JP3813835B2 - Water recovery system from combustion exhaust gas - Google Patents

Water recovery system from combustion exhaust gas Download PDF

Info

Publication number
JP3813835B2
JP3813835B2 JP2001149659A JP2001149659A JP3813835B2 JP 3813835 B2 JP3813835 B2 JP 3813835B2 JP 2001149659 A JP2001149659 A JP 2001149659A JP 2001149659 A JP2001149659 A JP 2001149659A JP 3813835 B2 JP3813835 B2 JP 3813835B2
Authority
JP
Japan
Prior art keywords
water
exhaust gas
combustion exhaust
condensed water
recovery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001149659A
Other languages
Japanese (ja)
Other versions
JP2002338973A (en
Inventor
宏和 高橋
知彦 宮本
信幸 穂刈
森原  淳
真一 稲毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001149659A priority Critical patent/JP3813835B2/en
Publication of JP2002338973A publication Critical patent/JP2002338973A/en
Application granted granted Critical
Publication of JP3813835B2 publication Critical patent/JP3813835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重質油を超臨界水中に溶解して軽質化し、軽質化燃料と超臨界水の混合燃料を燃焼するシステムの、燃焼排ガス中に含まれる水分の回収システムに関するものである。
【0002】
【従来の技術】
超臨界水に重質油を溶解し、重質油を軽質化して燃料ガス、軽質油に転換する技術は周知である。特開2000−109850号公報には、重質油を超臨界水で軽質化して高効率発電をする技術が提案されている。この方式では、水の臨界点(22.1MPa、374℃)以上の温度、圧力で水に重質油を溶解して軽質化する。軽質油および超臨界水は減圧、冷却され、油水分離工程で燃料ガス、軽質油および水に分離される。これにより、重質油は燃料ガス、軽質油は高効率発電燃料として使うことができる。この方式では、油水分離工程で分離した水にはアルカリ等の添加物や還元性のアンモニア、シアン化物、硫化水素が含まれており、これらの化合物を処理するために水を系外へ抜き出すようにしている。
【0003】
一方、重質油を超臨界水で軽質化し、燃料と水を分離せずに燃焼器へ導くシステムがある。この方式においては燃料と水の減圧、冷却、分離工程を必要としないため、燃料の減圧、冷却にともなうエネルギー損失がない。また、重質油と水の混合燃料は燃焼するため、燃料中の硫黄や微量金属分は酸化し、環境装置で処理しやすくなる。
【0004】
【発明が解決しようとする課題】
燃料とともに水分も燃焼器へ導く方式では、水を多量に使用する。水の使用量を減らすためには、燃焼排ガスから温水を回収するのが有効である。
【0005】
本発明の課題は、重質油を超臨界水で軽質化し、混合したまま燃焼するシステムにおいて、燃焼排ガスから回収した温水中に吸収されている硫黄酸化物や金属酸化物等の不純物を分離、除去し、再度超臨界水反応器に戻して重質油の軽質化に利用することのできるシステムを提供することにある。
【0006】
【課題を解決するための手段】
すなわち、本発明は、重質油を超臨界水で軽質燃料化し、得られた改質燃料で発電するシステムにおいて、不純物除去後の超臨界水を、前記軽質燃料化の工程で使用される超臨界水の一部として回収・再利用することを特徴とするものである。
【0007】
その具体的一例は、燃焼排ガスを冷却し凝縮水を回収する冷却工程、回収した凝縮水を貯留しアルカリまたは酸化剤を添加する調整工程、調整された凝縮水を加圧、加熱し超臨界水反応させる反応工程、反応工程からの超臨界水中の不純物を分離除去する捕捉工程から構成される。
【0008】
一般に重質油を超臨界処理し、得られた改質燃料で高効率発電を達成するシステムは、超臨界水と重質油を反応させる改質反応部、重質油中の不純物を分離する分離部、改質燃料を燃焼し、発電する燃焼器一体型のガスタービン、ガスタービンから排出される燃焼排ガスの熱回収部、燃焼排ガス中のNOX、SOX、塵を除去する環境対策部から構成される。
【0009】
冷却工程では間接冷却法により、燃焼排ガスを冷媒で冷却し、凝縮水を得る。冷媒には海水、工業用水、クーリングタワー水等が利用できるが、好ましくはシステム内にある低温流体、例えば重質油、超臨界水用の給水、熱回収部に供給する給水等を用いるとよい。冷却工程での温度は90〜50℃、好ましくは50〜60℃程度とする。
【0010】
冷却工程はNOX、SOX、塵を除去する環境対策部の後流、すなわち燃焼排ガス温度の最も低い部分に設置し、燃焼排ガスと冷媒を間接接触させて、燃焼排ガス中の水分を凝縮させる。環境対策部の後流に該冷却工程を設置することは、燃焼排ガス中のNOX、SOX、塵が極めて低いレベルにまで除去されており、冷却工程での凝縮水中にNOX、SOXの溶け込みが少ない、すなわち装置の腐食が軽減できること、塵の混入によるポンプ類の磨耗軽減を図ることにある。
【0011】
冷却工程で回収された凝縮水は調整工程に送る。調整工程は凝縮水を貯留するタンク、凝縮水中の硫黄分(S分)、炭素分(C)を測定する測定器、アルカリ(NaOH、KOH)および酸化剤(H22)を供給する添加装置から構成される。凝縮水中には微量のS化合物(硫酸塩、ジチオン酸)が存在し、凝縮水をそのまま加熱し高温・高圧水にすると材料の腐食が早まる。そこで、凝縮水中のS分を測定し、その量に見合ったアルカリ(NaOH、KOH)を等モル以上好ましくは1〜2倍モル添加し、腐食性の少ないNa2SO4、K2SO4等にする。アルカリは理論上前記反応式に示される理論量を添加すればよいが、反応効率を考慮して、最大2倍モルの供給とする。また、C分を測定し、CとSのモル量に対しH22を(2H22=2H2O+O2、すなわちO2が1モルとは2モルのH22)2倍モル以上、好ましくは2〜4倍モル添加しC分をCO2ガスに転換して、加熱、高温化時に反応管内で起こるCの析出を防止する。またS化合物はSO2或いはSO4に転換して、アルカリ金属と反応させる。
【0012】
調整工程からの凝縮水はポンプで水の臨界圧以上に加圧、好ましくは22〜25MPaに加圧し、反応工程に送る。反応工程は熱回収器内に設置された伝熱管で構成され、伝熱管内に送られた添加剤含有凝縮水は該伝熱管内で374℃以上、好ましくは380〜410℃に加熱され、超臨界水となる。また、アルカリ添加物はS分と反応し、反応でNa2SO4になり、C分はCO2となる。これらの化合物は超臨界水に溶解された状態で存在させるため、伝熱管内温度は374〜410℃に保つ。反応工程で反応させた超臨界水は次の捕捉工程に送る。
【0013】
捕捉工程は伝熱管と開口接続した捕捉管で構成される。捕捉管内には石灰石(CaCO3)、ドロマイト(MgO、CaCO3からなる物質)等を充填し、少なくとも反応工程の温度よりも捕捉管温度を高くする、好ましくは410℃〜500℃とする。捕捉管内では充填された石灰石と不純物を溶解した超臨界水が接触することで、不純物は石灰石表面上に析出、あるいは反応して石灰石に捕捉される。これにより不純物を殆ど含まない超臨界水が得られ、該超臨界水は重質油の改質化反応に再度利用できるので、廃水として系外に放出する必要がなくなる。
【0014】
なお、凝縮水中に極微量の重金属分が存在する場合にも、本方式は適用可能である。
【0015】
凝縮水中の微量金属分は殆どが酸化金属の形態で存在しており、凝縮水と共にポンプで送られた酸化金属分は捕捉工程で、充填剤である石灰石と反応しCaO・V25、CaO・Na2O・V25として石灰石上に固着するので、超臨界水とは分離される。
【0016】
このように、重質油を超臨界水で軽質化し、混合したまま燃焼するシステムにおいて、燃焼排ガスから回収した温水中に吸収されている硫黄酸化物や金属酸化物等の不純物を分離、除去し、再度超臨界水反応器に戻して重質油の軽質化に利用することができ、水の使用量を減らすことができる。また、廃水を系外に放出する必要がなく、廃水処理も不要となる。
【0017】
【発明の実施の形態】
(実施例1)
以下、図面1を用いて本発明の実施形態を説明する。
【0018】
図1は重質油を超臨界処理して改質燃料を製造し、得られた改質燃料をガスタービン用燃焼器で燃焼、燃焼ガスでガスタービンを駆動する発電システムである。ガスタービンからの燃焼排ガスは熱回収器で熱エネルギを回収され、脱硝、脱硫、脱塵等の環境装置で浄化される。その後、冷却工程で冷却され、燃焼排ガス中の水分は凝縮、分離回収される。分離回収された凝縮水にはアルカリとH22を添加後、ポンプで加圧し反応器、捕捉器で加熱、水の臨界点以上の温度、圧力で反応させ、凝縮水中の不純物を捕捉、得られた超臨界水で重質油を改質するシステムである。
【0019】
重質油改質工程1には超臨界水と重質油を供給し、超臨界水による加水分解作用により重質油を軽質化する。超臨界水はバルブ24を介して25MPa、450℃で重質油改質工程に供給する。一方、重質油は配管20を介して冷却工程14内の熱交換器29に供給し、燃焼排ガスと間接熱交換させ、重質油を加熱すると共に燃焼排ガスを冷却し燃焼排ガス中の水分を凝縮させ凝縮水にする。熱交換器29で加熱された重質油は供給管21を介して重質油改質工程に供給され、該重質油改質工程で380℃、25MPaで改質される。改質ガスおよび超臨界水は金属分分離工程2で加熱され420℃、25MPaで金属分を分離され、燃焼器3で燃焼される。燃焼ガスはガスタービン4を駆動した後、540℃、1気圧程度で熱回収器5に入る。熱回収器5には通常の蒸気発生器と本発明になる反応工程12、捕捉工程13が挿入されており、燃焼ガスとの間接熱交換により熱を回収する。熱回収器5を出た燃焼排ガスは環境装置6でSOx、NOx、塵を除去され、冷却工程14に至る。冷却工程14で得られた凝縮水は排水管28により、凝縮水タンク30に貯留する。貯留された凝縮水は測定器8によりS分、N分、C分を測定され、その量を求められる。計測したS分のモル数に対し1.5倍モルのNaOHをアルカリ添加装置9により凝縮水タンク30に供給する。また、S分のモル数とC分のモル数を加算したモル数の3倍モルのH22を酸化剤添加装置10により凝縮水タンク30に供給する。なお、添加するアルカリは、NaOH以外に凝縮水中の不純物処理に対して同様の働きをするKOHでもよい。
【0020】
これら測定器8、アルカリ添加装置9、酸化剤添加装置10および凝縮水タンク30から構成される調整工程7からの凝縮水は加圧ポンプ11で25MPaに加圧され、熱回収器5内に設置した反応工程12に送られる。反応工程12では凝縮水が380℃にまで加熱され、水が超臨界水となる。また、添加物であるH22はH2Oと1/2O2となり、O2は超臨界水に溶解したC分と反応しCO2に、S分はSO2になる。さらにSO2は添加物のNaOHと反応してNa2SO4となる。これらの物質はいずれも374℃〜410℃の範囲では超臨界水に完全溶解している。反応工程を出た物質は捕捉工程13に導入する。捕捉工程13には充填剤供給管27から石灰石等の充填剤を充填しておく。また、反応工程から流入する流体の温度を430℃程度まで高める。これにより超臨界水に溶解していたNa2SO4、SO4等のS化合物は石灰石表面に析出、さらには石灰石と反応してCaSO4となり石灰石に固定される。該工程で不純物を除去された超臨界水は排出管22、圧力調節弁25、戻し管23を経て重質油改質工程1に戻し、再利用する。
【0021】
本実施例では重質油を超臨界水処理した改質燃料を燃焼した際に回収した凝縮水を調整工程7、加圧ポンプ11、反応工程12、捕捉工程13および圧力調節弁25からなる構成で凝縮水中の不純物除去を実施した。その結果は下記である。
ケース1
凝縮水:S分3モル、C分4.2モル
NaOH添加量:4.5モル
22添加量:10.8モル
反応工程:温度380℃、圧力25MPa
捕捉工程:温度430℃、圧力25MPa、石灰石を充填
圧力調節弁25から排出した超臨界水のS分0.03モル、C分0.002モル
ケース2
凝縮水:S分3モル、C分4.2モル
KOH添加量:4.5モル
22添加量:10.8モル
反応工程:温度380℃、圧力25MPa
捕捉工程:温度430℃、圧力25MPa、石灰石を充填
圧力調節弁25から排出した超臨界水のS分0.03モル、C分0.002モル
ケース3
凝縮水:S分3モル、C分4.2モル
NaOH添加量:3モル
22添加量:10.8モル
反応工程:温度380℃、圧力25MPa
捕捉工程:温度430℃、圧力25MPa、石灰石を充填
圧力調節弁25から排出した超臨界水のS分0.05モル、C分0.002モル
(実施例2)
本実施例では最終的に大気放出する排ガス中の白煙防止と熱交換器5からの燃焼排ガスの冷却効果を高めるために構成されたもので、図2を用いて説明する。
【0022】
燃焼排ガスは熱回収器5、排ガス加熱器108により温度を下げた後、冷却工程14に供給される。冷却工程14ではスプレー装置104から後述する吸収液113が噴射され、燃焼排ガス中に含まれた水分が冷却され、硫黄酸化物および窒素酸化物を含んだ凝縮水106になる。さらに燃焼排ガスはミスト捕集機107によりミストを除去した後、排ガス加熱器108で加熱して白煙を生じないようにする。凝縮水106の一部はポンプ105で加圧され、pH調整機103でpHを調整された後、吸収液113としてスプレー装置104に供給される。凝縮水の他方は調整工程7に送られる。
【0023】
スプレー装置104は水を微細な液滴として噴霧する装置であり、例えばスプレーノズルを燃焼排ガスの流れ方向に対して垂直な面に複数個設置する構成とする。スプレー塔での気液接触により、燃焼排ガスの温度が低下し、気体として存在する燃焼排ガス中の水分は凝縮して液体となる。また、燃焼排ガス中のSO2はpH調整された吸収液に吸収される。吸収を促進し、燃焼排ガスからの脱硫効率を向上させるために、燃焼排ガス中のSO2を液中に吸収させる反応を促進する。気相中のSO2を液中に吸収する反応を促進するために、吸収液のpHは3.8以上とする。
【0024】
一方、調整工程7、反応工程12で硫黄酸化物を完全酸化するためにH22を添加するが、その添加量を下げるために冷却工程14で硫黄酸化物を空気中の酸素と反応させて硫酸にする。吸収液のpHが2〜4においては完全に酸化されていない硫黄酸化物であるジチオン酸の生成が最大になり、pHが6.0以上ではジチオン酸は生成しなかった。これらのことから吸収液のpHは6.0以上に調整した。吸収液に用いるpH調整剤は、消灰石や生石灰、苛性ソーダを使用する。
【0025】
吸収液のpHの調節は、凝縮水106のpHをpH計測器101で調べ、pHが6.0以上になるように、pH調整剤供給コントローラ102からpH供給機103へpH調整剤を供給するように制御する。吸収液の硫黄および窒素化合物濃度の調節システムは、pH調整と同様に、硫黄、窒素化合物計測器114で調べ、一定濃度以上になった場合、補給水コントローラ115からpH調整機103へ補給水を供給し、pHを6.0以上にするように制御する。凝縮水106の量の調節は、液面計119で液面を検知し、液面コントローラ118でバルブ117を開閉し、凝縮水量を一定に保つよう制御する。
【0026】
本実施例では燃焼排ガスから凝縮水を回収する熱交換器5、排ガス加熱器108、冷却工程7、スプレー装置104、ミスト捕集機107、pH調整機103およびポンプ105からなる構成で凝縮水中の不純物除去を実施した。その結果は下記である。
ケース1
燃焼排ガス109中S分:70ppm
燃焼排ガス109温度:160℃
スプレー装置104中の水のpH:11.4
吸収液113温度:40℃
吸収液113pH:11.3
pH調整剤:NaOH
凝縮水106中ジチオン酸濃度:0.5ppm
排ガス加熱器108中のS分:30ppm
排ガス加熱器108中の排ガス温度:90℃
ケース2
燃焼排ガス109中S分:70ppm
燃焼排ガス109温度:130℃
スプレー装置104中の水のpH:11.4
吸収液113温度:40℃
吸収液113pH:11.3
pH調整剤:NaOH
凝縮水中106ジチオン酸濃度:0.7ppm
排ガス加熱器108中のS分:20ppm
排ガス加熱器108中の排ガス温度:90℃
この実施例2によれば、ガスタービンの燃焼排ガスから水を効率よく回収し、しかもガスタービンから排気された燃焼排ガスが白煙を生じないという効果がある。
(実施例3)
本実施例では調整工程7の調整剤を適量供給し、反応工程12の配管の腐食速度を低下するために構成されるもので、図3を用いて説明する。硫黄酸化物(S23 2-、SO3 2-、S26 2-)、TOC、CODを測定する測定器8、pH調整剤供給機9、酸化剤供給機10および凝縮水タンク32からなる構成で凝縮水H22供給量を適正にすることにより、反応器の腐食を押さえることができる。
【0027】
調整工程7では、pH調整と酸化されうる物質を分析し、凝縮水30に添加剤と酸化剤を添加する。硫黄濃度と炭素濃度の計測のため、凝縮水30は撹拌機31で撹拌して凝縮水タンク32から採取する。凝縮水タンク32では撹拌機31で凝縮水を撹拌して水溶液濃度を均一にする。凝縮水タンク30に貯留された凝縮水中の硫黄分を測定する硫黄酸化物測定器132ではチオ硫酸、亜硫酸、ジチオン酸等酸化され得る硫黄酸化物濃度をイオンクロマトグラフ法で測定する。各イオン種が酸化して硫酸になった場合のpHの変化を計算し、反応終了後にpHが7から12になるようpH調整剤の供給量を濃度調整コントローラ131で調節し、凝縮水タンク32に供給する。また、各イオン種に対する酸化に必要なH22の量を計算する。
【0028】
炭素分を測定する測定器8では、全有機炭素(TOC)を測定する。TOC測定器133でTOCを測定する場合には過酸化水素供給量を、TOCを酸化するための酸素量に対して2倍から3倍当量のH22量を計算する。
【0029】
炭素以外の元素を酸化するための酸素供給量を決めるには化学的酸素要求量(COD)を用いる。ただし、CODの測定では理論的に必要な酸素量より小さい値になる。CODの測定にはCOD測定器134を用いる。亜硫酸やジチオン酸のCODを測定すると、実際に酸化するために必要な酸素量の1/8および1/4の値になる。そこで、COD値から硫黄酸化物を完全に酸化するために必要な量の酸素量を減じた分のH22量の2から3倍当量を計算する。
【0030】
硫黄酸化物、TOC、CODから計算したH22量を濃度調整コントローラ131で調整し、酸化剤添加装置10で凝縮水供給管135に供給する。
【0031】
本実施例では凝縮水中の不純物をジチオン酸、有機物、金属イオンとし、SUS316の配管を用い、450℃、25MPaで酸化剤にH22、pH調整剤にNaOHを用いて酸化した。原液中の各成分の濃度と処理後の液中の各成分濃度、腐食速度および孔食の有無を表1に示す。
【0032】
【表1】

Figure 0003813835
【0033】
この実施例3によれば、硫酸を含む凝縮水を超臨界水酸化した場合にも孔食を生じさせることなく、凝縮水中の不純物を完全に酸化することができる。
(実施例4)
本実施例では重質油と超臨界水の混合燃料を燃焼した後の水を回収、再利用するために添加するH22量を低減するために構成されるもので、図1を用いて説明する。
【0034】
重質油を燃焼して、燃焼排ガスから不純物を採取した場合には、燃焼排ガスから回収した凝縮水106中に硫酸、亜硫酸、硝酸、亜硝酸、V25、金属酸化物等が存在する。これらは、超臨界水中で塩を生成しやすく、捕捉工程13で分離除去が容易である。
【0035】
従来の構成を示す概略図を図4に示す。この方式は、タンク321からポンプ322を用いて加圧し、熱交換器323で加熱して超臨界状態にする。超臨界反応器324で酸素源と反応して抽出器325で冷却、減圧して気液分離器327でガス成分を取り出し、さらに排水分離器328で軽質油と水に分離する。分離した水中にはNH3、H2S、シアン化物およびナトリウム、カリウム、バナジウムイオン等の金属が水中に溶け込む。また、油分が水中に残るためCOD、TOCが高くなる。
【0036】
表2に従来工程排水と本実施例の凝縮水性状を示す。
【0037】
【表2】
Figure 0003813835
【0038】
この実施例4によれば、凝縮水から処理しやすい含有成分を処理して、凝縮水中の不純物を完全に酸化する事ができる。
(実施例5)
本実施例では最終的に大気放出する燃焼排ガス中の水分を回収し白煙発生を防止するために構成するものである。さらには、水回収率を上げることにより、発電効率を上げるために構成するもので、図2を用いて説明する。
【0039】
燃焼排ガスは熱回収器5、排ガス加熱器108により温度を下げた後、冷却工程14に供給される。冷却工程14ではスプレー装置104から吸収液113が噴射され、排ガス中に含まれた水分が冷却され、硫黄酸化物および窒素酸化物を含んだ凝縮水106になる。さらに燃焼排ガスはミスト捕集機107によりミストを除去した後、排ガス加熱器108で加熱して白煙を生じないようにする。
【0040】
冷却工程14において燃焼排ガス109から回収した凝縮水の水回収条件が与える影響について述べる。水回収条件の変化により、発電効率に与える影響因子としては、a)圧損の変化(冷却工程14の有無による圧力比の変化)、b)熱回収下限温度(燃焼排ガス管110中のガス温度)、c)補給水温度および量(水回収時の潜熱回収による予熱効果)がある。表3に水回収条件とその影響についてまとめる。
【0041】
【表3】
Figure 0003813835
【0042】
本実施例により水回収率を100%にすることで、発電効率を0.2%高くできる。さらに、補給水量も低減できる。また、従来は白煙発生防止のために燃焼排ガス温度を高くしていたが、水を回収して露点が下がるので、系外へ排出する燃焼排ガス温度を下げることができる。
【0043】
【発明の効果】
本発明によれば、重質油を超臨界水で軽質化し、混合したまま燃焼するシステムにおいて、燃焼排ガスから回収した温水中に吸収されている硫黄酸化物や金属酸化物等の不純物を分離、除去し、再度超臨界水反応器に戻して重質油の軽質化に利用することができ、水の使用量を減らすことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の構成を示す概略図である。
【図2】本発明の冷却工程の実施形態例を示す図である。
【図3】本発明の調整工程の実施形態例を示す図である。
【図4】従来の構成を示す概略図である。
【符号の説明】
1…重質油改質工程、2…金属分分離工程、3…燃焼器、4…ガスタービン、5…熱回収器、6…環境装置、7…調整工程、8…測定器、9…アルカリ添加装置、10…酸化剤添加装置、11…加圧ポンプ、12…反応工程、13…捕捉工程、14…冷却工程、15…重質油供給ポンプ、20…配管、21…供給管、22…排出管、23…戻し管、24…バルブ、25…圧力調節弁、26…充填剤排出管、27…充填剤供給管、28…排出配管、29…熱交換器、30…凝縮水タンク、31…撹拌機、32…凝縮水タンク、101…pH計測器、102…pH調整剤供給コントローラ、103…pH調整機、104…スプレー装置、105…凝縮水戻しポンプ、106…凝縮水、107…ミスト捕集機、108…排ガス加熱器、109…燃焼排ガス、110…燃焼排ガス管、111…燃焼排ガス、112…重質油熱交換配管、113…吸収液、114…硫黄分、窒素分計測機、115…補給水供給コントローラ、116…凝縮水の一部、117…バルブ、118…液面コントローラ、119…液面計、131…濃度調整コントローラ、132…硫黄酸化物測定器、133…TOC測定器、134…COD測定器、135…凝縮水供給管、321…タンク、322…ポンプ、323…熱交換器、324…超臨界反応器、325…抽出器、326…減圧弁、327…気液分離器、328…排水分離器、329…塩分離器、331…ポンプ(水の供給手段)、332…コンプレッサ(酸素源の供給手段)、333…スクリーン工程、334…加圧浮上工程、335…生物処理工程、336…凝集沈殿処理工程、337…砂ろ過工程。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for recovering moisture contained in combustion exhaust gas in a system in which heavy oil is dissolved and lightened in supercritical water to burn a mixed fuel of lightened fuel and supercritical water.
[0002]
[Prior art]
The technology of dissolving heavy oil in supercritical water, lightening the heavy oil and converting it to fuel gas and light oil is well known. Japanese Patent Application Laid-Open No. 2000-109850 proposes a technique for lightening heavy oil with supercritical water for high-efficiency power generation. In this system, heavy oil is dissolved in water at a temperature and pressure higher than the critical point of water (22.1 MPa, 374 ° C.) and lightened. Light oil and supercritical water are decompressed and cooled, and separated into fuel gas, light oil and water in an oil-water separation process. As a result, heavy oil can be used as fuel gas, and light oil can be used as highly efficient power generation fuel. In this method, the water separated in the oil / water separation step contains additives such as alkali, reducing ammonia, cyanide, and hydrogen sulfide, and water is taken out of the system to treat these compounds. I have to.
[0003]
On the other hand, there is a system that lightens heavy oil with supercritical water and guides it to the combustor without separating fuel and water. Since this method does not require depressurization, cooling and separation steps of fuel and water, there is no energy loss associated with depressurization and cooling of the fuel. In addition, since the fuel mixture of heavy oil and water burns, sulfur and trace metal components in the fuel are oxidized and are easily treated by an environmental device.
[0004]
[Problems to be solved by the invention]
In a system that introduces moisture together with fuel to the combustor, a large amount of water is used. In order to reduce the amount of water used, it is effective to recover hot water from the combustion exhaust gas.
[0005]
The problem of the present invention is to separate impurities such as sulfur oxides and metal oxides absorbed in warm water recovered from combustion exhaust gas in a system in which heavy oil is lightened with supercritical water and burned while mixed. It is to provide a system that can be removed and returned to the supercritical water reactor and used for lightening heavy oil.
[0006]
[Means for Solving the Problems]
That is, the present invention provides a system for converting heavy oil into light fuel with supercritical water and generating power with the resulting reformed fuel, and supercritical water after impurities removal is used in the light fuel process. It is characterized by being recovered and reused as part of critical water.
[0007]
Specific examples are a cooling process for cooling combustion exhaust gas and collecting condensed water, an adjustment process for storing the collected condensed water and adding an alkali or an oxidizing agent, and pressurizing and heating the adjusted condensed water to supercritical water. The reaction step comprises a reaction step, and a capture step for separating and removing impurities in supercritical water from the reaction step.
[0008]
In general, the system that achieves high-efficiency power generation with supercritical processing of heavy oil and the resulting reformed fuel separates the impurities in the heavy oil and the reforming reaction section that reacts the supercritical water and heavy oil. Separation unit, combustor-integrated gas turbine that burns reformed fuel to generate electricity, heat recovery unit of combustion exhaust gas discharged from the gas turbine, environmental countermeasure unit that removes NO x , SO x , and dust in the combustion exhaust gas Consists of
[0009]
In the cooling step, the flue gas is cooled with a refrigerant by an indirect cooling method to obtain condensed water. Seawater, industrial water, cooling tower water, and the like can be used as the refrigerant. Preferably, low-temperature fluid in the system, for example, heavy oil, supercritical water feed water, feed water supplied to the heat recovery unit, or the like may be used. The temperature in the cooling step is 90 to 50 ° C, preferably about 50 to 60 ° C.
[0010]
The cooling process is installed in the downstream of the environmental measures section that removes NO x , SO x , and dust, that is, at the lowest part of the combustion exhaust gas temperature, and the combustion exhaust gas and the refrigerant are brought into indirect contact to condense the moisture in the combustion exhaust gas. . The installation of the cooling process in the downstream of the environmental measures section removes NO x , SO x , and dust in the combustion exhaust gas to an extremely low level, and NO x , SO x in the condensed water in the cooling process. The purpose of this is to reduce the wear of pumps due to dust contamination.
[0011]
The condensed water collected in the cooling process is sent to the adjustment process. The adjustment process is a tank for storing condensed water, a measuring device for measuring sulfur content (S content) and carbon content (C) in the condensed water, addition of supplying alkali (NaOH, KOH) and oxidizing agent (H 2 O 2 ). Consists of devices. Trace amounts of S compounds (sulfate, dithionic acid) are present in the condensed water, and if the condensed water is heated as it is to produce high temperature / high pressure water, the corrosion of the material is accelerated. Accordingly, the S content in the condensed water is measured, and an alkali (NaOH, KOH) corresponding to the amount is added in an equimolar amount or more, preferably 1 to 2 moles, so that Na 2 SO 4 , K 2 SO 4, etc. with less corrosivity To. The alkali may be theoretically added in the theoretical amount shown in the above reaction formula, but in consideration of the reaction efficiency, it is supplied at a maximum of 2 times mole. Further, C content is measured, and H 2 O 2 is added to the molar amount of C and S (2H 2 O 2 = 2H 2 O + O 2 , that is, 1 mol of O 2 is 2 mol of H 2 O 2 ). Addition of 2 moles or more, preferably 2 to 4 moles, converts C to CO 2 gas to prevent precipitation of C that occurs in the reaction tube when heated and heated. The S compound is converted to SO 2 or SO 4 and reacted with an alkali metal.
[0012]
The condensed water from the adjustment step is pressurized to a pressure higher than the critical pressure of water by a pump, preferably 22 to 25 MPa, and sent to the reaction step. The reaction step is composed of a heat transfer tube installed in the heat recovery unit, and the additive-containing condensed water sent into the heat transfer tube is heated to 374 ° C. or higher, preferably 380 to 410 ° C. in the heat transfer tube. It becomes critical water. Further, the alkali additive reacts with the S component, and the reaction becomes Na 2 SO 4 , and the C component becomes CO 2 . Since these compounds are present in a state dissolved in supercritical water, the temperature in the heat transfer tube is maintained at 374 to 410 ° C. The supercritical water reacted in the reaction step is sent to the next capture step.
[0013]
The trapping process is composed of a trap tube that is open-connected to the heat transfer tube. The trap tube is filled with limestone (CaCO 3 ), dolomite (substance made of MgO, CaCO 3 ), etc., and at least the trap tube temperature is set higher than the temperature of the reaction step, preferably 410 ° C. to 500 ° C. In the trapping tube, the filled limestone and the supercritical water in which the impurities are dissolved come into contact with each other, so that the impurities are deposited on the surface of the limestone or are reacted and trapped in the limestone. As a result, supercritical water containing almost no impurities can be obtained, and the supercritical water can be reused for the reforming reaction of heavy oil, so that it is not necessary to discharge it as waste water out of the system.
[0014]
Note that this method can also be applied when a very small amount of heavy metal is present in the condensed water.
[0015]
Most of the trace metal content in the condensed water exists in the form of metal oxide, and the metal oxide content pumped with the condensed water reacts with the limestone which is the filler in the trapping process, and CaO · V 2 O 5 , since fixed on limestone as CaO · Na 2 O · V 2 O 5, and supercritical water are separated.
[0016]
In this way, in a system where heavy oil is lightened with supercritical water and burned while mixed, impurities such as sulfur oxides and metal oxides absorbed in warm water recovered from combustion exhaust gas are separated and removed. It can be returned to the supercritical water reactor again and used for lightening heavy oil, and the amount of water used can be reduced. Further, it is not necessary to discharge waste water out of the system, and waste water treatment is not necessary.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0018]
Fig. 1 shows a power generation system in which heavy oil is supercritically processed to produce reformed fuel, the resulting reformed fuel is burned in a gas turbine combustor, and the gas turbine is driven with combustion gas. The combustion exhaust gas from the gas turbine recovers thermal energy by a heat recovery device and is purified by an environmental device such as denitration, desulfurization, and dust removal. Then, it cools by a cooling process and the water | moisture content in combustion exhaust gas is condensed and isolate | separated and collected. After adding alkali and H 2 O 2 to the separated and recovered condensed water, pressurize it with a pump, heat it with a reactor and a trap, react it at a temperature and pressure above the critical point of water, and trap impurities in the condensed water. It is a system for reforming heavy oil with the obtained supercritical water.
[0019]
In the heavy oil reforming step 1, supercritical water and heavy oil are supplied, and the heavy oil is lightened by hydrolysis with supercritical water. Supercritical water is supplied to the heavy oil reforming process at 25 MPa and 450 ° C. through the valve 24. On the other hand, the heavy oil is supplied to the heat exchanger 29 in the cooling process 14 through the pipe 20 and indirectly heat-exchanged with the combustion exhaust gas, thereby heating the heavy oil and cooling the combustion exhaust gas to remove moisture in the combustion exhaust gas. Condensate into condensed water. The heavy oil heated by the heat exchanger 29 is supplied to the heavy oil reforming process through the supply pipe 21, and is reformed at 380 ° C. and 25 MPa in the heavy oil reforming process. The reformed gas and supercritical water are heated in the metal content separation step 2, the metal content is separated at 420 ° C. and 25 MPa, and burned in the combustor 3. The combustion gas drives the gas turbine 4 and then enters the heat recovery unit 5 at about 540 ° C. and about 1 atm. The heat recovery unit 5 is inserted with a normal steam generator and the reaction step 12 and the capture step 13 according to the present invention, and recovers heat by indirect heat exchange with the combustion gas. The combustion exhaust gas that has exited the heat recovery device 5 is subjected to removal of SOx, NOx, and dust by the environmental device 6, and reaches the cooling step 14. The condensed water obtained in the cooling step 14 is stored in the condensed water tank 30 through the drain pipe 28. The stored condensed water is measured by the measuring device 8 for S, N and C, and the amount is obtained. 1.5 times mole of NaOH is supplied to the condensed water tank 30 by the alkali addition device 9 with respect to the measured mole number of S. Further, H 2 O 2 of 3 times the number of moles obtained by adding the number of moles of S and the number of moles of C is supplied to the condensed water tank 30 by the oxidant addition device 10. In addition, the alkali to add may be KOH which performs the same function with respect to the impurity treatment in condensed water other than NaOH.
[0020]
Condensed water from the adjusting step 7 constituted by the measuring device 8, the alkali adding device 9, the oxidizing agent adding device 10 and the condensed water tank 30 is pressurized to 25 MPa by the pressure pump 11 and installed in the heat recovery device 5. Sent to the reaction step 12. In the reaction step 12, the condensed water is heated to 380 ° C., and the water becomes supercritical water. Further, H 2 O 2 as an additive becomes H 2 O and 1 / 2O 2 , O 2 reacts with C component dissolved in supercritical water and becomes CO 2 , and S component becomes SO 2 . Further, SO 2 reacts with the additive NaOH to become Na 2 SO 4 . All of these substances are completely dissolved in supercritical water in the range of 374 ° C to 410 ° C. The substance that has left the reaction step is introduced into the capture step 13. In the capturing step 13, a filler such as limestone is filled from the filler supply pipe 27. Further, the temperature of the fluid flowing from the reaction process is increased to about 430 ° C. As a result, S compounds such as Na 2 SO 4 and SO 4 dissolved in the supercritical water precipitate on the surface of the limestone, and further react with the limestone to become CaSO 4 and are fixed to the limestone. The supercritical water from which impurities have been removed in this step is returned to the heavy oil reforming step 1 through the discharge pipe 22, the pressure control valve 25, and the return pipe 23 and reused.
[0021]
In this embodiment, the condensed water recovered when the reformed fuel obtained by treating the heavy oil with the supercritical water is burned is composed of the adjusting step 7, the pressurizing pump 11, the reaction step 12, the trapping step 13, and the pressure control valve 25. Then, impurities in the condensed water were removed. The results are as follows.
Case 1
Condensed water: S component 3 mol, C component 4.2 mol NaOH addition amount: 4.5 mol H 2 O 2 addition amount: 10.8 mol Reaction process: temperature 380 ° C., pressure 25 MPa
Capturing step: temperature 430 ° C., pressure 25 MPa, limestone discharged from the filling pressure control valve 25 S content 0.03 mol, C content 0.002 mol Case 2
Condensed water: S component 3 mol, C component 4.2 mol KOH addition amount: 4.5 mol H 2 O 2 addition amount: 10.8 mol Reaction process: temperature 380 ° C., pressure 25 MPa
Capturing step: temperature 430 ° C., pressure 25 MPa, supercritical water discharged from limestone filling pressure control valve 25 S component 0.03 mol, C component 0.002 mol Case 3
Condensed water: S component 3 mol, C component 4.2 mol NaOH addition amount: 3 mol H 2 O 2 addition amount: 10.8 mol Reaction process: temperature 380 ° C., pressure 25 MPa
Capture step: temperature 430 ° C., pressure 25 MPa, limestone discharged from the filling pressure control valve 25 S component 0.05 mol, C component 0.002 mol (Example 2)
This embodiment is configured to prevent white smoke in the exhaust gas finally released into the atmosphere and to enhance the cooling effect of the combustion exhaust gas from the heat exchanger 5, and will be described with reference to FIG.
[0022]
The combustion exhaust gas is supplied to the cooling step 14 after the temperature is lowered by the heat recovery device 5 and the exhaust gas heater 108. In the cooling step 14, an absorbing liquid 113 to be described later is injected from the spray device 104, moisture contained in the combustion exhaust gas is cooled, and condensed water 106 containing sulfur oxides and nitrogen oxides is obtained. Further, after removing the mist from the combustion exhaust gas by the mist collector 107, the combustion exhaust gas is heated by the exhaust gas heater 108 so as not to generate white smoke. A part of the condensed water 106 is pressurized by the pump 105, pH is adjusted by the pH adjuster 103, and then supplied to the spray device 104 as the absorbing liquid 113. The other of the condensed water is sent to the adjustment step 7.
[0023]
The spray device 104 is a device that sprays water as fine droplets. For example, a plurality of spray nozzles are installed on a surface perpendicular to the flow direction of the combustion exhaust gas. Due to the gas-liquid contact in the spray tower, the temperature of the combustion exhaust gas is lowered, and the moisture in the combustion exhaust gas present as a gas is condensed into a liquid. Further, SO 2 in the combustion exhaust gas is absorbed by the absorption liquid adjusted in pH. In order to promote the absorption and improve the efficiency of desulfurization from the combustion exhaust gas, the reaction of absorbing SO 2 in the combustion exhaust gas into the liquid is promoted. In order to promote the reaction of absorbing SO 2 in the gas phase into the liquid, the pH of the absorbing liquid is set to 3.8 or higher.
[0024]
On the other hand, H 2 O 2 is added in order to completely oxidize the sulfur oxide in the adjustment step 7 and the reaction step 12, but in order to reduce the addition amount, the sulfur oxide is reacted with oxygen in the air in the cooling step 14. To make sulfuric acid. When the pH of the absorbing solution was 2 to 4, the production of dithionic acid, which is a sulfur oxide that was not completely oxidized, was maximized, and dithionic acid was not produced when the pH was 6.0 or higher. Therefore, the pH of the absorbing solution was adjusted to 6.0 or higher. As the pH adjuster used in the absorbent, slaked stone, quicklime, or caustic soda is used.
[0025]
The pH of the absorbing solution is adjusted by checking the pH of the condensed water 106 with the pH meter 101 and supplying the pH adjuster from the pH adjuster supply controller 102 to the pH supplier 103 so that the pH is 6.0 or higher. To control. The adjustment system of the sulfur and nitrogen compound concentration of the absorption liquid is examined by the sulfur and nitrogen compound measuring instrument 114 in the same manner as the pH adjustment. When the concentration exceeds a certain level, the makeup water controller 115 supplies the makeup water to the pH adjuster 103. Supply and control so that pH is 6.0 or more. The amount of condensed water 106 is adjusted by detecting the liquid level with the liquid level gauge 119 and opening and closing the valve 117 with the liquid level controller 118 so as to keep the amount of condensed water constant.
[0026]
In the present embodiment, the heat exchanger 5 that collects condensed water from the combustion exhaust gas, the exhaust gas heater 108, the cooling process 7, the spray device 104, the mist collector 107, the pH adjuster 103, and the pump 105 are configured to contain the condensed water. Impurity removal was performed. The results are as follows.
Case 1
S content in combustion exhaust gas 109: 70ppm
Combustion exhaust gas 109 temperature: 160 ° C
PH of water in spray device 104: 11.4
Absorption liquid 113 temperature: 40 ° C
Absorbent 113 pH: 11.3
pH adjuster: NaOH
Dithionic acid concentration in condensed water 106: 0.5 ppm
S content in exhaust gas heater 108: 30 ppm
Exhaust gas temperature in the exhaust gas heater 108: 90 ° C
Case 2
S content in combustion exhaust gas 109: 70ppm
Combustion exhaust gas 109 temperature: 130 ° C
PH of water in spray device 104: 11.4
Absorption liquid 113 temperature: 40 ° C
Absorbent 113 pH: 11.3
pH adjuster: NaOH
Condensed water 106 dithionic acid concentration: 0.7ppm
S content in the exhaust gas heater 108: 20 ppm
Exhaust gas temperature in the exhaust gas heater 108: 90 ° C
According to the second embodiment, there is an effect that water is efficiently recovered from the combustion exhaust gas of the gas turbine, and the combustion exhaust gas exhausted from the gas turbine does not generate white smoke.
Example 3
This embodiment is configured to supply an appropriate amount of the adjusting agent in the adjusting step 7 and reduce the corrosion rate of the piping in the reaction step 12, and will be described with reference to FIG. Measuring instrument 8 for measuring sulfur oxide (S 2 O 3 2− , SO 3 2− , S 2 O 6 2− ), TOC, COD, pH adjuster supplier 9, oxidizer supplier 10 and condensed water tank Corrosion of the reactor can be suppressed by adjusting the supply amount of the condensed water H 2 O 2 with a configuration of 32.
[0027]
In the adjustment step 7, the substance that can be oxidized with pH adjustment is analyzed, and an additive and an oxidizing agent are added to the condensed water 30. In order to measure the sulfur concentration and the carbon concentration, the condensed water 30 is agitated by the agitator 31 and collected from the condensed water tank 32. In the condensed water tank 32, the condensed water is stirred by the stirrer 31 to make the aqueous solution concentration uniform. The sulfur oxide measuring device 132 that measures the sulfur content in the condensed water stored in the condensed water tank 30 measures the concentration of sulfur oxide that can be oxidized, such as thiosulfuric acid, sulfurous acid, and dithionic acid, by ion chromatography. The change in pH when each ionic species is oxidized to sulfuric acid is calculated, and the supply amount of the pH adjusting agent is adjusted by the concentration controller 131 so that the pH becomes 7 to 12 after the reaction is completed. To supply. In addition, the amount of H 2 O 2 required for oxidation for each ionic species is calculated.
[0028]
The measuring device 8 that measures carbon content measures total organic carbon (TOC). When TOC is measured by the TOC measuring device 133, the hydrogen peroxide supply amount is calculated as an amount of H 2 O 2 equivalent to 2 to 3 times the oxygen amount for oxidizing TOC.
[0029]
Chemical oxygen demand (COD) is used to determine the amount of oxygen supplied to oxidize elements other than carbon. However, the COD measurement is smaller than the theoretically required oxygen amount. A COD measuring device 134 is used for measuring COD. When the COD of sulfurous acid or dithionic acid is measured, the values are 1/8 and 1/4 of the amount of oxygen necessary for actual oxidation. Therefore, the equivalent of 2 to 3 times the amount of H 2 O 2 obtained by subtracting the amount of oxygen necessary to completely oxidize the sulfur oxide from the COD value is calculated.
[0030]
The amount of H 2 O 2 calculated from sulfur oxide, TOC, and COD is adjusted by the concentration controller 131 and supplied to the condensed water supply pipe 135 by the oxidant addition device 10.
[0031]
In this example, the impurities in the condensed water were dithionic acid, organic matter, and metal ions, and SUS316 piping was used and oxidized at 450 ° C. and 25 MPa using H 2 O 2 as an oxidizing agent and NaOH as a pH adjusting agent. Table 1 shows the concentration of each component in the stock solution, the concentration of each component in the solution after treatment, the corrosion rate, and the presence or absence of pitting corrosion.
[0032]
[Table 1]
Figure 0003813835
[0033]
According to the third embodiment, impurities in the condensed water can be completely oxidized without causing pitting corrosion even when the condensed water containing sulfuric acid is supercritically hydroxylated.
Example 4
This embodiment is configured to reduce the amount of H 2 O 2 added to recover and reuse the water after burning the mixed fuel of heavy oil and supercritical water. I will explain.
[0034]
When heavy oil is burned and impurities are collected from the combustion exhaust gas, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, V 2 O 5 , metal oxides, etc. are present in the condensed water 106 recovered from the combustion exhaust gas. . These easily form a salt in supercritical water, and can be easily separated and removed in the capturing step 13.
[0035]
A schematic diagram showing a conventional configuration is shown in FIG. In this method, pressure is applied from a tank 321 using a pump 322 and heated by a heat exchanger 323 to be in a supercritical state. It reacts with the oxygen source in the supercritical reactor 324, is cooled and decompressed in the extractor 325, takes out the gas component in the gas-liquid separator 327, and further separated into light oil and water in the drain separator 328. In the separated water, NH 3 , H 2 S, cyanide and metals such as sodium, potassium and vanadium ions dissolve in the water. Moreover, since oil remains in water, COD and TOC increase.
[0036]
Table 2 shows the conventional process waste water and the condensed water state of this example.
[0037]
[Table 2]
Figure 0003813835
[0038]
According to the fourth embodiment, it is possible to completely oxidize impurities in the condensed water by treating the easily contained components from the condensed water.
(Example 5)
This embodiment is configured to recover moisture in the combustion exhaust gas that is finally released into the atmosphere and prevent white smoke from being generated. Furthermore, it is configured to increase the power generation efficiency by increasing the water recovery rate, and will be described with reference to FIG.
[0039]
The combustion exhaust gas is supplied to the cooling step 14 after the temperature is lowered by the heat recovery device 5 and the exhaust gas heater 108. In the cooling step 14, the absorbing liquid 113 is jetted from the spray device 104, the moisture contained in the exhaust gas is cooled, and becomes condensed water 106 containing sulfur oxides and nitrogen oxides. Further, after removing the mist from the combustion exhaust gas by the mist collector 107, the combustion exhaust gas is heated by the exhaust gas heater 108 so as not to generate white smoke.
[0040]
The influence of the water recovery conditions for the condensed water recovered from the combustion exhaust gas 109 in the cooling step 14 will be described. Factors affecting the power generation efficiency due to changes in water recovery conditions include: a) change in pressure loss (change in pressure ratio depending on the presence or absence of the cooling step 14), b) heat recovery lower limit temperature (gas temperature in the combustion exhaust pipe 110) C) makeup water temperature and amount (preheating effect by latent heat recovery at the time of water recovery). Table 3 summarizes the water recovery conditions and their effects.
[0041]
[Table 3]
Figure 0003813835
[0042]
By setting the water recovery rate to 100% according to this embodiment, the power generation efficiency can be increased by 0.2%. Furthermore, the amount of makeup water can be reduced. Conventionally, the combustion exhaust gas temperature is raised to prevent the generation of white smoke, but the temperature of the combustion exhaust gas discharged out of the system can be lowered because water is recovered and the dew point is lowered.
[0043]
【The invention's effect】
According to the present invention, in a system in which heavy oil is lightened with supercritical water and burned while mixed, impurities such as sulfur oxides and metal oxides absorbed in warm water recovered from combustion exhaust gas are separated, It can be removed and returned to the supercritical water reactor again to be used for lightening heavy oil, and the amount of water used can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention.
FIG. 2 is a diagram showing an embodiment example of a cooling process of the present invention.
FIG. 3 is a diagram showing an embodiment example of an adjustment process of the present invention.
FIG. 4 is a schematic diagram showing a conventional configuration.
[Explanation of symbols]
1 ... Heavy oil reforming process, 2 ... Metal component separation process, 3 ... Combustor, 4 ... Gas turbine, 5 ... Heat recovery device, 6 ... Environmental equipment, 7 ... Adjustment process, 8 ... Measuring instrument, 9 ... Alkali Addition device, 10 ... oxidizer addition device, 11 ... pressurization pump, 12 ... reaction step, 13 ... capture step, 14 ... cooling step, 15 ... heavy oil supply pump, 20 ... piping, 21 ... supply tube, 22 ... Discharge pipe, 23 ... return pipe, 24 ... valve, 25 ... pressure regulating valve, 26 ... filler discharge pipe, 27 ... filler supply pipe, 28 ... discharge pipe, 29 ... heat exchanger, 30 ... condensate tank, 31 ... Stirrer, 32 ... Condensed water tank, 101 ... pH meter, 102 ... pH adjuster supply controller, 103 ... pH adjuster, 104 ... Spray device, 105 ... Condensed water return pump, 106 ... Condensed water, 107 ... Mist Collector, 108 ... Exhaust gas heater, 109 ... Combustion exhaust gas, 110 ... Combustion exhaust gas pipe, 111 ... Combustion exhaust gas, 112 ... Heavy oil heat exchange piping, 113 ... Absorbing liquid, 114 ... Sulfur and nitrogen content measuring machine, 11 5 ... makeup water supply controller, 116 ... part of condensed water, 117 ... valve, 118 ... liquid level controller, 119 ... liquid level gauge, 131 ... concentration controller, 132 ... sulfur oxide measuring device, 133 ... TOC measuring device , 134 ... COD measuring device, 135 ... condensate supply pipe, 321 ... tank, 322 ... pump, 323 ... heat exchanger, 324 ... supercritical reactor, 325 ... extractor, 326 ... pressure reducing valve, 327 ... gas-liquid separation , 328 ... Waste water separator, 329 ... Salt separator, 331 ... Pump (water supply means), 332 ... Compressor (oxygen source supply means), 333 ... Screen process, 334 ... Pressure flotation process, 335 ... Biology Treatment step, 336 ... coagulation sedimentation treatment step, 337 ... sand filtration step.

Claims (12)

重質油を超臨界水で軽質燃料化し、得られた改質燃料で発電するシステムにおいて、燃焼排ガスを冷却し凝縮水を回収する冷却工程、回収した凝縮水を貯留しアルカリまたは酸化剤を添加する調整工程、調整された凝縮水を加圧、加熱し超臨界水反応させる反応工程、反応工程から超臨界水中の不純物を分離除去する捕捉工程を有し、得られた不純物除去後の超臨界水を、前記軽質燃料化の工程で使用される超臨界水の一部として回収・再利用することを特徴とする燃焼排ガスからの水回収システム。  In a system that converts heavy oil into light fuel with supercritical water and generates electricity using the resulting reformed fuel, a cooling process that cools the flue gas and collects condensed water, stores the collected condensed water, and adds an alkali or oxidizer A process for adjusting the condensed water under pressure, heating and reacting with supercritical water, and a trapping process for separating and removing impurities in the supercritical water from the reaction process. A system for recovering water from combustion exhaust gas, wherein water is recovered and reused as part of supercritical water used in the light fuel conversion step. 請求項1において、冷却工程に用いる冷却材の一種類が重質油であることを特徴とする燃焼排ガスからの水回収システム。  The water recovery system from combustion exhaust gas according to claim 1, wherein one kind of coolant used in the cooling step is heavy oil. 請求項1において、調整工程に添加するアルカリがNaOH、KOHのいずれか一方、酸化剤がHであることを特徴とする燃焼排ガスからの水回収システム。The water recovery system from combustion exhaust gas according to claim 1, wherein the alkali added to the adjustment step is either NaOH or KOH, and the oxidizing agent is H 2 O 2 . 請求項3において、アルカリの添加量は冷却工程から排出される凝縮水のS濃度を測定し、S濃度の1〜2倍モルとすることを特徴とする燃焼排ガスからの水回収システム。  4. The system for recovering water from combustion exhaust gas according to claim 3, wherein the amount of alkali added is determined by measuring the S concentration of condensed water discharged from the cooling step to be 1 to 2 moles of the S concentration. 請求項3において、酸化剤の添加量は冷却工程から排出される凝縮水のS濃度、C濃度を測定し、両合計モル数の2〜4倍モルとすることを特徴とする燃焼排ガスからの水回収システム。  In claim 3, the amount of oxidant added is determined by measuring the S concentration and C concentration of condensed water discharged from the cooling step, and is 2 to 4 times the total number of moles from the combustion exhaust gas. Water recovery system. 請求項3において、冷却工程から排出される凝縮水のpHを測定し、添加するアルカリ量を調節することを特徴とする燃焼排ガスからの水回収システム。  4. The system for recovering water from combustion exhaust gas according to claim 3, wherein the pH of the condensed water discharged from the cooling step is measured and the amount of alkali added is adjusted. 請求項3において、凝縮水中のCODを測定し、酸化剤の添加量をCOD値の8〜32倍当量とすることを特徴とする燃焼排ガスからの水回収システム。  4. The system for recovering water from combustion exhaust gas according to claim 3, wherein COD in the condensed water is measured and the amount of oxidant added is 8 to 32 times equivalent to the COD value. 請求項1〜7のいずれか1項において、捕捉工程では、充填剤として石灰石を充填することを特徴とする燃焼排ガスからの水回収システム。  The water recovery system from combustion exhaust gas according to any one of claims 1 to 7, wherein in the capturing step, limestone is filled as a filler. 請求項1〜8のいずれか1項において、冷却工程には、pH調整した吸収液を噴射してこの吸収液に燃焼排ガス中のSOを吸収させるスプレー装置を設けたことを特徴とする燃焼排ガスからの水回収システム。The combustion according to any one of claims 1 to 8, wherein the cooling step is provided with a spray device for injecting a pH-adjusted absorption liquid and absorbing the SO 2 in the combustion exhaust gas into the absorption liquid. Water recovery system from exhaust gas. 請求項1〜9のいずれか1項において、冷却工程には、硫黄酸化物を空気中の酸素と反応させて硫酸にする工程を付加したことを特徴とする燃焼排ガスからの水回収システム。  The water recovery system from combustion exhaust gas according to any one of claims 1 to 9, wherein a step of reacting sulfur oxides with oxygen in the air to form sulfuric acid is added to the cooling step. 請求項1〜10のいずれか1項において、調整工程には、pH調整剤の供給量を濃度調節する濃度調整コントローラを付設したことを特徴とする燃焼排ガスからの水回収システム。  The water recovery system from combustion exhaust gas according to any one of claims 1 to 10, wherein a concentration adjustment controller for adjusting the concentration of the supply amount of the pH adjusting agent is attached to the adjustment step. 請求項1〜11のいずれか1項において、冷却工程で冷却された燃焼排ガス中のミストを除去した後、この排ガスを再度加熱する工程を付加したことを特徴とする燃焼排ガスからの水回収システム。  The water recovery system from combustion exhaust gas according to any one of claims 1 to 11, further comprising a step of heating the exhaust gas again after removing the mist in the combustion exhaust gas cooled in the cooling step. .
JP2001149659A 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas Expired - Fee Related JP3813835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149659A JP3813835B2 (en) 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149659A JP3813835B2 (en) 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas

Publications (2)

Publication Number Publication Date
JP2002338973A JP2002338973A (en) 2002-11-27
JP3813835B2 true JP3813835B2 (en) 2006-08-23

Family

ID=18994797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149659A Expired - Fee Related JP3813835B2 (en) 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas

Country Status (1)

Country Link
JP (1) JP3813835B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098181B2 (en) * 2003-08-05 2008-06-11 株式会社日立製作所 Heavy oil treatment method and heavy oil treatment system
JP4555010B2 (en) * 2004-07-15 2010-09-29 株式会社日立製作所 Reformed fuel-fired gas turbine and operation method thereof
JP4495004B2 (en) * 2005-02-24 2010-06-30 株式会社日立製作所 Heavy oil reformed fuel-fired gas turbine system and operation method thereof
MY148262A (en) * 2006-03-30 2013-03-29 Nippon Steel Eng Co Ltd Liquid fuel synthesizing system
JP2007319832A (en) * 2006-06-05 2007-12-13 Sharp Corp Exhaust gas treatment method and exhaust gas treatment apparatus
JP4723422B2 (en) 2006-06-09 2011-07-13 株式会社日立製作所 Reformed fuel-fired gas turbine system and operation method of reformed fuel-fired gas turbine system

Also Published As

Publication number Publication date
JP2002338973A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP4959303B2 (en) Exhaust gas treatment method and treatment apparatus
RU2453509C1 (en) Method of extracting ammonia and apparatus for realising said method
US6534024B2 (en) Exhaust gas treatment process
JP5773687B2 (en) Seawater flue gas desulfurization system and power generation system
JP6420729B2 (en) Thermal power generation facility for recovering moisture from exhaust gas and method for treating recovered water of the thermal power generation facility
JP3676032B2 (en) Smoke exhaust treatment facility and smoke exhaust treatment method
JP5000557B2 (en) Wet flue gas desulfurization equipment
JPS596926A (en) Removal of hydrogen sulfide from liquid stream for minimizing solid formation
US7381389B2 (en) Wet gas purification method and system for practicing the same
CN102387850B (en) Seawater desulfation treatment apparatus, method for treating desulfurized seawater, and power generation system to which the method has been applied
JP2012179521A5 (en)
WO2013176060A1 (en) Discharge gas treatment device
RU2571671C1 (en) System for production of direct-reduced iron
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
WO2013115107A1 (en) Seawater flue-gas desulfurization system and power generation system
JP2014128775A (en) Exhaust gas treatment equipment and gas turbine power generation system using the same
JPH02237620A (en) Removal method of hydrogen sulfide
JPH1157397A (en) Gas purifying method
JP3813835B2 (en) Water recovery system from combustion exhaust gas
CN108290111A (en) System and method for removing combustion product from power generation cycle
WO2013115108A1 (en) Oxidation tank, seawater flue-gas desulfurization system and power generation system
US11224835B2 (en) Methods for the capture of gaseous sulfur-containing compounds from a natural gas containing hydrogen sulfide
JP3665919B2 (en) Pressurized coal gasification plant
KR100531767B1 (en) H2S Gas Exclusion Method and The Apparatus of Coke Oven Gas
JP2000053980A (en) Purification of gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees