たりの処理量の増大を図ることを目的とする。また、他の目的は、様々な原液への対応を可能とし、原液の性状の変化に対応して、一定の処理水を得ることができる上向流式ろ過装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明の要旨は、密閉状のろ過槽にろ材を収納し、ろ過槽の底部から供給した原液を、ろ材層で固液分離を行なって、ろ過槽の頂部からろ液を取出すろ過装置において、ろ過槽の周壁の内側にスクリーンを垂設して、スクリーンの下端に仕切壁を連設し、ろ過槽の槽底と仕切壁との間に間隔を設け、ろ材が通過しない程度の大きさの開口を有する通水板を張設し、ろ過槽の周壁と仕切壁の間に原液の流入流路を形成すると共に、スクリーンの内部にろ材を収納してろ材層を形成し、ろ材層に集水ノズルを埋設したもので、ろ材層の周面と下面がろ過面となり、ろ過面積が大きくなり、対設置面積当たりの処理量の増大を図ることができる。そして、ろ材層に埋設した集水ノズルを、ろ過槽の頂部中央部から垂下させ、集水ノズルを円筒状の集水ノズルとしたもので、ろ材層の周面から均等に集水することができる。
【0007】
この集水ノズルは、円錐台形状の集水ノズルとすれば、ろ材が集水ノズルの回りに容易にろ過層を形成し、ろ過層にムラが生じることがないものである。また、集水ノズルの下端に閉止筒体を連設し、積層したろ材層の下方に突出させれば、ろ材層を形成するろ材の圧縮ムラが防止できる。なお、ろ過槽の槽底に撹拌機と排水管を連結したろ材流出防止管を立設してもよく、仕切壁に沿って上昇する撹拌機の旋回流がろ材層を撹拌し、ろ材間に捕捉した微細粒子を分離させることができる。洗浄排水の排出時にも、ろ材は槽底に集積して立設したろ材流出防止管から排出することがない。
【0008】
スクリーンの下端に連設した仕切壁に昇降自在なろ材押え板を配設すれば、ろ過槽が完全二重構造となり、洗浄時のろ材の漏出がない。このろ材押え板の昇降手段が、ろ過槽の槽底に立設したエアーシリンダーの作動杆に連結したもので、ろ材層の圧縮により、様々な原液への対応が可能となり、原液の性状の変化に対応して、一定の処理水を得ることができる。ろ過層圧縮の程度を調節することで、粗ろ過から清澄ろ過まで対応可能となる。また、ろ過槽に立設した駆動軸にエアーシリンダーを外装し、エアーシリンダーの上端部をろ材押え板に止着して、ろ材押え板を昇降自在とすると共に、ろ過槽の槽底を貫通した駆動軸の下端に、正逆転可能な揺動モーターを連動連結してもよく、ろ材押え板の昇降と回転が可能となり、ろ過層の圧縮程度の調整とろ材洗浄が容易となる。
【0009】
昇降自在なろ材押え板を多孔板で構成し、ろ材層の底面もろ過面としたもので、ろ材層の底部と周面がろ過面となり、ろ過継続時間が延長できる。そして、ろ過面積が増大されて必要とする設置面積が縮小できる。ろ材押え板に設けるろ材の撹拌装置は、ろ材押え板の上面に散気管を配設すれば、ろ材層が空気撹拌により循環流動させるので、ろ材の劣化、摩耗が少なくなる。また、ろ過槽の頂壁に配設した集水ノズルを駆動軸に連結し、集水ノズルに撹拌羽根を配設すれば、ろ材層の内側から機械撹拌が行なわれ、ろ材が凝結しても、圧縮解放時のろ層ブリッジを解消できる。そして、ろ材の撹拌は、回転可能なろ材押え板に撹拌棒を立設して、ろ材層を撹拌してもよいものである。このろ材押え板を回転可能とすれば、機械撹拌と空気撹拌を組合せることも可能となる。なお、ろ材押え板の下方の原液室に撹拌機を設置してもよく、ろ材層を強制撹拌させることができ、ろ材洗浄が良好に行われる。
【0010】
ろ材層を形成させるスクリーンは、金属ろ材のウエッジワイヤー、金網あるいは、エキスパンドメタルとしたもので、ろ材層の圧縮に耐えうるものである。機械撹拌させるろ過槽にあっては、スクリーンをウエッジワイヤーで構成し、ウエッジワイヤーのスリットを円輪状に配設すれば、スクリーンの内周面に沿って洗浄水が流動し、スリット内に詰った夾雑物を洗い流すことができる。また、集水ノズルをウエッジワイヤーで構成し、ウエッジワイヤーのスリットを円輪状に配設すれば、撹拌機による撹拌旋回流に沿ってろ材が流動するので、ろ材の損耗が防止できる。なお、集水ノズルをろ過膜としてもよく、2段階ろ過による精密ろ過が可能となる。
【0011】
ろ過槽に収納するろ材は、その比重を1または1以下とすると、原液の上向流でろ材層を形成することができる。また、ろ材押え板を昇降自在としたろ過装置にあっては、ろ材の比重を1以上としても、ろ材押え板を上昇させれば、ろ材層を形成させることができる。比重が1以上のろ材は樹脂性ろ材が好ましいが、ゼオライト、アンスラサイトあるいは砂などの圧縮性のない粒状ろ材としても、ろ材押え板を上昇させればろ材層を形成させることができる。そして、ろ材は弾力性と復元性のある球状あるいは繊維ろ材とすれば、ろ材層の圧縮程度を調節することで、粗ろ過から清澄ろ過まで対応可能となる。ろ材押え板を降下させれば、ろ材層の圧縮が解除され、ろ材の復元力が得られる。好ましくは、ろ材層を形成させるろ材押え板の圧縮圧力を、0.0〜2.0Kg/cm2とすれば、ろ層の圧縮により1〜5μm程度の清澄ろ過が可能となる。
なお、圧縮性のない粒状ろ材でも、ろ材押え板を上昇させてろ材層を形成させれば、清澄ろ過が可能となる。
【0012】
ろ材層のろ層厚みは、ろ材層の全てのろ過面から集水ノズル(12、12a、39)までの厚みを100〜500mmとしたもので、原液の性状によりろ材層の表層で捕捉できなかった微細粒子でも、圧密状のろ材層の内部で捕捉できる。そして、ろ材層の厚みをろ材押え板降下時のろ過室高さの40〜60%としたもので、ろ材の洗浄は強制圧縮を解放して行なうので、洗浄スペースを確保することができ、ろ材間隔が広がり、洗浄性が向上する。
【0013】
【発明の実施の形態】
この発明に係る上向流式ろ過装置は上記のように構成してあり、ろ過槽の槽底から供給した原液は、仕切壁の内部を上昇し、垂設したスクリーンの内側に集積したろ材でろ材層を形成させる。また、ろ材押え板を設けたろ過装置にあっては、昇降装置でろ材押え板を仕切壁に沿って上昇させ、スクリーンの内側にろ材層を形成させる。ろ材層の圧縮により、様々な原液への対応が可能となり、原液の性状の変化に対応して、一定の処理水を得ることができる。原液をろ過槽の底部から流入させると、原液はろ材層の下面と、周壁の流入流路からスクリーンの内部のろ材層の側面に流入する。原液中に含まれる微細粒子がろ過層で捕捉され、固液分離を行なったろ液は、ろ材層に埋設した集水ノズルから抜出される。初期の処理水質は安定しないので、捨て水としてろ過槽外部に排出して原液側に返送する。
【0014】
形成されたろ材層が安定してくると、ろ過工程に入る。スクリーンの内側のろ材層は、その側面と下面に微細粒子を捕捉させるので、ろ過面積が大きくなり、対設置面積当たりの処理量の増大を図ることができる。ろ過面積の増大により、ろ過継続時間が延長でき、必要とする設置面積が縮小できる。固液分離を行なって一定時間経過後、もしくは、別途検知したろ過差圧により、ろ材層の目詰まりを検知したときには、ろ材洗浄工程に移行する。原液の流入を停止して撹拌機を駆動すると、原液が旋回流動されて、ろ材層を撹拌分散させ、ろ材間に捕捉された微細粒子を分離する。また、ろ材押え板でろ材層を圧密状とする装置にあっては、ろ材押え板を昇降装置で降下させ、ろ材層の強制圧縮を解放して洗浄スペースを確保し、洗浄性を向上させる。
【0015】
次に、ろ材押え板に配設した散気管でエアー撹拌し、或は、撹拌機で機械撹拌を行なう。原液の撹拌により、仕切壁に沿って上昇する原液の旋回流が目詰まりしたろ材層を撹拌流動させて、ろ材間に捕捉した微細粒子を分離させる。ろ材層を撹拌流動させた後、あるいは、引続き撹拌を継続したまま、処理水管に分岐させた逆洗水管を解放し、集水ノズルから洗浄水をろ過室に流入させ、ろ材層から微細粒子を分離して槽底からろ過槽外に抜き出す。通常、逆洗水としては原液を用いればよく、原液の微細粒子の濃度が高く、洗浄が行われない場合にろ過処理水を用いることにより行なう。再び原液を通水してろ材層を形成させ、一定時間捨て水を行なった後、通常のろ過運転を再開すれば、再生されたろ材層から清澄なろ液を取出すことができる。
【0016】
【実施例】
この発明を図面に基づき詳述すると、図1は上向流式ろ過槽であって、密閉状のろ過槽1の内部に、頂壁1aから垂下したスクリーン2がろ過槽1の周壁の近傍内側に垂設してあり、スクリーン2の内側をろ過室4としてある。スクリーン2の下端に仕切壁3が連設してあり、仕切壁3の内側から槽底1bまでを原液室5としてある。スクリーン2と仕切壁3の内部にろ材6…が収納してあり、ろ材6は樹脂性の粒状の発泡ろ材や繊維ろ材からなり、比重が1または1以下としてある。原液室5の槽底1aに流入弁7を有する原液の供給管8が連結してあり、ろ材6の浮力により、あるいは、原液室5に圧入した原液の上昇流によりスクリーン2の内側のろ過室4にろ材層9を形成させる。
【0017】
ろ過槽1に用いるろ材6は、空隙率の大きい繊維ろ材が特にろ材として適するものであり、繊維ろ材は、空隙率が確保され長時間の運転が可能となり、単位ろ材が大きいので流失の恐れもない。繊維ろ材として、ろ過槽に比重が0.7〜1.0で3〜50mm□の複合繊維を融着したろ材6を使用している。なお、繊維ろ材は角型のろ材でなくてもよく、繊維ろ材は円筒状、球状、あるいは、筒状であってもよいものである。また、ろ材6は粒状のろ材でも使用が可能であり、比重が0.05で粒径が0.5〜2.0mmφの発泡ポリスチレンで構成した粒状の発泡ろ材を使用すれば、空隙率は少なくなるが、ろ過室4に流入する原液のゆるやかな上昇流でろ材層9が形成される。
【0018】
ろ過槽1の槽底1aと仕切壁3との間に間隔を設け、ろ材6…が通過しない程度の大きさの開口を有する通水板10を張設してあり、ろ過槽1の周壁1cと仕切壁3の間に原液の流入流路11を形成してある。ろ過槽1の底部から流入した原液は、ろ材層9の下面に向って上昇する。同時に、ろ過槽1の流入流路11からスクリーン2の内部のろ材層9の側面に流入させる。なお、図2に示すように、仕切壁3をろ過槽1の槽底まで延設し、原液の供給管8を槽底1bの原液室5と流入流路11に設けてもよいものである。ろ過槽1の頂壁1aの中央部から集水ノズル12が垂下してあり、集水ノズル12をろ過室4のろ材層9中に埋設させてある。
【0019】
図1に示すように、ろ材層9中に埋設する集水ノズル12は円筒状に形成してあり、ろ材層9のろ過面から均等に集水することができる。図2に示すように、集水ノズル12を円錐台形としてもよく、円錐台形の集水ノズル12aはろ材6…が集水ノズル12aの回りに容易にろ過層9を形成し、ろ過層9にムラが生じることがない。また、図2に示すように、集水ノズル12aの下端に閉止筒体13を連設し、積層したろ材層9の下方に突出させれば、ろ材層9を形成するろ材6の圧縮ムラが防止できる。なお、閉止筒体13は、図1の円筒状の集水ノズル12に設けてもよいものである。ろ材層9中に埋設する集水ノズル12、12aの開口も、ろ材6が流出しない程度の大きさとしてある。集水ノズル12、12aはろ過槽1の外部に抜出す処理水管14に連結してあり、処理水管14に処理水弁15が設けてある。
【0020】
ろ材層9のろ層厚みは、ろ材層9の側面のスクリーン2及びろ材層9の下面のろ過面から集水ノズル12までの距離を100〜500mmとしてある。原液の性状によりろ材層9の表層で捕捉できなかった微細粒子でも、圧密状のろ材層の内部で捕捉させることができる。ろ過室4に流入した原液は、原液中に含まれる微細粒子をろ過層9で捕捉して、分離したろ液をろ材層9に埋設した集水ノズル12、12aから処理水管14に抜出す。ろ材層9の側面と下面に微細粒子を捕捉させるので、ろ過面積が大きくなり、対設置面積当たりの処理量の増大を図ることができる。ろ過室4に洗浄水を供給する逆洗水管16が処理水管14に連結してあり、逆洗水管16に逆止弁17が配設してある。
【0021】
図1に示す実施例では、原液室5の槽底1aに撹拌機18が立設してあり、撹拌機18に駆動機19が連動連結してある。微細粒子を捕捉したろ材層9が目詰まりした時に、原液の供給管8に設けた流入弁7を閉止して、撹拌機18を回転させて原液室5の原液を撹拌する。原液は撹拌されて仕切壁3に沿って上昇し、原液の旋回流が発生する。原液の旋回流が目詰まりしたろ材層9を撹拌流動させて、ろ材6、6間に捕捉した微細粒子を分離させる。原液室5の槽底1aにろ材流出防止管20が立設してあり、排水弁22を有する排水管21に連結してある。ろ材層9が目詰まりした時に、撹拌機18の回転を継続したまま、集水ノズル12、12aから逆洗水を原液室5に流入させて、ろ材を洗浄する。原液室5と流入流路11に流入した洗浄排水に含まれる微細粒子を、ろ材流出防止管20から排水管21に排出させる。ろ材6…は槽底に集積されるので、立設したろ材流出防止管20からろ材6…が排出することがない。通常、逆洗水としては原液を用いればよく、原液の微細粒子の濃度が高く、洗浄が行われない場合にろ過処理水を用いることにより行なう。
【0022】
図3は上向流式ろ過槽の他の実施例であって、ろ過槽1の槽底1bと仕切壁3の下端の間に間隙を設けた仕切壁3にろ材押え板23が上下動可能に支架してある。ろ過槽1の槽底1bの中央部にエアーシリンダー24が立設してあり、エアーシリンダー24の作動杆25が支持リブ26でろ材押え板23に連結してある。頂壁1aから垂下したスクリーン2と仕切壁3の内部に、ろ材押え板23の上下動により容積が可変なろ過室27が形成してある。図3に示すように、エアーシリンダー24の作動杆25を伸長して、ろ材押え板23を仕切壁3に沿って上昇させ、ろ過室27に分散するろ材6…を押上げてろ過室27にろ過層29を形成させる。スクリーン2は金属ろ材のウエッジワイヤー、金網あるいは、エキスパンドメタルとしてあり、ろ材層29の圧縮や重量に耐える材質としてある。
【0023】
ろ材押え板23もろ材6…が通過しない程度の開口の多孔板で構成してあり、ろ材層29の圧縮に耐えるウエッジワイヤー、金網あるいは、エキスパンドメタルとしてある。ろ材層29の側面のスクリーン2とろ材層29の底面のろ材押え板23をろ過面としてあり、ろ過面積が大きくなり、対設置面積当たりの処理量の増大を図ることができる。ろ材層29が目詰まりした時には、図4に示すように、ろ材押え板23を降下させてろ材層29の強制圧縮を解放し、仕切壁3の内側のろ過室27に洗浄空間を形成させる。圧縮時のろ材層29の厚みをろ材押え板23を降下させた時のろ過室27の4060%としてある。洗浄はろ材層29の強制圧縮を解放して行なうので、洗浄スペースを確保することができ、ろ材6、6間隔が広がり、洗浄性が向上する。ろ過槽1がスクリーン2の内側のろ過室27と、仕切壁3下方の原液室28に完全二重構造とすることで、洗浄時のろ材の漏出が防止できる。
【0024】
ろ過室27に収納するろ材6は、弾力性と復元性のある球状あるいは繊維ろ材とすれば、エアーシリンダー24の作動杆25を伸長してろ材層29の圧縮の程度が調節可能となり、様々な原液への対応が行なえる。原液の性状の変化に対応して、一定の処理水を得ることができ、粗ろ過から清澄ろ過まで対応可能となる。ろ材押え板23を上昇させてろ材層29を形成させる圧縮圧力を、0.0〜2.0Kg/cm2としたもので、ろ材層29の圧縮により1〜5μm程度の清澄ろ過が可能となる。なお、ろ過室27に収納するろ材6は、比重が1または1以下の樹脂性の粒状ろ材や繊維ろ材、あるいは、比重が1以上の圧縮性のある樹脂性のろ材が好ましいが、圧縮性のないゼオライト、アンスラサイトあるいは砂などの比重の大きい粒状ろ材としても、ろ材押え板23を上昇させれば、図3に示すように、ろ材層29が形成されて清澄ろ過が可能となる。
【0025】
図4及び図5に示す実施例では、ろ材押え板23の上面に散気管30が配設してあり、散気管30に伸縮自在な空気供給管31が連結してある。ろ材押え板23を降下させて圧縮空気を供給すれば、ろ材6…が循環流動してろ材洗浄が可能となる。洗浄時に圧縮空気を利用すれば、ろ材の劣化、摩耗が少なくなる。
図6は撹拌装置の他の実施例であって、原液室28の槽底1bに撹拌機18が配設してあり、駆動機19に連結してある。ろ材押え板23を降下させてろ過室27に洗浄空間を形成し、撹拌機18を回転させると、原液が撹拌され、多孔板のろ材押え板23を通過した旋回流が仕切壁3に沿って上昇する。原液の旋回流が目詰まりしたろ材層29を撹拌流動させて、ろ材6、6間に捕捉した微細粒子を分離させ、ろ材6…が凝結しても、圧縮解放時のろ層ブリッジを強制撹拌により解消できる。
【0026】
図7は散気管を設けた撹拌装置の他の実施例であって、ろ過槽1の槽底1b中央部から頂壁1aを貫通して駆動軸32が立設してあり、駆動軸32にエアーシリンダー33が外装してある。エアーシリンダー33は駆動軸32に摺動自在に、かつ回動不能に外装してあり、エアーシリンダー33の上端部がろ材押え板44に支持リブ35に止着してある。ろ材押え板44の上昇は、図7に示すように、エアーシリンダー33の上室33aに圧縮空気を供給し、下室33bの空気を排気すれば、ろ材押え板44が上昇してろ材6…を圧縮し、ろ材層29を形成する。ろ材押え板44の降下は、図8に示すように、エアーシリンダー33の下室33bに圧縮空気を供給し、上室33aの空気を排気すれば、ろ材押え板44を下降してろ材6…の圧縮を解放する。
【0027】
図7及び図8に示すように、ろ過槽1の槽底1bを貫通した駆動軸32の下端に、正逆転可能な揺動モーター34が連動連結してあり、ろ材押え板44を回動できるようにしてある。図8に示すように、駆動軸32に配設した検知杆37に一対の近接スイッチ等の検知器38が対設してある。揺動モーター34を作動して駆動軸32の回転位置を検知して、ろ材押え板44を所定角度回転させる。散気管30に連結した空気供給管31aを曲回させて、ろ材押え板44に配設した散気管30を回転させながら圧縮空気を噴射して、原液を揺動させてろ材6…を撹拌洗浄させる。
【0028】
図7及び図8に示すように、ろ過槽1の頂部1aに設けた集水ノズル39が駆動軸32に支架してあり、集水ノズル39の外周に撹拌羽根40が止着してある。揺動モーター34を作動してろ材押え板44を所定角度回転させ、散気管30で空気洗浄を行ないながら、同時に撹拌羽根40でろ材層29を撹拌させてもよいもので、機械撹拌とエアー撹拌が同時に行なわれ、ろ材洗浄が良好に行われる。図9は撹拌装置の他の実施例であって、回転可能なろ材押え板44に撹拌棒41を立設してあり、集水ノズル39の撹拌羽根40と組合せて、ろ過室27の上下からろ材層29を撹拌してもよいものである。
【0029】
【発明の効果】
以上のように、この発明に係る上向流式ろ過装置は、ろ過面積が大きくなり、対設置面積当たりの処理量の増大を図ることができる。そして、様々な原液への対応を可能とし、一定の処理水を得ることができる。即ち、従来の浮上ろ材を用いたろ過装置は、原液の性状の変化に対応できなかった。また、大規模なろ過装置を製作する場合、ろ過槽の直径を大きくする必要があり、設置スペースの関係で問題があったものであるが、この発明にあっては、密閉状のろ過槽にスクリーンとその下端に仕切壁を垂設して、スクリーンの内部にろ材層を形成したので、ろ材層の周面と下面がろ過面となり、ろ過面積が大きくなり、対設置面積当たりの処理量の増大を図ることができる。
【0030】
ろ過槽の頂部中央部からろ材層に埋設した集水ノズルを、円筒状としたので、ろ材層の周面から均等に集水することができる。また、集水ノズルは、円錐台形状の集水ノズルとすれば、ろ材が集水ノズルの回りに容易にろ過層を形成し、ろ過層にムラが生じることがないものである。この集水ノズルの下端に閉止筒体を連設し、積層したろ材層の下方に突出させれば、ろ材層を形成するろ材の圧縮ムラが防止できる。そして、ろ過槽の槽底に撹拌機と排水管を連結したろ材流出防止管を立設してもよく、強制的に機械撹拌によりろ材層から微細粒子を分離させることができる。洗浄排水の排出時にも立設したろ材流出防止管から排出することがない。
【0031】
スクリーンに連設した仕切壁に昇降自在なろ材押え板を配設すれば、ろ過槽が完全二重構造となり、洗浄時のろ材の漏出がない。ろ材押え板はろ過槽の槽底に立設したエアーシリンダーで昇降させるので、ろ材層の圧縮圧を調整して、様々な原液への対応が可能となり、粗ろ過から清澄ろ過まで対応可能となる。原液の性状の変化に対応して、一定の処理水を得ることができる。また、正逆転可能な揺動モーターを連動連結した駆動軸にろ材押え板を止着して、エアーシリンダーを昇降自在としたので、ろ過層の圧縮程度の調整とろ材洗浄が容易となる。
【0032】
ろ過槽を完全二重構造とした昇降自在なろ材押え板を多孔板で構成したので、ろ材層の底部と周面がろ過面となり、ろ過面積が大きくなりろ過継続時間が延長でき、必要とする設置面積も縮小できる。ろ材押え板に設けるろ材の撹拌装置は、空気撹拌によりろ材層を循環流動させれば、ろ材の劣化、摩耗が少なくなる。そして、ろ過槽に立設した駆動軸に、撹拌羽根を配設した集水ノズルを連結すれば、ろ材層の内側から機械撹拌が行なわれ、ろ材が凝結しても、圧縮解放時のろ層ブリッジを解消できる。また、ろ材の撹拌は、回転可能なろ材押え板に撹拌棒を立設してもよく、ろ材押え板を回転させればろ材層が撹拌できる。ろ材押え板を回転可能とすれば、機械撹拌と空気撹拌を組合せることも可能となる。なお、ろ材押え板の下方の原液室に撹拌機を設置してもよく、ろ材層を強制撹拌させることができ、ろ材洗浄が良好に行われる。
【0033】
ろ材層を形成させるスクリーンは、金属ろ材のウエッジワイヤー、金網あるいは、エキスパンドメタルとしたので、ろ材層の圧縮に耐えるものである。機械撹拌させるろ過槽にあっては、スクリーンと集水ノズルをウエッジワイヤーで構成し、ウエッジワイヤーのスリットを円輪状に配設すれば、スクリーンの内周面に沿って洗浄水が流動し、スリット内に詰った夾雑物を洗い流すことができる。撹拌旋回流に沿ってろ材が流動するので、ろ材の損耗が防止できる。なお、集水ノズルをろ過膜としてもよく、2段階ろ過による精密ろ過が可能となる。
【0034】
ろ過槽に収納するろ材は比重を1または1以下とすると、原液の上向流でろ材層を形成することができる。ろ材押え板を昇降自在としたろ過装置にあっては、ろ材の比重を1以上としても、ろ材押え板を上昇させれば、ろ材層を形成させることができる。特に、ろ材は弾力性と復元性のある球状あるいは繊維ろ材とすれば、ろ材層の圧縮程度を調節することで、粗ろ過から清澄ろ過まで対応可能となる。ろ材押え板を降下させれば、ろ材層の圧縮が解除され、ろ材の復元力が得られる。好ましくは、ろ材層を形成させるろ材押え板の圧縮圧力を、0.0〜2.0Kg/cm2とすれば、ろ層の圧縮により1〜5μm程度の清澄ろ過が可能となる。ろ材層のろ層厚みは、全てのろ過面から集水ノズルまでの距離を、100〜500mmとしたので、原液の性状によりろ材層の表層で捕捉できなかった微細粒子でも、圧密状のろ材層の内部で捕捉させることができる。そして、ろ材層の厚みをろ材押え板降下時のろ過室高さの40〜60%としたので、ろ材の洗浄は強制圧縮を解放して行なうので、洗浄スペースを確保することができ、ろ材間隔が広がり、洗浄性が向上する。
【図面の簡単な説明】
【図1】 この発明に係る上向流式ろ過機の縦断面図である。
【図2】 同じく、他の実施例の上向流式ろ過機の縦断面図である。
【図3】 同じく、ろ材押え板でろ材層を形成した他の実施例の上向流式ろ過機の縦断面図である。
【図4】 同じく、ろ材押え板を降下させて洗浄スペースを設けた上向流式ろ過機の縦断面図である。
【図5】 図4のA−A切断面のろ材押え板の縦断面図である。
【図6】 同じく、撹拌装置を設けた他の実施例の上向流式ろ過機の縦断面図である。
【図7】 同じく、ろ材押え板を回転可能とした上向流式ろ過機の縦断面図である。
【図8】 同じく、回転可能なろ材押え板を降下させた上向流式ろ過機の縦断面図である。
【図9】 同じく、ろ材押え板に撹拌装置を設けた他の実施例の上向流式ろ過機の縦断面図である。
【符号の説明】
1 ろ過槽
1a 頂部
1b 槽底
1c 周壁
2 スクリーン
3 仕切壁
6 ろ材
9、29 ろ材層
12、12a、39 集水ノズル
13 閉止筒体
18 撹拌機
20 ろ材流出防止管
21 排水管
23、44 ろ材押え板
24、33 エアーシリンダー
25 作動杆
27 ろ過室
28 原液室
30 散気管
32 駆動軸
34 揺動モーター
40 撹拌羽根
41 撹拌棒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filtration device for treating sewage and industrial wastewater generated at a sewage treatment plant or purifying lakes, rivers, and the like, and in particular, to an improvement of an upward flow filtration device that enables high-speed filtration and precision filtration. .
[0002]
[Prior art]
Conventionally, sand filtration apparatuses are well known, and an upflow type filtration apparatus that performs solid-liquid separation by an upflow using a resinous filter medium, a fiber filter medium, or the like is also well known. A filtration apparatus using a resin filter medium, a fiber filter medium, or the like has an advantage that the specific gravity of the filter medium is light, the clogged filter medium layer can be easily stirred, and there is little washing water. The stock solution supplied in the upward flow to the filtration tank is taken out of the filtrate that has undergone solid-liquid separation with the filter medium layer of the floating filter medium, and the filtered filter medium layer is washed and stirred with a stirrer to regenerate the filter medium. A device to do this is proposed by the applicant of the present invention in Patent Document 1. In addition, a flexible porous filter medium is housed in a sealed filtration tower, the filter medium is formed by compressing the filter medium with the upper and lower water collecting plates, and the lower water collecting plate is raised and lowered several times during cleaning to capture the filter medium. An apparatus for peeling off suspended turbidity is also known as described in Patent Document 2.
[0003]
[Patent Document 1]
JP-A-9-155116 (Claim 1, paragraph number 0008, FIG. 1)
[0004]
[Patent Document 2]
Japanese Patent Laid-Open No. 10-28811 (paragraph numbers 0011 and 0012, FIG. 1)
[0005]
[Problems to be solved by the invention]
A conventional filtration device using a floating filter medium has a structure in which a filter medium layer is formed with a filter medium floating in a filtration tank, and the stock solution is passed through the filter layer in an upward flow. The filtration apparatus using the floating filter medium is easy to wash because the filter medium is light, and high-speed filtration is possible. In these apparatuses, the area of the lower surface of the filter medium layer is the filtration area of the filtration tank. When manufacturing a filtration device using a large-scale floating filter medium, it is necessary to increase the diameter of the filtration tank, which is problematic due to the installation space. An object of the present invention is to improve the above-described filtration device and increase the filtration area, and at the same time, increase the throughput per installation area. Another object of the present invention is to provide an upward flow filtration device that can cope with various stock solutions and can obtain a constant treated water in response to changes in the properties of the stock solution. .
[0006]
[Means for Solving the Problems]
The gist of the present invention is that the filtration medium is stored in a sealed filtration tank, the stock solution supplied from the bottom of the filtration tank is subjected to solid-liquid separation in the filter medium layer, and the filtrate is taken out from the top of the filtration tank. A screen is suspended inside the peripheral wall of the filtration tank, and a partition wall is connected to the lower end of the screen. And a space between the bottom of the filtration tank and the partition wall, a water flow plate having an opening large enough not to pass the filter medium, and the undiluted solution between the peripheral wall of the filtration tank and the partition wall. Form inflow channel In addition, the filter medium is stored inside the screen to form a filter medium layer, and a water collecting nozzle is embedded in the filter medium layer. The amount of processing per area can be increased. Then, the water collection nozzle embedded in the filter medium layer is suspended from the central part of the top of the filtration tank, and the water collection nozzle is a cylindrical water collection nozzle, which can collect water evenly from the peripheral surface of the filter medium layer. it can.
[0007]
If this water collection nozzle is a frustoconical water collection nozzle, the filter medium easily forms a filtration layer around the water collection nozzle, and the filtration layer does not become uneven. Further, if a closed cylinder is continuously provided at the lower end of the water collecting nozzle and protrudes below the laminated filter media layer, uneven compression of the filter media forming the filter media layer can be prevented. A filter medium outflow prevention pipe connecting a stirrer and a drain pipe may be installed at the bottom of the filtration tank, and the swirling flow of the stirrer rising along the partition wall stirs the filter medium layer, The captured fine particles can be separated. Even when the washing wastewater is discharged, the filter medium is not discharged from the filter medium outflow prevention pipe that is accumulated at the bottom of the tank.
[0008]
If a filter media presser plate that can be raised and lowered is arranged on the partition wall that is connected to the lower end of the screen, the filtration tank has a completely double structure, and the filter media does not leak during cleaning. This lifting / lowering means of the filter media presser plate is connected to the operating cylinder of the air cylinder standing on the bottom of the filtration tank. By compressing the filter media layer, it is possible to cope with various stock solutions and changes in the properties of the stock solution. Corresponding to the above, certain treated water can be obtained. By adjusting the degree of filtration layer compression, it is possible to handle from coarse filtration to clarification filtration. In addition, the air cylinder is externally mounted on the drive shaft that is erected in the filtration tank, and the upper end of the air cylinder is fixed to the filter material presser plate so that the filter material presser plate can be moved up and down and penetrated through the bottom of the filter tank. A rocking motor capable of forward / reverse rotation may be interlocked and connected to the lower end of the drive shaft, so that the filter medium presser plate can be moved up and down, and adjustment of the degree of compression of the filter layer and cleaning of the filter medium are facilitated.
[0009]
The filter media presser plate that can be moved up and down is composed of a perforated plate, and the bottom surface of the filter media layer is also a filtration surface. The bottom and peripheral surface of the filter media layer become the filtration surface, and the filtration duration can be extended. And the filtration area is increased and the required installation area can be reduced. In the filter medium agitation device provided on the filter medium presser plate, if a diffuser tube is disposed on the upper surface of the filter medium presser plate, the filter medium layer circulates and flows by air agitation, so that the deterioration and wear of the filter medium are reduced. In addition, if a water collection nozzle arranged on the top wall of the filtration tank is connected to the drive shaft and a stirring blade is arranged on the water collection nozzle, mechanical stirring is performed from the inside of the filter medium layer, and the filter medium is condensed. The filter bridge at the time of compression release can be eliminated. And stirring of a filter medium may stir a filter medium layer by standing a stirring rod on a rotatable filter medium presser plate. If this filter medium pressing plate can be rotated, it is possible to combine mechanical stirring and air stirring. In addition, you may install a stirrer in the undiluted | stock solution chamber below a filter-medium holding plate, a filter-medium layer can be forcedly stirred, and a filter-medium washing | cleaning is performed favorably.
[0010]
The screen on which the filter medium layer is formed is a metal filter medium wedge wire, wire mesh, or expanded metal, and can withstand compression of the filter medium layer. In the filtration tank to be mechanically stirred, if the screen is composed of a wedge wire and the slit of the wedge wire is arranged in an annular shape, the washing water flows along the inner peripheral surface of the screen and clogs the slit. It is possible to wash away impurities. Further, if the water collecting nozzle is constituted by a wedge wire and the slits of the wedge wire are arranged in a ring shape, the filter medium flows along the stirring swirl flow by the stirrer, so that the filter medium can be prevented from being worn. The water collection nozzle may be a filtration membrane, and microfiltration by two-stage filtration is possible.
[0011]
The filter medium stored in the filtration tank has a specific gravity of 1 or 1 or less. Then The filter medium layer can be formed by upward flow of the stock solution. Moreover, in the filtering device in which the filter medium presser plate can be moved up and down, the filter medium layer can be formed by raising the filter medium presser plate even if the specific gravity of the filter medium is 1 or more. A filter medium having a specific gravity of 1 or more is preferably a resinous filter medium, but a filter medium layer can be formed by raising the filter medium presser plate even if it is a granular filter medium having no compressibility such as zeolite, anthracite or sand. If the filter medium is a spherical or fiber filter medium having elasticity and resilience, the filter medium can be adjusted from coarse filtration to clarification filtration by adjusting the degree of compression of the filter medium layer. If the filter medium presser plate is lowered, the compression of the filter medium layer is released, and the restoring force of the filter medium is obtained. Preferably, the compression pressure of the filter medium presser plate for forming the filter medium layer is 0.0 to 2.0 Kg / cm. 2 Then, the clarification filtration of about 1-5 micrometers is attained by compression of a filter layer.
In addition, even a granular filter medium having no compressibility can be clarified and filtered by raising the filter medium presser plate to form a filter medium layer.
[0012]
The filter layer thickness of the filter medium layer is such that the thickness from all the filtration surfaces of the filter medium layer to the water collection nozzle (12, 12a, 39) is 100 to 500 mm, and cannot be captured by the surface layer of the filter medium layer due to the properties of the stock solution. Even fine particles can be captured inside the compacted filter medium layer. And The thickness of the filter media layer Filter material presser plate At descent Filtration chamber 40 in height ~ 60% What Since the filter medium is washed by releasing the forced compression, a cleaning space can be secured, the interval between the filter media is widened, and the cleaning performance is improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The upward flow filtration apparatus according to the present invention is configured as described above, and the stock solution supplied from the bottom of the filtration tank is a filter medium that rises inside the partition wall and accumulates inside the suspended screen. A filter medium layer is formed. Moreover, in the filtration apparatus provided with the filter medium presser plate, the filter medium presser plate is raised along the partition wall by the lifting device, and the filter medium layer is formed inside the screen. By compressing the filter medium layer, it is possible to deal with various stock solutions, and it is possible to obtain certain treated water in response to changes in the properties of the stock solution. When the undiluted solution is introduced from the bottom of the filtration tank, the undiluted solution flows from the lower surface of the filter medium layer and the side of the filter medium layer inside the screen from the inflow channel of the peripheral wall. Fine particles contained in the stock solution are captured by the filtration layer, and the filtrate that has undergone solid-liquid separation is extracted from a water collection nozzle embedded in the filter medium layer. Since the quality of the treated water at the initial stage is not stable, it is discharged outside the filtration tank as waste water and returned to the stock solution side.
[0014]
When the formed filter medium layer becomes stable, the filtration process is started. The filter medium layer on the inside of the screen captures fine particles on the side surface and the lower surface, so that the filtration area is increased and the throughput per installation area can be increased. By increasing the filtration area, the filtration duration can be extended and the required installation area can be reduced. After solid-liquid separation has been performed for a certain period of time, or when clogging of the filter medium layer is detected by a separately detected filtration differential pressure, the process proceeds to a filter medium cleaning process. When the inflow of the stock solution is stopped and the stirrer is driven, the stock solution is swirled and flowed, the filter medium layer is stirred and dispersed, and the fine particles captured between the filter media are separated. Further, in an apparatus for consolidating a filter medium layer with a filter medium presser plate, the filter medium presser plate is lowered by an elevating device, and the forced compression of the filter medium layer is released to secure a cleaning space and improve the cleaning performance.
[0015]
Next, air agitation is performed with an air diffuser provided on the filter medium presser plate, or mechanical agitation is performed with an agitator. By stirring the stock solution, the filter medium layer clogged with the swirling flow of the stock solution rising along the partition wall is stirred and fluidized to separate the fine particles trapped between the filter media. After the filter medium layer is stirred and flowed, or while continuing stirring, the backwash water pipe branched to the treated water pipe is released, and the wash water is allowed to flow into the filtration chamber from the water collection nozzle, and fine particles are removed from the filter medium layer. Separate and remove from the bottom of the tank. Usually, as the backwash water, a stock solution may be used. When the concentration of fine particles in the stock solution is high and washing is not performed, filtration is performed. The stock solution is passed again to form a filter medium layer, and after discarding water for a certain period of time, if the normal filtration operation is resumed, a clear filtrate can be taken out from the regenerated filter medium layer.
[0016]
【Example】
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail with reference to the drawings. FIG. 1 shows an upward flow filtration tank, in which a screen 2 suspended from a top wall 1a is located in the vicinity of the peripheral wall of the filtration tank 1 inside a sealed filtration tank 1. The inside of the screen 2 is used as a filtration chamber 4. A partition wall 3 is continuously provided at the lower end of the screen 2, and the stock solution chamber 5 extends from the inside of the partition wall 3 to the tank bottom 1 b. Filter media 6 are accommodated inside the screen 2 and the partition wall 3, and the filter media 6 is made of resinous granular foamed filter media or fiber filter media, and has a specific gravity of 1 or 1 or less. A stock solution supply pipe 8 having an inflow valve 7 is connected to the tank bottom 1 a of the stock solution chamber 5, and a filtration chamber inside the screen 2 by the buoyancy of the filter medium 6 or by the upward flow of the stock solution press-fitted into the stock solution chamber 5. A filter medium layer 9 is formed on 4.
[0017]
The filter medium 6 used in the filtration tank 1 is a fiber filter medium having a large porosity, which is particularly suitable as a filter medium. The fiber filter medium has a high porosity and can be operated for a long period of time. Absent. As the fiber filter medium, a filter medium 6 in which a composite fiber having a specific gravity of 0.7 to 1.0 and 3 to 50 mm □ is fused to a filtration tank is used. The fiber filter medium may not be a square filter medium, and the fiber filter medium may be cylindrical, spherical, or cylindrical. The filter medium 6 can also be a granular filter medium. If a granular foamed filter medium made of expanded polystyrene having a specific gravity of 0.05 and a particle diameter of 0.5 to 2.0 mmφ is used, the porosity is small. However, the filter medium layer 9 is formed by a gentle upward flow of the stock solution flowing into the filtration chamber 4.
[0018]
An interval between the bottom 1a of the filtration tank 1 and the partition wall 3 is provided, and a water passage plate 10 having an opening large enough to prevent the filter medium 6 from passing therethrough is stretched. The peripheral wall 1c of the filtration tank 1 An undiluted inflow channel 11 is formed between the partition wall 3 and the partition wall 3. The stock solution flowing from the bottom of the filtration tank 1 rises toward the lower surface of the filter medium layer 9. At the same time, it is caused to flow from the inflow channel 11 of the filtration tank 1 to the side surface of the filter medium layer 9 inside the screen 2. In addition, as shown in FIG. 2, the partition wall 3 is extended to the tank bottom of the filtration tank 1, and the stock solution supply pipe 8 is connected to the stock solution chamber 5 on the tank bottom 1b. Inflow channel 11 May be provided. A water collection nozzle 12 is suspended from the central portion of the top wall 1 a of the filtration tank 1, and the water collection nozzle 12 is embedded in the filter medium layer 9 of the filtration chamber 4.
[0019]
As shown in FIG. 1, the water collection nozzle 12 embedded in the filter medium layer 9 is formed in a cylindrical shape, and can collect water evenly from the filtration surface of the filter medium layer 9. As shown in FIG. 2, the water collection nozzle 12 may have a frustoconical shape, and the frustum-shaped water collection nozzle 12 a easily forms the filter layer 9 around the water collection nozzle 12 a. Unevenness does not occur. Moreover, as shown in FIG. 2, if the closed cylinder 13 is connected to the lower end of the water collection nozzle 12a and protrudes below the laminated filter media layer 9, the compression unevenness of the filter media 6 forming the filter media layer 9 is reduced. Can be prevented. In addition, the closed cylinder 13 may be provided in the cylindrical water collection nozzle 12 of FIG. The openings of the water collecting nozzles 12 and 12a embedded in the filter medium layer 9 are also sized so that the filter medium 6 does not flow out. The water collection nozzles 12, 12 a are connected to a treated water pipe 14 drawn out of the filtration tank 1, and a treated water valve 15 is provided in the treated water pipe 14.
[0020]
The filter layer thickness of the filter medium layer 9 is such that the distance from the screen 2 on the side surface of the filter medium layer 9 and the filter surface on the lower surface of the filter medium layer 9 to the water collecting nozzle 12 is 100 to 500 mm. Even fine particles that could not be captured in the surface layer of the filter medium layer 9 due to the properties of the stock solution can be captured inside the compacted filter medium layer. The stock solution that has flowed into the filtration chamber 4 captures fine particles contained in the stock solution by the filtration layer 9, and extracts the separated filtrate from the water collection nozzles 12 and 12 a embedded in the filter material layer 9 into the treated water pipe 14. Since fine particles are captured on the side surface and the lower surface of the filter medium layer 9, the filtration area is increased, and the processing amount per installation area can be increased. A backwash water pipe 16 for supplying wash water to the filtration chamber 4 is connected to the treated water pipe 14, and a check valve 17 is disposed in the backwash water pipe 16.
[0021]
In the embodiment shown in FIG. 1, a stirrer 18 is erected on the tank bottom 1 a of the stock solution chamber 5, and a drive unit 19 is linked to the stirrer 18. When the filter medium layer 9 capturing the fine particles is clogged, the inflow valve 7 provided in the stock solution supply pipe 8 is closed, and the stirrer 18 is rotated to stir the stock solution in the stock solution chamber 5. The stock solution is agitated and rises along the partition wall 3 to generate a swirling flow of the stock solution. The filter medium layer 9 clogged with the swirling flow of the stock solution is stirred and fluidized to separate the fine particles trapped between the filter media 6 and 6. A filter medium outflow prevention pipe 20 is erected on the tank bottom 1 a of the stock solution chamber 5 and is connected to a drain pipe 21 having a drain valve 22. When the filter medium layer 9 is clogged, backwash water is supplied from the water collection nozzles 12 and 12a while the rotation of the stirrer 18 is continued. Stock solution chamber 5 And let the filter media wash. Fine particles contained in the washing wastewater flowing into the stock solution chamber 5 and the inflow passage 11 are discharged from the filter medium outflow prevention pipe 20 to the drain pipe 21. Since the filter media 6 are accumulated on the bottom of the tank, the filter media 6 are not discharged from the standing filter media outflow prevention pipe 20. Usually, as the backwash water, a stock solution may be used. When the concentration of fine particles in the stock solution is high and washing is not performed, filtration is performed.
[0022]
FIG. 3 shows another embodiment of the upward flow filtration tank, in which the filter material presser plate 23 can move up and down on the partition wall 3 having a gap between the tank bottom 1b of the filter tank 1 and the lower end of the partition wall 3. It is supported by An air cylinder 24 is erected at the center of the tank bottom 1 b of the filtration tank 1, and an operating rod 25 of the air cylinder 24 is connected to the filter material presser plate 23 by a support rib 26. A filtration chamber 27 having a variable volume is formed in the screen 2 and the partition wall 3 hanging from the top wall 1 a by the vertical movement of the filter material presser plate 23. As shown in FIG. 3, the operating rod 25 of the air cylinder 24 is extended, the filter medium presser plate 23 is raised along the partition wall 3, and the filter medium 6 dispersed in the filter chamber 27 is pushed up to the filter chamber 27. A filtration layer 29 is formed. The screen 2 is a metal filter medium wedge wire, wire mesh, or expanded metal, and is a material that can withstand the compression and weight of the filter medium layer 29.
[0023]
The filter medium presser plate 23 is also composed of a perforated plate having an opening that does not allow the filter medium 6 to pass through, and is a wedge wire, a wire mesh, or an expanded metal that can withstand the compression of the filter medium layer 29. The screen 2 on the side surface of the filter medium layer 29 and the filter medium presser plate 23 on the bottom surface of the filter medium layer 29 are used as the filtration surface, so that the filtration area is increased and the throughput per installation area can be increased. When the filter medium layer 29 is clogged, as shown in FIG. 4, the filter medium presser plate 23 is lowered to release the forced compression of the filter medium layer 29, and a cleaning space is formed in the filter chamber 27 inside the partition wall 3. The thickness of the filter media layer 29 during compression Filtration chamber 27 when the filter media presser plate 23 is lowered Of 40 ~ As 60% is there. Since the cleaning is performed by releasing the forced compression of the filter medium layer 29, a cleaning space can be secured, the distance between the filter media 6 and 6 is increased, and the cleaning performance is improved. Since the filtration tank 1 has a completely double structure in the filtration chamber 27 inside the screen 2 and the undiluted solution chamber 28 below the partition wall 3, leakage of the filter medium at the time of washing can be prevented.
[0024]
If the filter medium 6 stored in the filtration chamber 27 is a spherical or fiber filter medium having elasticity and resilience, the operating rod 25 of the air cylinder 24 can be extended to adjust the degree of compression of the filter medium layer 29. Can handle undiluted solutions. Corresponding to the change in the properties of the stock solution, a certain amount of treated water can be obtained, and it is possible to handle from coarse filtration to clarification filtration. The compression pressure for raising the filter medium presser plate 23 to form the filter medium layer 29 is 0.0 to 2.0 Kg / cm. 2 Thus, clarification filtration of about 1 to 5 μm becomes possible by compression of the filter medium layer 29. The filter medium 6 accommodated in the filtration chamber 27 is preferably a resinous granular filter medium or fiber filter medium having a specific gravity of 1 or 1 or a compressible resin filter medium having a specific gravity of 1 or more. Even if it is a granular filter medium having a large specific gravity, such as zeolite, anthracite, or sand, if the filter medium presser plate 23 is raised, a filter medium layer 29 is formed as shown in FIG.
[0025]
In the embodiment shown in FIGS. 4 and 5, a diffuser pipe 30 is disposed on the upper surface of the filter medium presser plate 23, and an air supply pipe 31 that can be expanded and contracted is connected to the diffuser pipe 30. When the filter medium presser plate 23 is lowered and compressed air is supplied, the filter media 6 circulate and flow and the filter medium can be washed. If compressed air is used at the time of washing, the deterioration and wear of the filter medium are reduced.
FIG. 6 shows another embodiment of the stirring device, in which a stirrer 18 is disposed on the tank bottom 1 b of the stock solution chamber 28 and is connected to a drive unit 19. When the filter media presser plate 23 is lowered to form a cleaning space in the filtration chamber 27 and the agitator 18 is rotated, the stock solution is stirred, and the swirling flow that has passed through the filter media presser plate 23 of the porous plate is along the partition wall 3. To rise. The filter medium layer clogged with the swirling flow of the undiluted solution is stirred and fluidized to separate the fine particles trapped between the filter media 6 and 6, and the filter bed bridge at the time of compression release is forcibly stirred even if the filter media 6 ... congeal. Can be eliminated.
[0026]
FIG. 7 shows another embodiment of the stirring device provided with an air diffusion tube, and a drive shaft 32 is erected from the central portion of the bottom 1b of the filtration tank 1 through the top wall 1a. An air cylinder 33 is externally provided. The air cylinder 33 is slidably mounted on the drive shaft 32 and cannot be rotated, and the upper end of the air cylinder 33 is attached to the filter material presser plate 44. Support rib 35 It is fixed to. As shown in FIG. 7, when the filter medium presser plate 44 rises, if compressed air is supplied to the upper chamber 33a of the air cylinder 33 and the air in the lower chamber 33b is exhausted, the filter presser plate 44 rises and the filter medium 6 ... And the filter medium layer 29 is formed. As shown in FIG. 8, when the filter medium presser plate 44 is lowered, if compressed air is supplied to the lower chamber 33b of the air cylinder 33 and the air in the upper chamber 33a is exhausted, the filter medium presser plate 44 is lowered and the filter medium 6 ... Release the compression.
[0027]
As shown in FIGS. 7 and 8, a swing motor 34 that can be rotated forward and backward is linked to the lower end of the drive shaft 32 that passes through the tank bottom 1 b of the filtration tank 1, and the filter medium presser plate 44 can be rotated. It is like that. As shown in FIG. 8, a detector 38 such as a pair of proximity switches is provided on a detection rod 37 disposed on the drive shaft 32. The swinging motor 34 is operated to detect the rotational position of the drive shaft 32, and the filter medium pressing plate 44 is rotated by a predetermined angle. The air supply pipe 31a connected to the air diffusion pipe 30 is bent and compressed air is jetted while rotating the air diffusion pipe 30 disposed on the filter medium pressing plate 44, and the stock solution is shaken to stir and wash the filter medium 6 ... Let
[0028]
As shown in FIGS. 7 and 8, a water collection nozzle 39 provided on the top 1 a of the filtration tank 1 is supported on the drive shaft 32, and a stirring blade 40 is fixed to the outer periphery of the water collection nozzle 39. The filter medium pressing plate 44 is rotated by a predetermined angle by operating the swing motor 34, and the filter medium layer 29 may be stirred with the stirring blade 40 at the same time while performing air cleaning with the air diffuser 30. Are performed at the same time, and the filter medium is washed well. FIG. 9 shows another embodiment of the stirring device, in which a stirring rod 41 is erected on a rotatable filter material presser plate 44 and is combined with the stirring blade 40 of the water collection nozzle 39 from above and below the filtration chamber 27. The filter medium layer 29 may be stirred.
[0029]
【The invention's effect】
As described above, the upward flow filtration apparatus according to the present invention has a large filtration area, and can increase the processing amount per installation area. And it can respond to various stock solutions, and can obtain a fixed treated water. That is, the conventional filtration device using the floating filter medium cannot cope with the change in the properties of the stock solution. In addition, when manufacturing a large-scale filtration device, it is necessary to increase the diameter of the filtration tank, which is problematic due to the installation space. The partition wall is suspended from the screen and its lower end, and the filter media layer is formed inside the screen, so that the filtration surface becomes larger at the periphery and lower surface of the filter media layer, and the processing volume per installation area increases. Increase can be achieved.
[0030]
Since the water collection nozzle embedded in the filter medium layer from the central part of the top of the filtration tank is cylindrical, water can be collected evenly from the peripheral surface of the filter medium layer. Further, if the water collection nozzle is a frustoconical water collection nozzle, the filter medium easily forms a filtration layer around the water collection nozzle, and the filtration layer is not uneven. If a closed cylinder is connected to the lower end of the water collection nozzle and protrudes below the stacked filter media layers, uneven compression of the filter media forming the filter media layers can be prevented. And the filter medium outflow prevention pipe which connected the stirrer and the drain pipe to the tank bottom of the filtration tank may be erected, and fine particles can be forcibly separated from the filter medium layer by mechanical stirring. Even when washing wastewater is discharged, it will not be discharged from the standing filter media outflow prevention pipe.
[0031]
If a filter media presser plate that can be raised and lowered is arranged on the partition wall that is connected to the screen, the filtration tank has a completely double structure, and the filter media does not leak during cleaning. The filter media retainer plate is lifted and lowered by an air cylinder installed at the bottom of the filtration tank, so the compression pressure of the filter medium layer can be adjusted to support various stock solutions, and from coarse filtration to clarification filtration. . A certain amount of treated water can be obtained in response to changes in the properties of the stock solution. In addition, since the air filter can be moved up and down by attaching the filter medium presser plate to the drive shaft interlockingly connected with a swing motor capable of rotating forward and backward, adjustment of the degree of compression of the filter layer and cleaning of the filter medium are facilitated.
[0032]
Since the filter tank presser plate that can be moved up and down with a complete double-layer filtration tank is composed of a perforated plate, the bottom and peripheral surface of the filter medium layer become the filtration surface, the filtration area increases, the filtration duration can be extended, and is required The installation area can also be reduced. If the filter medium stirring device provided on the filter medium presser plate circulates and flows through the filter medium layer by air stirring, the deterioration and wear of the filter medium are reduced. Then, if a water collecting nozzle provided with stirring blades is connected to the drive shaft installed in the filtration tank, mechanical stirring is performed from the inside of the filter medium layer, and even when the filter medium condenses, the filter layer at the time of compression release The bridge can be eliminated. In addition, the stirring of the filter medium may be performed by installing a stirring rod on a rotatable filter medium presser plate, and the filter medium layer can be stirred by rotating the filter medium presser plate. If the filter medium presser plate can be rotated, it is possible to combine mechanical stirring and air stirring. In addition, you may install a stirrer in the undiluted | stock solution chamber below a filter-material presser plate, a filter-medium layer can be forcedly stirred, and filter-medium washing | cleaning is performed favorably.
[0033]
The screen on which the filter medium layer is formed is a metal filter medium wedge wire, wire mesh, or expanded metal, and therefore can withstand compression of the filter medium layer. In the filtration tank to be mechanically stirred, if the screen and the water collecting nozzle are composed of wedge wires, and the slits of the wedge wires are arranged in a ring shape, the washing water flows along the inner peripheral surface of the screen. It is possible to wash away the foreign substances stuck inside. Since the filter medium flows along the stirring swirl flow, wear of the filter medium can be prevented. The water collection nozzle may be a filtration membrane, and microfiltration by two-stage filtration is possible.
[0034]
The filter medium stored in the filtration tank has a specific gravity of 1 or 1 or less. Then The filter medium layer can be formed by upward flow of the stock solution. In the filtering device in which the filter medium presser plate can be raised and lowered, the filter medium layer can be formed by raising the filter medium presser plate even if the specific gravity of the filter medium is 1 or more. In particular, if the filter medium is a spherical or fiber filter medium having elasticity and resilience, the filter medium can be adjusted from coarse filtration to clarification filtration by adjusting the degree of compression of the filter medium layer. If the filter medium presser plate is lowered, the compression of the filter medium layer is released, and the restoring force of the filter medium is obtained. Preferably, the compression pressure of the filter medium presser plate for forming the filter medium layer is 0.0 to 2.0 Kg / cm. 2 Then, the clarification filtration of about 1-5 micrometers is attained by compression of a filter layer. The filter layer thickness of the filter medium layer is that the distance from all the filtration surfaces to the water collection nozzle is 100 to 500 mm. Therefore, even with fine particles that could not be captured in the surface layer of the filter medium layer due to the properties of the stock solution, the compacted filter medium layer Can be captured inside. And The thickness of the filter media layer Filter material presser plate At descent Filtration chamber 40 in height ~ 60% Was Therefore, since the filter medium is washed by releasing the forced compression, a cleaning space can be secured, the interval between the filter media is widened, and the cleaning performance is improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an upflow filter according to the present invention.
FIG. 2 is also a longitudinal sectional view of an upflow filter of another embodiment.
FIG. 3 is also a longitudinal sectional view of an upflow filter of another embodiment in which a filter medium layer is formed by a filter medium presser plate.
FIG. 4 is a longitudinal sectional view of an upward flow type filter similarly provided with a cleaning space by lowering the filter medium presser plate.
5 is a longitudinal sectional view of a filter medium presser plate taken along the line AA in FIG. 4. FIG.
FIG. 6 is also a longitudinal sectional view of an upflow filter of another embodiment provided with a stirring device.
FIG. 7 is also a longitudinal sectional view of an upward flow filter in which a filter material presser plate is rotatable.
FIG. 8 is also a longitudinal sectional view of an upward flow filter in which a rotatable filter material presser plate is lowered.
FIG. 9 is a longitudinal sectional view of an upflow filter of another embodiment in which a stirring device is provided on the filter medium presser plate.
[Explanation of symbols]
1 Filtration tank
1a top
1b Tank bottom
1c wall
2 screens
3 partition walls
6 Filter media
9, 29 Filter media layer
12, 12a, 39 Water collection nozzle
13 Closed cylinder
18 Stirrer
20 Filter media outflow prevention pipe
21 Drain pipe
23, 44 Filter material presser plate
24, 33 Air cylinder
25 Actuator
27 Filtration chamber
28 Stock solution chamber
30 Air diffuser
32 Drive shaft
34 Swing motor
40 Stirring blade
41 Stir bar

Claims (19)

密閉状のろ過槽(1)にろ材(6…)を収納し、ろ過槽(1)の槽底(1b)から供給した原液を、ろ材層(9、29)で固液分離を行なって、ろ過槽(1)の頂部(1a)からろ液を取出すろ過装置において、ろ過槽(1)の周壁(1c)の内側にスクリーン(2)を垂設し、スクリーン(2)の下端に仕切壁(3)を連設し、ろ過槽(1)の槽底(1a)と仕切壁(3)との間に間隔を設け、ろ材(6…)が通過しない程度の大きさの開口を有する通水板(10)を張設し、ろ過槽(1)の周壁(1c)と仕切壁(3)の間に原液の流入流路(11)を形成すると共に、スクリーン(2)の内部にろ材(6…)を収納してろ材層(9、29)を形成し、ろ材層(9、29)に集水ノズル(12、12a、39)を埋設したことを特徴とする上向流式ろ過装置。The filter medium (6...) Is stored in the sealed filter tank (1), and the stock solution supplied from the tank bottom (1b) of the filter tank (1) is subjected to solid-liquid separation with the filter medium layers (9, 29). In the filtration device for taking out the filtrate from the top (1a) of the filtration tank (1), a screen (2) is suspended inside the peripheral wall (1c) of the filtration tank (1), and a partition wall is provided at the lower end of the screen (2). (3) is continuously provided, a space is provided between the tank bottom (1a) of the filtration tank (1) and the partition wall (3), and the opening has a size that does not allow the filter medium (6 ...) to pass therethrough. A water plate (10) is stretched to form a stock solution inflow channel (11) between the peripheral wall (1c) and the partition wall (3) of the filtration tank (1), and a filter medium is provided inside the screen (2). (6...) Is stored to form a filter medium layer (9, 29), and a water collection nozzle (12, 12a, 39) is embedded in the filter medium layer (9, 29). Upflow filtration device. 上記集水ノズルをろ過槽(1)の頂部(1a)中央部から垂下させ、円筒状の集水ノズル(12)としたことを特徴とする請求項1項に記載の上向流式ろ過装置。  The upward flow filtration apparatus according to claim 1, wherein the water collection nozzle is suspended from the central part (1a) of the filtration tank (1) to form a cylindrical water collection nozzle (12). . 上記集水ノズルを円錐台形状の集水ノズル(12a)としたことを特徴とする請求項1または2に記載の上向流式ろ過装置。  The upward flow filtration apparatus according to claim 1 or 2, wherein the water collection nozzle is a frustoconical water collection nozzle (12a). 上記集水ノズル(12a)の下端に閉止筒体(13)を連設し、積層したろ材層(9)の下方に突出させたことを特徴とする請求項2または3に記載の上向流式ろ過装置。  The upward flow according to claim 2 or 3, wherein a closed cylinder (13) is connected to the lower end of the water collecting nozzle (12a) and protrudes below the laminated filter media layer (9). Type filtration device. 上記ろ過槽(1)の槽底(1b)に撹拌機(18)と排水管(21)を連結したろ材流出防止管(20)を立設したことを特徴とする請求項1乃至4の何れか1項に記載の上向流式ろ過装置。  5. A filter medium outflow prevention pipe (20) in which a stirrer (18) and a drain pipe (21) are connected to the tank bottom (1b) of the filtration tank (1). The upward flow filtration apparatus according to claim 1. 上記スクリーン(2)の下端に連設した仕切壁(3)に昇降自在なろ材押え板(23)を配設したことを特徴とする請求項1乃至3の何れか1項に記載の上向流式ろ過装置。  The upward movement according to any one of claims 1 to 3, wherein a filter material presser plate (23) that can be moved up and down is disposed on a partition wall (3) that is connected to the lower end of the screen (2). Flow filtration device. 上記ろ材押え板(23)が、ろ過槽(1)の槽底(1b)に立設したエアーシリンダー(24)の作動杆(25)に連結してあることを特徴とする請求項6に記載の上向流式ろ過装置。  The said filter-material presser plate (23) is connected with the operating rod (25) of the air cylinder (24) standingly arranged by the tank bottom (1b) of the filtration tank (1). Upflow type filtration device. 上記ろ過槽(1)に立設した駆動軸(32)にエアーシリンダー(33)を外装し、エアーシリンダー(33)の上端部をろ材押え板(44)に止着して、ろ材押え板(44)を昇降自在とすると共に、ろ過槽(1)の槽底(1b)を貫通した駆動軸(32)の下端に、正逆転可能な揺動モーター(34)を連動連結したことを特徴とする請求項6に記載の上向流式ろ過装置。  The air cylinder (33) is externally mounted on the drive shaft (32) standing upright in the filtration tank (1), and the upper end of the air cylinder (33) is fixed to the filter medium presser plate (44). 44) is movable up and down, and a swing motor (34) capable of rotating forward and backward is interlocked and connected to the lower end of the drive shaft (32) penetrating the tank bottom (1b) of the filtration tank (1). The upward flow filtration apparatus according to claim 6. 上記ろ材押え板(23、44)を多孔板で構成して、ろ材層(9、29)の底面もろ過面としたことを特徴とする請求項6乃至8の何れか1項に記載の上向流式ろ過装置。  The top of any one of claims 6 to 8, wherein the filter medium presser plate (23, 44) is a perforated plate, and the bottom surface of the filter medium layer (9, 29) is also a filtration surface. Counterflow filtration device. 上記ろ材押え板(23、44)の上面に散気管(30)を配設したことを特徴とする請求項6乃至9の何れか1項に記載の上向流式ろ過装置。  The upward flow filtration apparatus according to any one of claims 6 to 9, wherein a diffuser pipe (30) is disposed on an upper surface of the filter medium presser plate (23, 44). 上記ろ過槽(1)の頂壁(1a)に配設した集水ノズル(39)を駆動軸(32)に連結し、集水ノズル(39)に撹拌羽根(40)を配設したことを特徴とする請求項7乃至10の何れか1項に記載の上向流式ろ過装置。  The water collection nozzle (39) disposed on the top wall (1a) of the filtration tank (1) is connected to the drive shaft (32), and the stirring blade (40) is disposed on the water collection nozzle (39). The upflow filtration apparatus according to any one of claims 7 to 10, wherein 上記回転可能なろ材押え板(44)に撹拌棒(41)を立設したことを特徴とする請求項8に記載の上向流式ろ過装置。The upward flow filtration apparatus according to claim 8 , wherein a stirring rod (41) is erected on the rotatable filter material presser plate (44). 上記ろ材押え板(23、44)の下方の原液室(28)に撹拌機(18)を設置したことを特徴とする請求項6乃至12の何れか1項に記載の上向流式ろ過装置。  The upward flow filtration apparatus according to any one of claims 6 to 12, wherein a stirrer (18) is installed in the stock solution chamber (28) below the filter medium presser plate (23, 44). . 上記スクリーン(2)は、ろ材の圧縮に耐える金網、エキスパンドメタルあるいは、スリットを円輪状に配設したウエッジワイヤーとしたことを特徴とする請求項1乃至13の何れか1項に記載の上向流式ろ過装置。The upward direction according to any one of claims 1 to 13 , wherein the screen (2) is a wire mesh that can withstand compression of the filter medium, an expanded metal, or a wedge wire in which slits are arranged in a ring shape. Flow filtration device. 上記集水ノズル(12、12a、39)をウエッジワイヤーで構成し、ウエッジワイヤーのスリットを円輪状に配設したことを特徴とする請求項5または13に記載の上向流式ろ過装置。  The upward flow filtration apparatus according to claim 5 or 13, wherein the water collection nozzle (12, 12a, 39) is constituted by a wedge wire, and the slits of the wedge wire are arranged in an annular shape. 上記集水ノズル(12、12a、39)をろ過膜としたことを特徴とする請求項1乃至14の何れか1項に記載の上向流式ろ過装置。The upward flow filtration apparatus according to any one of claims 1 to 14 , wherein the water collection nozzle (12, 12a, 39) is a filtration membrane. 上記ろ材層(29)を形成させるろ材押え板(23、44)の圧縮圧力を、0.0〜2.0Kg/cm2としたことを特徴とする請求項6乃至13の何れか1項に記載の上向流式ろ過装置。Said filter medium layer (29) filter media holding plate to form a compression pressure of (23 and 44), to any one of claims 6 to 13, characterized in that a 0.0~2.0Kg / cm 2 The upward flow filtration device described. 上記ろ材層(9、29)の全てのろ過面から集水ノズル(12、12a、39)までのろ層厚みを100〜500mmとしたことを特徴とする請求項1乃至17の何れか1項に記載の上向流式ろ過装置。The filter layer thickness from all the filtration surfaces of the said filter-medium layer (9, 29) to the water collection nozzle (12, 12a, 39) was 100-500 mm, The any one of Claims 1 thru | or 17 characterized by the above-mentioned. An upward flow filtration device as described in 1. 上記ろ材層(29)の厚みを、ろ材押え板(23、44)降下時のろ過室(27)高さの40〜60%としたことを特徴とする請求項6乃至13の何れか1項に記載の上向流式ろ過装置。 It said filter medium layer thickness (29), filter media holding plate (23 and 44) any one of claims 6 to 13, characterized in that 40 to 60 percent drop during filtration chamber (27) the height of the An upward flow filtration device as described in 1.
JP2002361864A 2002-12-13 2002-12-13 Upflow filter Expired - Fee Related JP3815616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361864A JP3815616B2 (en) 2002-12-13 2002-12-13 Upflow filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361864A JP3815616B2 (en) 2002-12-13 2002-12-13 Upflow filter

Publications (2)

Publication Number Publication Date
JP2004188364A JP2004188364A (en) 2004-07-08
JP3815616B2 true JP3815616B2 (en) 2006-08-30

Family

ID=32760470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361864A Expired - Fee Related JP3815616B2 (en) 2002-12-13 2002-12-13 Upflow filter

Country Status (1)

Country Link
JP (1) JP3815616B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606116B2 (en) * 2004-10-21 2011-01-05 前澤工業株式会社 Filtration device
AP3065A (en) * 2007-11-26 2014-12-31 Ronald Llewellyn Trollip Up-flow filtration apparatus and method
JP6156993B2 (en) * 2013-08-02 2017-07-05 株式会社industria Filter device and fluid purification system

Also Published As

Publication number Publication date
JP2004188364A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US7704382B2 (en) Gravity type fiber filter
RU204652U1 (en) DEVICE FOR SEPARATING DISPERSIONS
CN106621493A (en) Horizontal flow continuous sand filtration equipment and water treatment process thereof
JP4542749B2 (en) Filtration device
JP3815616B2 (en) Upflow filter
US6776295B2 (en) Solid-liquid filtering method and system for sewage, waste water and the like
CN101306268A (en) Continuous fibrous globule filter and its filtering method
JP3809648B2 (en) Moving filter filter
TWI225802B (en) High-speed filtering device using fiber filter medium
JP4277589B2 (en) Upflow filter
JP3781297B2 (en) Safety screen cleaning device for filter
CN107081001A (en) A kind of fiber filter disc filtration system
JP2001205016A (en) Microstrainer
CN2356733Y (en) Wall-type filtering bag filter
JP3031402B2 (en) External pressure type membrane filtration device
JPH0884913A (en) Complex filter
JPH11314016A (en) Filtration apparatus
JPS5920334Y2 (en) Continuous "filtration" device
JP4553287B2 (en) Solid-liquid separator
JP3781296B2 (en) Safety screen cleaning device for filter
JP4699981B2 (en) Filtration apparatus and filtration method
JPH06233905A (en) Filter tank
JPH10235106A (en) Filtration device
JP3177882B2 (en) Filtration device
JP2000167316A (en) Filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3815616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees