JP2002338973A - Water recovery system from combustion exhaust gas - Google Patents

Water recovery system from combustion exhaust gas

Info

Publication number
JP2002338973A
JP2002338973A JP2001149659A JP2001149659A JP2002338973A JP 2002338973 A JP2002338973 A JP 2002338973A JP 2001149659 A JP2001149659 A JP 2001149659A JP 2001149659 A JP2001149659 A JP 2001149659A JP 2002338973 A JP2002338973 A JP 2002338973A
Authority
JP
Japan
Prior art keywords
water
exhaust gas
combustion exhaust
condensed water
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001149659A
Other languages
Japanese (ja)
Other versions
JP3813835B2 (en
Inventor
Hirokazu Takahashi
宏和 高橋
Tomohiko Miyamoto
知彦 宮本
Nobuyuki Hokari
信幸 穂刈
Atsushi Morihara
森原  淳
Shinichi Inage
真一 稲毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001149659A priority Critical patent/JP3813835B2/en
Publication of JP2002338973A publication Critical patent/JP2002338973A/en
Application granted granted Critical
Publication of JP3813835B2 publication Critical patent/JP3813835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To recover hot water from a combustion exhaust gas to reutilize it and to reduce the amount of water to be used in a system for softening a heavy oil with supercritical water and burning them in the mixed state. SOLUTION: In this system for rendering a heavy oil a soft fuel with supercritical water and producing electric power with the obtained modified fuel, the supercritical water from which impurities have been removed is recovered/reutilized as a part of the supercritical water to be used in the above step of forming the soft fuel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、重質油を超臨界水
中に溶解して軽質化し、軽質化燃料と超臨界水の混合燃
料を燃焼するシステムの、燃焼排ガス中に含まれる水分
の回収システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for dissolving heavy oil in supercritical water to lighten the fuel, and for combusting a fuel mixture of the lightened fuel and the supercritical water to recover water contained in the combustion exhaust gas. It is about the system.

【0002】[0002]

【従来の技術】超臨界水に重質油を溶解し、重質油を軽
質化して燃料ガス、軽質油に転換する技術は周知であ
る。特開2000−109850号公報には、重質油を
超臨界水で軽質化して高効率発電をする技術が提案され
ている。この方式では、水の臨界点(22.1MPa、
374℃)以上の温度、圧力で水に重質油を溶解して軽
質化する。軽質油および超臨界水は減圧、冷却され、油
水分離工程で燃料ガス、軽質油および水に分離される。
これにより、重質油は燃料ガス、軽質油は高効率発電燃
料として使うことができる。この方式では、油水分離工
程で分離した水にはアルカリ等の添加物や還元性のアン
モニア、シアン化物、硫化水素が含まれており、これら
の化合物を処理するために水を系外へ抜き出すようにし
ている。
2. Description of the Related Art A technique for dissolving heavy oil in supercritical water and lightening the heavy oil to convert it into fuel gas or light oil is well known. Japanese Patent Application Laid-Open No. 2000-109850 proposes a technique for reducing the weight of heavy oil with supercritical water to generate high-efficiency power. In this method, the critical point of water (22.1 MPa,
The heavy oil is dissolved in water at a temperature and pressure of 374 ° C. or higher to lighten it. Light oil and supercritical water are decompressed and cooled, and separated into fuel gas, light oil and water in an oil / water separation step.
Thus, heavy oil can be used as fuel gas and light oil can be used as highly efficient power generation fuel. In this method, the water separated in the oil-water separation step contains additives such as alkali and reducing ammonia, cyanide, and hydrogen sulfide, and the water is taken out of the system to treat these compounds. I have to.

【0003】一方、重質油を超臨界水で軽質化し、燃料
と水を分離せずに燃焼器へ導くシステムがある。この方
式においては燃料と水の減圧、冷却、分離工程を必要と
しないため、燃料の減圧、冷却にともなうエネルギー損
失がない。また、重質油と水の混合燃料は燃焼するた
め、燃料中の硫黄や微量金属分は酸化し、環境装置で処
理しやすくなる。
On the other hand, there is a system in which heavy oil is lightened with supercritical water and the fuel and water are led to a combustor without being separated. This method does not require the steps of decompression, cooling, and separation of fuel and water, so that there is no energy loss associated with decompression and cooling of the fuel. In addition, since the fuel mixture of heavy oil and water burns, sulfur and trace metals in the fuel are oxidized and easily processed by environmental devices.

【0004】[0004]

【発明が解決しようとする課題】燃料とともに水分も燃
焼器へ導く方式では、水を多量に使用する。水の使用量
を減らすためには、燃焼排ガスから温水を回収するのが
有効である。
In a system in which moisture is introduced to a combustor together with fuel, a large amount of water is used. In order to reduce the amount of water used, it is effective to recover hot water from flue gas.

【0005】本発明の課題は、重質油を超臨界水で軽質
化し、混合したまま燃焼するシステムにおいて、燃焼排
ガスから回収した温水中に吸収されている硫黄酸化物や
金属酸化物等の不純物を分離、除去し、再度超臨界水反
応器に戻して重質油の軽質化に利用することのできるシ
ステムを提供することにある。
[0005] An object of the present invention is to provide a system in which heavy oil is lightened with supercritical water and burned while mixed, and impurities such as sulfur oxides and metal oxides absorbed in warm water recovered from combustion exhaust gas. Is to provide a system which can be used for separating and removing the oil and returning it to the supercritical water reactor again for lightening heavy oil.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、重
質油を超臨界水で軽質燃料化し、得られた改質燃料で発
電するシステムにおいて、不純物除去後の超臨界水を、
前記軽質燃料化の工程で使用される超臨界水の一部とし
て回収・再利用することを特徴とするものである。
That is, the present invention relates to a system for converting heavy oil into light fuel with supercritical water and generating electricity with the obtained reformed fuel.
It is characterized by being recovered and reused as a part of the supercritical water used in the light fuel conversion process.

【0007】その具体的一例は、燃焼排ガスを冷却し凝
縮水を回収する冷却工程、回収した凝縮水を貯留しアル
カリまたは酸化剤を添加する調整工程、調整された凝縮
水を加圧、加熱し超臨界水反応させる反応工程、反応工
程からの超臨界水中の不純物を分離除去する捕捉工程か
ら構成される。
[0007] One specific example is a cooling step of cooling the flue gas and collecting condensed water, an adjusting step of storing the collected condensed water and adding an alkali or an oxidizing agent, and pressurizing and heating the adjusted condensed water. It comprises a reaction step for supercritical water reaction and a trapping step for separating and removing impurities in the supercritical water from the reaction step.

【0008】一般に重質油を超臨界処理し、得られた改
質燃料で高効率発電を達成するシステムは、超臨界水と
重質油を反応させる改質反応部、重質油中の不純物を分
離する分離部、改質燃料を燃焼し、発電する燃焼器一体
型のガスタービン、ガスタービンから排出される燃焼排
ガスの熱回収部、燃焼排ガス中のNOX、SOX、塵を除
去する環境対策部から構成される。
[0008] In general, a system for supercritically treating heavy oil and achieving high-efficiency power generation with the obtained reformed fuel includes a reforming reaction section for reacting supercritical water with heavy oil, and impurities in heavy oil. Section, a combustor-integrated gas turbine that burns reformed fuel and generates electricity, a heat recovery section for the combustion exhaust gas discharged from the gas turbine, and removes NO X , SO X , and dust in the combustion exhaust gas It is composed of an environmental measures department.

【0009】冷却工程では間接冷却法により、燃焼排ガ
スを冷媒で冷却し、凝縮水を得る。冷媒には海水、工業
用水、クーリングタワー水等が利用できるが、好ましく
はシステム内にある低温流体、例えば重質油、超臨界水
用の給水、熱回収部に供給する給水等を用いるとよい。
冷却工程での温度は90〜50℃、好ましくは50〜6
0℃程度とする。
In the cooling step, the combustion exhaust gas is cooled by a refrigerant by an indirect cooling method to obtain condensed water. As the refrigerant, seawater, industrial water, cooling tower water, or the like can be used, but it is preferable to use a low-temperature fluid in the system, for example, feedwater for heavy oil, supercritical water, or feedwater supplied to the heat recovery unit.
The temperature in the cooling step is 90 to 50C, preferably 50 to 6C.
It is about 0 ° C.

【0010】冷却工程はNOX、SOX、塵を除去する環
境対策部の後流、すなわち燃焼排ガス温度の最も低い部
分に設置し、燃焼排ガスと冷媒を間接接触させて、燃焼
排ガス中の水分を凝縮させる。環境対策部の後流に該冷
却工程を設置することは、燃焼排ガス中のNOX、S
X、塵が極めて低いレベルにまで除去されており、冷
却工程での凝縮水中にNOX、SOXの溶け込みが少な
い、すなわち装置の腐食が軽減できること、塵の混入に
よるポンプ類の磨耗軽減を図ることにある。
[0010] cooling process NO X, SO X, the flow after the environmental countermeasure for removing dust, i.e. the flue gas is placed in the lowest portion of the temperature, by indirect contact with flue gas and the refrigerant, moisture in the combustion exhaust gas To condense. Placing the cooling step on the downstream of the environmental section, NO X in the combustion exhaust gas, S
O X, dust has been removed to an extremely low level, NO X in the condensed water in the cooling step, the SO X penetration is small, i.e. the corrosion of the apparatus can be reduced, the wear reduction of pumps due to contamination of dust It is to plan.

【0011】冷却工程で回収された凝縮水は調整工程に
送る。調整工程は凝縮水を貯留するタンク、凝縮水中の
硫黄分(S分)、炭素分(C)を測定する測定器、アル
カリ(NaOH、KOH)および酸化剤(H22)を供
給する添加装置から構成される。凝縮水中には微量のS
化合物(硫酸塩、ジチオン酸)が存在し、凝縮水をその
まま加熱し高温・高圧水にすると材料の腐食が早まる。
そこで、凝縮水中のS分を測定し、その量に見合ったア
ルカリ(NaOH、KOH)を等モル以上好ましくは1
〜2倍モル添加し、腐食性の少ないNa2SO4、K2SO
4等にする。アルカリは理論上前記反応式に示される理
論量を添加すればよいが、反応効率を考慮して、最大2
倍モルの供給とする。また、C分を測定し、CとSのモ
ル量に対しH22を(2H22=2H2O+O2、すなわ
ちO2が1モルとは2モルのH22)2倍モル以上、好
ましくは2〜4倍モル添加しC分をCO2ガスに転換し
て、加熱、高温化時に反応管内で起こるCの析出を防止
する。またS化合物はSO2或いはSO4に転換して、ア
ルカリ金属と反応させる。
The condensed water recovered in the cooling step is sent to an adjusting step. The adjustment process is a tank for storing condensed water, a measuring instrument for measuring the sulfur content (S content) and carbon content (C) in the condensed water, and an addition for supplying alkali (NaOH, KOH) and oxidizing agent (H 2 O 2 ). It is composed of devices. Trace amount of S in condensed water
Compounds (sulfate, dithionic acid) are present, and condensed water is heated as it is to high-temperature, high-pressure water to accelerate the corrosion of the material.
Therefore, the S content in the condensed water is measured, and alkali (NaOH, KOH) corresponding to the amount is equimolar or more, preferably 1 mol or more.
Na 2 SO 4 , K 2 SO
Make it 4 mag. The alkali may theoretically be added in the stoichiometric amount shown in the above reaction formula.
Double supply. The C content was measured, and H 2 O 2 was added to the molar amount of C and S (2H 2 O 2 = 2H 2 O + O 2 , that is, 1 mol of O 2 means 2 mol of H 2 O 2 ). More than 2 times, preferably 2 to 4 times mole is added to convert C content into CO 2 gas to prevent precipitation of C occurring in the reaction tube during heating and high temperature. The S compound is converted into SO 2 or SO 4 and reacted with an alkali metal.

【0012】調整工程からの凝縮水はポンプで水の臨界
圧以上に加圧、好ましくは22〜25MPaに加圧し、
反応工程に送る。反応工程は熱回収器内に設置された伝
熱管で構成され、伝熱管内に送られた添加剤含有凝縮水
は該伝熱管内で374℃以上、好ましくは380〜41
0℃に加熱され、超臨界水となる。また、アルカリ添加
物はS分と反応し、反応でNa2SO4になり、C分はC
2となる。これらの化合物は超臨界水に溶解された状
態で存在させるため、伝熱管内温度は374〜410℃
に保つ。反応工程で反応させた超臨界水は次の捕捉工程
に送る。
The condensed water from the adjusting step is pressurized with a pump to a pressure higher than the critical pressure of water, preferably to 22 to 25 MPa,
Send to reaction process. The reaction step is constituted by a heat transfer tube installed in the heat recovery unit, and the condensate containing the additive sent into the heat transfer tube is 374 ° C. or higher, preferably 380 to 41 ° C. in the heat transfer tube.
Heated to 0 ° C. to become supercritical water. In addition, the alkali additive reacts with the S component, and becomes Na 2 SO 4 by the reaction, and the C component becomes the C component.
It becomes O 2 . Since these compounds are present in a state of being dissolved in supercritical water, the temperature in the heat transfer tube is 374 to 410 ° C.
To keep. The supercritical water reacted in the reaction step is sent to the next trapping step.

【0013】捕捉工程は伝熱管と開口接続した捕捉管で
構成される。捕捉管内には石灰石(CaCO3)、ドロ
マイト(MgO、CaCO3からなる物質)等を充填
し、少なくとも反応工程の温度よりも捕捉管温度を高く
する、好ましくは410℃〜500℃とする。捕捉管内
では充填された石灰石と不純物を溶解した超臨界水が接
触することで、不純物は石灰石表面上に析出、あるいは
反応して石灰石に捕捉される。これにより不純物を殆ど
含まない超臨界水が得られ、該超臨界水は重質油の改質
化反応に再度利用できるので、廃水として系外に放出す
る必要がなくなる。
[0013] The trapping step comprises a trapping tube which is openly connected to the heat transfer tube. The trapping tube is filled with limestone (CaCO 3 ), dolomite (a substance composed of MgO, CaCO 3 ), etc., and the temperature of the trapping tube is set at least higher than the temperature of the reaction step, preferably 410 ° C. to 500 ° C. In the trapping tube, the filled limestone and supercritical water in which the impurities are dissolved come into contact with each other, whereby the impurities are precipitated or reacted on the limestone surface and are trapped by the limestone. As a result, supercritical water containing almost no impurities is obtained, and the supercritical water can be reused in the reforming reaction of heavy oil, so that it is not necessary to discharge the supercritical water out of the system as wastewater.

【0014】なお、凝縮水中に極微量の重金属分が存在
する場合にも、本方式は適用可能である。
The present method can be applied to a case where a very small amount of heavy metal exists in the condensed water.

【0015】凝縮水中の微量金属分は殆どが酸化金属の
形態で存在しており、凝縮水と共にポンプで送られた酸
化金属分は捕捉工程で、充填剤である石灰石と反応しC
aO・V25、CaO・Na2O・V25として石灰石
上に固着するので、超臨界水とは分離される。
Most of the trace metal components in the condensed water are present in the form of metal oxides. The metal oxide components pumped together with the condensed water react with limestone as a filler in the trapping step to form C oxide.
Since fixed on limestone as aO · V 2 O 5, CaO · Na 2 O · V 2 O 5, and supercritical water are separated.

【0016】このように、重質油を超臨界水で軽質化
し、混合したまま燃焼するシステムにおいて、燃焼排ガ
スから回収した温水中に吸収されている硫黄酸化物や金
属酸化物等の不純物を分離、除去し、再度超臨界水反応
器に戻して重質油の軽質化に利用することができ、水の
使用量を減らすことができる。また、廃水を系外に放出
する必要がなく、廃水処理も不要となる。
As described above, in a system in which heavy oil is lightened with supercritical water and burned while being mixed, impurities such as sulfur oxides and metal oxides absorbed in warm water recovered from combustion exhaust gas are separated. , Can be removed and returned to the supercritical water reactor again for use in lightening heavy oil, and the amount of water used can be reduced. Further, there is no need to discharge wastewater out of the system, and wastewater treatment is not required.

【0017】[0017]

【発明の実施の形態】(実施例1)以下、図面1を用い
て本発明の実施形態を説明する。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described with reference to FIG.

【0018】図1は重質油を超臨界処理して改質燃料を
製造し、得られた改質燃料をガスタービン用燃焼器で燃
焼、燃焼ガスでガスタービンを駆動する発電システムで
ある。ガスタービンからの燃焼排ガスは熱回収器で熱エ
ネルギを回収され、脱硝、脱硫、脱塵等の環境装置で浄
化される。その後、冷却工程で冷却され、燃焼排ガス中
の水分は凝縮、分離回収される。分離回収された凝縮水
にはアルカリとH22を添加後、ポンプで加圧し反応
器、捕捉器で加熱、水の臨界点以上の温度、圧力で反応
させ、凝縮水中の不純物を捕捉、得られた超臨界水で重
質油を改質するシステムである。
FIG. 1 shows a power generation system in which a reformed fuel is produced by supercritical processing of heavy oil, the obtained reformed fuel is burned in a combustor for a gas turbine, and the gas turbine is driven by the combustion gas. The combustion exhaust gas from the gas turbine is recovered by a heat recovery unit, and is purified by environmental devices such as denitration, desulfurization, and dust removal. Then, it is cooled in a cooling step, and the moisture in the combustion exhaust gas is condensed, separated and recovered. After adding alkali and H 2 O 2 to the separated and recovered condensed water, pressurize it with a pump, heat it with a reactor and a trap, react at a temperature and pressure above the critical point of water, trap impurities in the condensed water, This is a system for reforming heavy oil with the obtained supercritical water.

【0019】重質油改質工程1には超臨界水と重質油を
供給し、超臨界水による加水分解作用により重質油を軽
質化する。超臨界水はバルブ24を介して25MPa、
450℃で重質油改質工程に供給する。一方、重質油は
配管20を介して冷却工程14内の熱交換器29に供給
し、燃焼排ガスと間接熱交換させ、重質油を加熱すると
共に燃焼排ガスを冷却し燃焼排ガス中の水分を凝縮させ
凝縮水にする。熱交換器29で加熱された重質油は供給
管21を介して重質油改質工程に供給され、該重質油改
質工程で380℃、25MPaで改質される。改質ガス
および超臨界水は金属分分離工程2で加熱され420
℃、25MPaで金属分を分離され、燃焼器3で燃焼さ
れる。燃焼ガスはガスタービン4を駆動した後、540
℃、1気圧程度で熱回収器5に入る。熱回収器5には通
常の蒸気発生器と本発明になる反応工程12、捕捉工程
13が挿入されており、燃焼ガスとの間接熱交換により
熱を回収する。熱回収器5を出た燃焼排ガスは環境装置
6でSOx、NOx、塵を除去され、冷却工程14に至
る。冷却工程14で得られた凝縮水は排水管28によ
り、凝縮水タンク30に貯留する。貯留された凝縮水は
測定器8によりS分、N分、C分を測定され、その量を
求められる。計測したS分のモル数に対し1.5倍モル
のNaOHをアルカリ添加装置9により凝縮水タンク3
0に供給する。また、S分のモル数とC分のモル数を加
算したモル数の3倍モルのH22を酸化剤添加装置10
により凝縮水タンク30に供給する。なお、添加するア
ルカリは、NaOH以外に凝縮水中の不純物処理に対し
て同様の働きをするKOHでもよい。
In the heavy oil reforming step 1, supercritical water and heavy oil are supplied, and the heavy oil is lightened by the hydrolysis action of the supercritical water. Supercritical water is 25MPa via valve 24,
Feed at 450 ° C to heavy oil reforming process. On the other hand, the heavy oil is supplied to the heat exchanger 29 in the cooling step 14 via the pipe 20 and is indirectly exchanged with the flue gas to heat the heavy oil and to cool the flue gas to reduce the moisture in the flue gas. Condensate to condensed water. The heavy oil heated by the heat exchanger 29 is supplied to the heavy oil reforming step via the supply pipe 21, and is reformed at 380 ° C. and 25 MPa in the heavy oil reforming step. The reformed gas and the supercritical water are heated at 420
The metal component is separated at 25 ° C. at 25 ° C. and burned in the combustor 3. After driving the gas turbine 4, the combustion gas 540
The heat enters the heat recovery unit 5 at about 1 atm. A normal steam generator, a reaction step 12 and a trapping step 13 according to the present invention are inserted into the heat recovery unit 5, and heat is recovered by indirect heat exchange with combustion gas. The combustion exhaust gas that has exited the heat recovery unit 5 is subjected to environmental device 6 to remove SOx, NOx, and dust, and reaches a cooling step 14. The condensed water obtained in the cooling step 14 is stored in a condensed water tank 30 by a drain pipe 28. The amount of S, N, and C of the stored condensed water is measured by the measuring device 8, and the amounts thereof are obtained. The condensed water tank 3 is added to the condensed water tank 3 by the alkali addition device 9 by adding 1.5 times mol of NaOH to the measured mol number of S component.
Supply 0. In addition, three times the number of moles of H 2 O 2 obtained by adding the number of moles of S and the number of moles of C are added to the oxidizing agent adding device
To supply to the condensed water tank 30. In addition, the alkali to be added may be KOH other than NaOH, which acts similarly to the treatment of impurities in the condensed water.

【0020】これら測定器8、アルカリ添加装置9、酸
化剤添加装置10および凝縮水タンク30から構成され
る調整工程7からの凝縮水は加圧ポンプ11で25MP
aに加圧され、熱回収器5内に設置した反応工程12に
送られる。反応工程12では凝縮水が380℃にまで加
熱され、水が超臨界水となる。また、添加物であるH 2
2はH2Oと1/2O2となり、O2は超臨界水に溶解し
たC分と反応しCO2に、S分はSO2になる。さらにS
2は添加物のNaOHと反応してNa2SO4となる。
これらの物質はいずれも374℃〜410℃の範囲では
超臨界水に完全溶解している。反応工程を出た物質は捕
捉工程13に導入する。捕捉工程13には充填剤供給管
27から石灰石等の充填剤を充填しておく。また、反応
工程から流入する流体の温度を430℃程度まで高め
る。これにより超臨界水に溶解していたNa2SO4、S
4等のS化合物は石灰石表面に析出、さらには石灰石
と反応してCaSO4となり石灰石に固定される。該工
程で不純物を除去された超臨界水は排出管22、圧力調
節弁25、戻し管23を経て重質油改質工程1に戻し、
再利用する。
The measuring device 8, the alkali addition device 9, the acid
And a condensed water tank 30.
Condensed water from the adjustment step 7
a to the reaction step 12 installed in the heat recovery unit 5.
Sent. In the reaction step 12, the condensed water is heated up to 380 ° C.
When heated, the water becomes supercritical water. In addition, the additive H Two
OTwoIs HTwoO and 1 / 2OTwoAnd OTwoIs dissolved in supercritical water
Reacts with the C componentTwoAnd S is SOTwobecome. Further S
OTwoReacts with the additive NaOH toTwoSOFourBecomes
All of these substances are in the range of 374 ° C to 410 ° C.
It is completely dissolved in supercritical water. Substances that exit the reaction process are captured
Introduced to the catching step 13. Filler supply pipe in the capture step 13
From 27, a filler such as limestone is filled in advance. Also the reaction
Increase the temperature of the fluid flowing from the process to about 430 ° C
You. As a result, Na dissolved in supercritical waterTwoSOFour, S
OFourS compounds such as precipitate on the surface of limestone,
Reacts with CaSOFourNext it is fixed to limestone. The work
Supercritical water from which impurities have been removed in
Return to the heavy oil reforming process 1 via the drain valve 25 and the return pipe 23,
Reuse.

【0021】本実施例では重質油を超臨界水処理した改
質燃料を燃焼した際に回収した凝縮水を調整工程7、加
圧ポンプ11、反応工程12、捕捉工程13および圧力
調節弁25からなる構成で凝縮水中の不純物除去を実施
した。その結果は下記である。 ケース1 凝縮水:S分3モル、C分4.2モル NaOH添加量:4.5モル H22添加量:10.8モル 反応工程:温度380℃、圧力25MPa 捕捉工程:温度430℃、圧力25MPa、石灰石を充
填 圧力調節弁25から排出した超臨界水のS分0.03モ
ル、C分0.002モル ケース2 凝縮水:S分3モル、C分4.2モル KOH添加量:4.5モル H22添加量:10.8モル 反応工程:温度380℃、圧力25MPa 捕捉工程:温度430℃、圧力25MPa、石灰石を充
填 圧力調節弁25から排出した超臨界水のS分0.03モ
ル、C分0.002モル ケース3 凝縮水:S分3モル、C分4.2モル NaOH添加量:3モル H22添加量:10.8モル 反応工程:温度380℃、圧力25MPa 捕捉工程:温度430℃、圧力25MPa、石灰石を充
填 圧力調節弁25から排出した超臨界水のS分0.05モ
ル、C分0.002モル (実施例2)本実施例では最終的に大気放出する排ガス
中の白煙防止と熱交換器5からの燃焼排ガスの冷却効果
を高めるために構成されたもので、図2を用いて説明す
る。
In the present embodiment, the condensed water recovered when the reformed fuel obtained by treating the heavy oil with supercritical water is burned is used for adjusting the condensed water, the pressure pump 11, the reaction step 12, the trapping step 13, and the pressure control valve 25. Impurities were removed from the condensed water using the following configuration. The results are as follows. Case 1 Condensed water: S content 3 mol, C content 4.2 mol NaOH addition amount: 4.5 mol H 2 O 2 addition amount: 10.8 mol Reaction step: temperature 380 ° C., pressure 25 MPa Capture step: temperature 430 ° C. , Pressure of 25 MPa, filled with limestone Supercritical water discharged from the pressure control valve 25 S content 0.03 mol, C content 0.002 mol Case 2 condensed water: S content 3 mol, C content 4.2 mol KOH addition amount : 4.5 mol H 2 O 2 addition amount: 10.8 mol Reaction step: temperature 380 ° C., pressure 25 MPa Capture step: temperature 430 ° C., pressure 25 MPa, filling with limestone S of supercritical water discharged from the pressure control valve 25 Case 3 Condensed water: S content 3 mol, C content 4.2 mol NaOH addition amount: 3 mol H 2 O 2 addition amount: 10.8 mol Reaction step: temperature 380 ℃, pressure 25MPa Capture process: temperature 430 ° C., pressure 25 MPa, filled with limestone 0.05 mol of S component and 0.002 mol of C component of supercritical water discharged from the pressure control valve 25 (Example 2) In this example, exhaust gas finally released to the atmosphere This is configured to prevent white smoke in the inside and to enhance the effect of cooling the combustion exhaust gas from the heat exchanger 5, and will be described with reference to FIG.

【0022】燃焼排ガスは熱回収器5、排ガス加熱器1
08により温度を下げた後、冷却工程14に供給され
る。冷却工程14ではスプレー装置104から後述する
吸収液113が噴射され、燃焼排ガス中に含まれた水分
が冷却され、硫黄酸化物および窒素酸化物を含んだ凝縮
水106になる。さらに燃焼排ガスはミスト捕集機10
7によりミストを除去した後、排ガス加熱器108で加
熱して白煙を生じないようにする。凝縮水106の一部
はポンプ105で加圧され、pH調整機103でpHを
調整された後、吸収液113としてスプレー装置104
に供給される。凝縮水の他方は調整工程7に送られる。
The combustion exhaust gas is supplied to a heat recovery unit 5 and an exhaust gas heater 1
After the temperature is reduced by 08, it is supplied to the cooling step 14. In the cooling step 14, an absorption liquid 113 described later is injected from the spray device 104, and the moisture contained in the combustion exhaust gas is cooled to form condensed water 106 containing sulfur oxides and nitrogen oxides. Further, the flue gas is discharged to the mist collector 10
After the mist is removed by 7, the mist is heated by the exhaust gas heater 108 so as not to generate white smoke. A part of the condensed water 106 is pressurized by a pump 105 and the pH is adjusted by a pH adjuster 103.
Supplied to The other condensed water is sent to the adjusting step 7.

【0023】スプレー装置104は水を微細な液滴とし
て噴霧する装置であり、例えばスプレーノズルを燃焼排
ガスの流れ方向に対して垂直な面に複数個設置する構成
とする。スプレー塔での気液接触により、燃焼排ガスの
温度が低下し、気体として存在する燃焼排ガス中の水分
は凝縮して液体となる。また、燃焼排ガス中のSO2
pH調整された吸収液に吸収される。吸収を促進し、燃
焼排ガスからの脱硫効率を向上させるために、燃焼排ガ
ス中のSO2を液中に吸収させる反応を促進する。気相
中のSO2を液中に吸収する反応を促進するために、吸
収液のpHは3.8以上とする。
The spray device 104 is a device for spraying water as fine droplets. For example, a plurality of spray nozzles are installed on a surface perpendicular to the flow direction of the combustion exhaust gas. Due to the gas-liquid contact in the spray tower, the temperature of the flue gas decreases, and the moisture in the flue gas present as a gas condenses to a liquid. Also, SO 2 in the combustion exhaust gas is absorbed by the pH-adjusted absorbent. In order to promote absorption and improve desulfurization efficiency from flue gas, a reaction for absorbing SO 2 in flue gas into a liquid is promoted. In order to accelerate the reaction of absorbing SO 2 in the gas phase into the liquid, the pH of the absorbing liquid is set to 3.8 or more.

【0024】一方、調整工程7、反応工程12で硫黄酸
化物を完全酸化するためにH22を添加するが、その添
加量を下げるために冷却工程14で硫黄酸化物を空気中
の酸素と反応させて硫酸にする。吸収液のpHが2〜4
においては完全に酸化されていない硫黄酸化物であるジ
チオン酸の生成が最大になり、pHが6.0以上ではジ
チオン酸は生成しなかった。これらのことから吸収液の
pHは6.0以上に調整した。吸収液に用いるpH調整
剤は、消灰石や生石灰、苛性ソーダを使用する。
On the other hand, H 2 O 2 is added in the adjusting step 7 and the reaction step 12 to completely oxidize the sulfur oxides. To make sulfuric acid. PH of absorption liquid is 2-4
In the above, the production of dithioic acid, which is a sulfur oxide that was not completely oxidized, was maximized, and no dithionic acid was produced at a pH of 6.0 or more. From these facts, the pH of the absorbing solution was adjusted to 6.0 or more. As the pH adjusting agent used in the absorbing solution, slaked stone, quicklime, or caustic soda is used.

【0025】吸収液のpHの調節は、凝縮水106のp
HをpH計測器101で調べ、pHが6.0以上になる
ように、pH調整剤供給コントローラ102からpH供
給機103へpH調整剤を供給するように制御する。吸
収液の硫黄および窒素化合物濃度の調節システムは、p
H調整と同様に、硫黄、窒素化合物計測器114で調
べ、一定濃度以上になった場合、補給水コントローラ1
15からpH調整機103へ補給水を供給し、pHを
6.0以上にするように制御する。凝縮水106の量の
調節は、液面計119で液面を検知し、液面コントロー
ラ118でバルブ117を開閉し、凝縮水量を一定に保
つよう制御する。
The pH of the absorbing solution is adjusted by adjusting the pH of the condensed water 106.
H is checked by the pH meter 101, and the pH controller is controlled to supply the pH adjuster from the pH adjuster supply controller 102 to the pH supplier 103 so that the pH becomes 6.0 or more. The control system for the sulfur and nitrogen compound concentration of the absorbent is p
In the same manner as in the H adjustment, the sulfur and nitrogen compound measuring device 114 checks the concentration.
Supply water is supplied from 15 to the pH adjuster 103, and the pH is controlled so as to be 6.0 or more. The amount of the condensed water 106 is adjusted by detecting the liquid level with a liquid level meter 119, opening and closing a valve 117 with a liquid level controller 118, and controlling the amount of the condensed water to be constant.

【0026】本実施例では燃焼排ガスから凝縮水を回収
する熱交換器5、排ガス加熱器108、冷却工程7、ス
プレー装置104、ミスト捕集機107、pH調整機1
03およびポンプ105からなる構成で凝縮水中の不純
物除去を実施した。その結果は下記である。 ケース1 燃焼排ガス109中S分:70ppm 燃焼排ガス109温度:160℃ スプレー装置104中の水のpH:11.4 吸収液113温度:40℃ 吸収液113pH:11.3 pH調整剤:NaOH 凝縮水106中ジチオン酸濃度:0.5ppm 排ガス加熱器108中のS分:30ppm 排ガス加熱器108中の排ガス温度:90℃ ケース2 燃焼排ガス109中S分:70ppm 燃焼排ガス109温度:130℃ スプレー装置104中の水のpH:11.4 吸収液113温度:40℃ 吸収液113pH:11.3 pH調整剤:NaOH 凝縮水中106ジチオン酸濃度:0.7ppm 排ガス加熱器108中のS分:20ppm 排ガス加熱器108中の排ガス温度:90℃ この実施例2によれば、ガスタービンの燃焼排ガスから
水を効率よく回収し、しかもガスタービンから排気され
た燃焼排ガスが白煙を生じないという効果がある。 (実施例3)本実施例では調整工程7の調整剤を適量供
給し、反応工程12の配管の腐食速度を低下するために
構成されるもので、図3を用いて説明する。硫黄酸化物
(S 23 2-、SO3 2-、S26 2-)、TOC、CODを
測定する測定器8、pH調整剤供給機9、酸化剤供給機
10および凝縮水タンク32からなる構成で凝縮水H 2
2供給量を適正にすることにより、反応器の腐食を押
さえることができる。
In this embodiment, the condensed water is recovered from the flue gas.
Heat exchanger 5, exhaust gas heater 108, cooling process 7,
Playing device 104, mist collector 107, pH adjuster 1
In the condensed water with the configuration consisting of
Material removal was performed. The results are as follows. Case 1 S content in flue gas 109: 70 ppm Flame flue gas 109 temperature: 160 ° C. pH of water in spray device 104: 11.4 Absorbent 113 temperature: 40 ° C. Absorbent 113 pH: 11.3 pH adjuster: NaOH condensed water Concentration of dithionic acid in 106: 0.5 ppm S content in exhaust gas heater 108: 30 ppm Exhaust gas temperature in exhaust gas heater 108: 90 ° C. Case 2 S content in combustion exhaust gas 109: 70 ppm Combustion exhaust gas 109 temperature: 130 ° C. Spray device 104 PH of water in water: 11.4 Absorbent 113 temperature: 40 ° C. Absorbent 113 pH: 11.3 pH adjuster: NaOH Condensed water 106 dithionic acid concentration: 0.7 ppm S content in exhaust gas heater 108: 20 ppm Exhaust gas heating Exhaust gas temperature in vessel 108: 90 ° C. According to the second embodiment, the exhaust gas temperature
Water is collected efficiently and exhausted from the gas turbine.
There is an effect that the generated combustion exhaust gas does not generate white smoke. (Embodiment 3) In this embodiment, an appropriate amount of the adjusting agent in the adjusting step 7 is supplied.
To reduce the corrosion rate of the piping in the reaction step 12
This will be described with reference to FIG. Sulfur oxides
(S TwoOThree 2-, SOThree 2-, STwoO6 2-), TOC, COD
Measuring instrument 8 to measure, pH adjuster feeder 9, Oxidizer feeder
10 and a condensed water tank 32 Two
OTwoReducing the reactor corrosion by adjusting the supply
Can be sustained.

【0027】調整工程7では、pH調整と酸化されうる
物質を分析し、凝縮水30に添加剤と酸化剤を添加す
る。硫黄濃度と炭素濃度の計測のため、凝縮水30は撹
拌機31で撹拌して凝縮水タンク32から採取する。凝
縮水タンク32では撹拌機31で凝縮水を撹拌して水溶
液濃度を均一にする。凝縮水タンク30に貯留された凝
縮水中の硫黄分を測定する硫黄酸化物測定器132では
チオ硫酸、亜硫酸、ジチオン酸等酸化され得る硫黄酸化
物濃度をイオンクロマトグラフ法で測定する。各イオン
種が酸化して硫酸になった場合のpHの変化を計算し、
反応終了後にpHが7から12になるようpH調整剤の
供給量を濃度調整コントローラ131で調節し、凝縮水
タンク32に供給する。また、各イオン種に対する酸化
に必要なH 22の量を計算する。
In the adjusting step 7, pH adjustment and oxidation can be performed.
Analyze the substance and add additive and oxidizer to condensed water 30
You. The condensate 30 is stirred to measure the sulfur and carbon concentrations.
The mixture is stirred by the stirrer 31 and collected from the condensed water tank 32. Coagulation
In the contracted water tank 32, the condensed water is stirred by the stirrer 31 to dissolve the water.
Make the liquid concentration uniform. The condensed water stored in the condensed water tank 30
In the sulfur oxide measuring device 132 that measures the sulfur content in the condensed water,
Sulfur oxidation that can be oxidized such as thiosulfuric acid, sulfurous acid, dithionic acid, etc.
The substance concentration is measured by ion chromatography. Each ion
Calculate the change in pH when the species oxidizes to sulfuric acid,
After the completion of the reaction, the pH adjusting agent is adjusted so that the pH becomes 7 to 12.
The supply amount is adjusted by the concentration adjustment controller 131, and the condensed water is adjusted.
It is supplied to the tank 32. In addition, oxidation to each ion species
H required for TwoOTwoCalculate the amount of

【0028】炭素分を測定する測定器8では、全有機炭
素(TOC)を測定する。TOC測定器133でTOC
を測定する場合には過酸化水素供給量を、TOCを酸化
するための酸素量に対して2倍から3倍当量のH22
を計算する。
The measuring device 8 for measuring carbon content measures total organic carbon (TOC). TOC with TOC measuring device 133
Is measured, the amount of hydrogen peroxide supplied is calculated as an amount of H 2 O 2 equivalent to 2 to 3 times the amount of oxygen for oxidizing TOC.

【0029】炭素以外の元素を酸化するための酸素供給
量を決めるには化学的酸素要求量(COD)を用いる。
ただし、CODの測定では理論的に必要な酸素量より小
さい値になる。CODの測定にはCOD測定器134を
用いる。亜硫酸やジチオン酸のCODを測定すると、実
際に酸化するために必要な酸素量の1/8および1/4
の値になる。そこで、COD値から硫黄酸化物を完全に
酸化するために必要な量の酸素量を減じた分のH22
の2から3倍当量を計算する。
Chemical oxygen demand (COD) is used to determine the supply of oxygen for oxidizing elements other than carbon.
However, in the measurement of COD, the value becomes smaller than the theoretically necessary oxygen amount. A COD measuring device 134 is used for measuring COD. When the COD of sulfurous acid or dithionic acid was measured, it was found that the amount of oxygen required for actual oxidation was 1/8 and 1/4.
Value. Therefore, the equivalent of 2 to 3 times the amount of H 2 O 2 calculated by subtracting the amount of oxygen necessary for completely oxidizing the sulfur oxide from the COD value is calculated.

【0030】硫黄酸化物、TOC、CODから計算した
22量を濃度調整コントローラ131で調整し、酸化
剤添加装置10で凝縮水供給管135に供給する。
The H 2 O 2 amount calculated from the sulfur oxide, TOC, and COD is adjusted by the concentration controller 131 and supplied to the condensed water supply pipe 135 by the oxidizing agent adding device 10.

【0031】本実施例では凝縮水中の不純物をジチオン
酸、有機物、金属イオンとし、SUS316の配管を用
い、450℃、25MPaで酸化剤にH22、pH調整
剤にNaOHを用いて酸化した。原液中の各成分の濃度
と処理後の液中の各成分濃度、腐食速度および孔食の有
無を表1に示す。
In this embodiment, the impurities in the condensed water were dithionic acid, organic substances, and metal ions, and were oxidized at 450 ° C. and 25 MPa using H 2 O 2 as an oxidizing agent and NaOH as a pH adjusting agent using a SUS316 pipe. . Table 1 shows the concentration of each component in the stock solution, the concentration of each component in the solution after the treatment, the corrosion rate, and the presence or absence of pitting corrosion.

【0032】[0032]

【表1】 [Table 1]

【0033】この実施例3によれば、硫酸を含む凝縮水
を超臨界水酸化した場合にも孔食を生じさせることな
く、凝縮水中の不純物を完全に酸化することができる。 (実施例4)本実施例では重質油と超臨界水の混合燃料
を燃焼した後の水を回収、再利用するために添加するH
22量を低減するために構成されるもので、図1を用い
て説明する。
According to the third embodiment, even when the condensed water containing sulfuric acid is supercritically hydroxylated, impurities in the condensed water can be completely oxidized without causing pitting corrosion. (Embodiment 4) In this embodiment, H added to recover and reuse water after burning a fuel mixture of heavy oil and supercritical water is added.
It is configured to reduce the amount of 2 O 2 and will be described with reference to FIG.

【0034】重質油を燃焼して、燃焼排ガスから不純物
を採取した場合には、燃焼排ガスから回収した凝縮水1
06中に硫酸、亜硫酸、硝酸、亜硝酸、V25、金属酸
化物等が存在する。これらは、超臨界水中で塩を生成し
やすく、捕捉工程13で分離除去が容易である。
When the heavy oil is burned and impurities are collected from the flue gas, the condensed water recovered from the flue gas is removed.
Sulfuric acid, sulfurous acid, nitric acid, nitrous acid, V 2 O 5 , metal oxides, and the like are present in 06. These easily generate salts in supercritical water, and are easily separated and removed in the capturing step 13.

【0035】従来の構成を示す概略図を図4に示す。こ
の方式は、タンク321からポンプ322を用いて加圧
し、熱交換器323で加熱して超臨界状態にする。超臨
界反応器324で酸素源と反応して抽出器325で冷
却、減圧して気液分離器327でガス成分を取り出し、
さらに排水分離器328で軽質油と水に分離する。分離
した水中にはNH3、H2S、シアン化物およびナトリウ
ム、カリウム、バナジウムイオン等の金属が水中に溶け
込む。また、油分が水中に残るためCOD、TOCが高
くなる。
FIG. 4 is a schematic diagram showing a conventional configuration. In this method, a tank 321 is pressurized by using a pump 322 and heated by a heat exchanger 323 to bring the tank to a supercritical state. It reacts with an oxygen source in a supercritical reactor 324, cools it in an extractor 325, depressurizes it, takes out a gas component in a gas-liquid separator 327,
Further, the oil is separated into light oil and water by a drain separator 328. NH 3 , H 2 S, cyanide, and metals such as sodium, potassium, and vanadium ions dissolve into the separated water. In addition, since oil remains in water, COD and TOC increase.

【0036】表2に従来工程排水と本実施例の凝縮水性
状を示す。
Table 2 shows the conventional process wastewater and the condensed water properties of the present embodiment.

【0037】[0037]

【表2】 [Table 2]

【0038】この実施例4によれば、凝縮水から処理し
やすい含有成分を処理して、凝縮水中の不純物を完全に
酸化する事ができる。 (実施例5)本実施例では最終的に大気放出する燃焼排
ガス中の水分を回収し白煙発生を防止するために構成す
るものである。さらには、水回収率を上げることによ
り、発電効率を上げるために構成するもので、図2を用
いて説明する。
According to the fourth embodiment, it is possible to completely oxidize impurities in the condensed water by treating the contained components which are easy to treat from the condensed water. (Embodiment 5) This embodiment is designed to recover the moisture in the combustion exhaust gas finally released to the atmosphere to prevent the generation of white smoke. Further, a configuration for increasing the power generation efficiency by increasing the water recovery rate will be described with reference to FIG.

【0039】燃焼排ガスは熱回収器5、排ガス加熱器1
08により温度を下げた後、冷却工程14に供給され
る。冷却工程14ではスプレー装置104から吸収液1
13が噴射され、排ガス中に含まれた水分が冷却され、
硫黄酸化物および窒素酸化物を含んだ凝縮水106にな
る。さらに燃焼排ガスはミスト捕集機107によりミス
トを除去した後、排ガス加熱器108で加熱して白煙を
生じないようにする。
The combustion exhaust gas is supplied to a heat recovery unit 5 and an exhaust gas heater 1
After the temperature is reduced by 08, it is supplied to the cooling step 14. In the cooling step 14, the absorption liquid 1 is supplied from the spray device 104.
13 is injected, the moisture contained in the exhaust gas is cooled,
The condensed water 106 contains sulfur oxides and nitrogen oxides. Further, after removing the mist from the combustion exhaust gas by the mist collector 107, the exhaust gas is heated by the exhaust gas heater 108 to prevent the generation of white smoke.

【0040】冷却工程14において燃焼排ガス109か
ら回収した凝縮水の水回収条件が与える影響について述
べる。水回収条件の変化により、発電効率に与える影響
因子としては、a)圧損の変化(冷却工程14の有無に
よる圧力比の変化)、b)熱回収下限温度(燃焼排ガス
管110中のガス温度)、c)補給水温度および量(水
回収時の潜熱回収による予熱効果)がある。表3に水回
収条件とその影響についてまとめる。
The effect of the water recovery conditions of the condensed water recovered from the flue gas 109 in the cooling step 14 will be described. Factors affecting the power generation efficiency due to changes in the water recovery conditions include: a) changes in pressure loss (changes in pressure ratio due to the presence or absence of the cooling step 14), b) lower limit temperature of heat recovery (gas temperature in the combustion exhaust gas pipe 110) , C) make-up water temperature and quantity (preheating effect by latent heat recovery at the time of water recovery). Table 3 summarizes the water recovery conditions and their effects.

【0041】[0041]

【表3】 [Table 3]

【0042】本実施例により水回収率を100%にする
ことで、発電効率を0.2%高くできる。さらに、補給
水量も低減できる。また、従来は白煙発生防止のために
燃焼排ガス温度を高くしていたが、水を回収して露点が
下がるので、系外へ排出する燃焼排ガス温度を下げるこ
とができる。
By setting the water recovery rate to 100% according to this embodiment, the power generation efficiency can be increased by 0.2%. Further, the amount of makeup water can be reduced. Further, in the past, the temperature of the flue gas was raised to prevent the generation of white smoke, but since water is collected and the dew point is lowered, the temperature of the flue gas discharged to the outside of the system can be lowered.

【0043】[0043]

【発明の効果】本発明によれば、重質油を超臨界水で軽
質化し、混合したまま燃焼するシステムにおいて、燃焼
排ガスから回収した温水中に吸収されている硫黄酸化物
や金属酸化物等の不純物を分離、除去し、再度超臨界水
反応器に戻して重質油の軽質化に利用することができ、
水の使用量を減らすことができる。
According to the present invention, in a system in which heavy oil is lightened with supercritical water and burned while being mixed, sulfur oxides, metal oxides, and the like absorbed in warm water recovered from combustion exhaust gas Can be separated and removed, and returned to the supercritical water reactor again to be used for lightening heavy oil.
Water usage can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の構成を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の冷却工程の実施形態例を示す図であ
る。
FIG. 2 is a diagram showing an embodiment of a cooling step of the present invention.

【図3】本発明の調整工程の実施形態例を示す図であ
る。
FIG. 3 is a diagram showing an embodiment of an adjustment step of the present invention.

【図4】従来の構成を示す概略図である。FIG. 4 is a schematic diagram showing a conventional configuration.

【符号の説明】[Explanation of symbols]

1…重質油改質工程、2…金属分分離工程、3…燃焼器、4
…ガスタービン、5…熱回収器、6…環境装置、7…調整
工程、8…測定器、9…アルカリ添加装置、10…酸化剤添
加装置、11…加圧ポンプ、12…反応工程、13…捕捉工
程、14…冷却工程、15…重質油供給ポンプ、20…配管、
21…供給管、22…排出管、23…戻し管、24…バルブ、25
…圧力調節弁、26…充填剤排出管、27…充填剤供給管、
28…排出配管、29…熱交換器、30…凝縮水タンク、31…
撹拌機、32…凝縮水タンク、101…pH計測器、102…pH
調整剤供給コントローラ、103…pH調整機、104…スプ
レー装置、105…凝縮水戻しポンプ、106…凝縮水、107
…ミスト捕集機、108…排ガス加熱器、109…燃焼排ガ
ス、110…燃焼排ガス管、111…燃焼排ガス、112…重質
油熱交換配管、113…吸収液、114…硫黄分、窒素分計測
機、115…補給水供給コントローラ、116…凝縮水の一
部、117…バルブ、118…液面コントローラ、119…液面
計、131…濃度調整コントローラ、132…硫黄酸化物測定
器、133…TOC測定器、134…COD測定器、135…凝
縮水供給管、321…タンク、322…ポンプ、323…熱交換
器、324…超臨界反応器、325…抽出器、326…減圧弁、3
27…気液分離器、328…排水分離器、329…塩分離器、33
1…ポンプ(水の供給手段)、332…コンプレッサ(酸素
源の供給手段)、333…スクリーン工程、334…加圧浮上
工程、335…生物処理工程、336…凝集沈殿処理工程、33
7…砂ろ過工程。
1… heavy oil reforming process, 2… metal separation process, 3… combustor, 4
... gas turbine, 5 ... heat recovery unit, 6 ... environmental device, 7 ... adjustment process, 8 ... measuring device, 9 ... alkali addition device, 10 ... oxidizing agent addition device, 11 ... pressurizing pump, 12 ... reaction process, 13 … Capture process, 14… Cooling process, 15… Heavy oil supply pump, 20… Piping,
21 ... supply pipe, 22 ... discharge pipe, 23 ... return pipe, 24 ... valve, 25
… Pressure control valve, 26… filler discharge pipe, 27… filler supply pipe,
28 ... discharge pipe, 29 ... heat exchanger, 30 ... condensed water tank, 31 ...
Stirrer, 32… Condensed water tank, 101… pH meter, 102… pH
Adjustment agent supply controller, 103: pH adjuster, 104: Spray device, 105: Condensate return pump, 106: Condensate, 107
… Mist collector, 108… Exhaust gas heater, 109… Combustion exhaust gas, 110… Combustion exhaust gas pipe, 111… Combustion exhaust gas, 112… Heavy oil heat exchange pipe, 113… Absorbent, 114… Sulfur content, nitrogen content measurement 115, make-up water supply controller, 116, part of condensed water, 117, valve, 118, liquid level controller, 119, liquid level gauge, 131, concentration adjustment controller, 132, sulfur oxide measuring instrument, 133, TOC Measuring device, 134: COD measuring device, 135: Condensed water supply pipe, 321: Tank, 322: Pump, 323: Heat exchanger, 324: Supercritical reactor, 325: Extractor, 326: Pressure reducing valve, 3
27 ... gas-liquid separator, 328 ... drain separator, 329 ... salt separator, 33
1 ... pump (water supply means), 332 ... compressor (oxygen source supply means), 333 ... screening step, 334 ... pressure flotation step, 335 ... biological treatment step, 336 ... coagulation sedimentation treatment step, 33
7… Sand filtration process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/72 F23L 17/14 G C10G 31/08 B01D 53/34 125A F23J 15/00 F23J 15/00 B F23L 17/14 (72)発明者 穂刈 信幸 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 森原 淳 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 稲毛 真一 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 3K070 DA03 DA16 DA49 4D002 AA02 AA12 AB01 AB02 BA02 BA05 BA12 BA16 CA01 DA02 DA05 DA11 DA12 EA12 FA03 FA04 HA07 4D038 AA08 AB31 AB36 AB37 BA02 BA04 BB13 BB16 4D050 AA12 AB07 AB18 BB09 BC01 BC02 BD06 BD08 CA13 CA20 4H013 AA04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/72 F23L 17/14 G C10G 31/08 B01D 53/34 125A F23J 15/00 F23J 15/00 B F23L 17/14 (72) Inventor Nobuyuki Hokari 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power and Electric Development Laboratory, Hitachi, Ltd. No. 1 Hitachi, Ltd. Electricity and Electricity Development Laboratory (72) Inventor Shinichi Inage 7-2, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi, Ltd. Electricity and Electricity Development Laboratory (Reference) 3K070 DA03 DA16 DA49 4D002 AA02 AA12 AB01 AB02 BA02 BA05 BA12 BA16 CA01 DA02 DA05 DA11 DA12 EA12 FA03 FA04 HA07 4D038 AA08 AB31 AB36 AB37 BA02 BA 04 BB13 BB16 4D050 AA12 AB07 AB18 BB09 BC01 BC02 BD06 BD08 CA13 CA20 4H013 AA04

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 重質油を超臨界水で軽質燃料化し、得ら
れた改質燃料で発電するシステムにおいて、不純物除去
後の超臨界水を、前記軽質燃料化の工程で使用される超
臨界水の一部として回収・再利用することを特徴とする
燃焼排ガスからの水回収システム。
In a system for converting heavy oil to light fuel with supercritical water and generating electricity with the obtained reformed fuel, the supercritical water from which impurities have been removed is converted to supercritical water used in the light fuel conversion step. A system for recovering water from combustion exhaust gas, which is collected and reused as part of water.
【請求項2】 重質油を超臨界水で軽質燃料化し、得ら
れた改質燃料で発電するシステムにおいて、燃焼排ガス
を冷却し凝縮水を回収する冷却工程、回収した凝縮水を
貯留しアルカリまたは酸化剤を添加する調整工程、調整
された凝縮水を加圧、加熱し超臨界水反応させる反応工
程、反応工程からの超臨界水中の不純物を分離除去する
捕捉工程を有し、得られた不純物除去後の超臨界水を、
前記軽質燃料化の工程で使用される超臨界水の一部とし
て回収・再利用することを特徴とする燃焼排ガスからの
水回収システム。
2. In a system for converting heavy oil to light fuel with supercritical water and generating electricity with the obtained reformed fuel, a cooling step of cooling combustion exhaust gas and collecting condensed water, and storing the collected condensed water in alkaline water. Or an adjusting step of adding an oxidizing agent, a pressurizing and heating the adjusted condensed water, a reaction step of heating and supercritical water reaction, and a trapping step of separating and removing impurities in the supercritical water from the reaction step. Supercritical water after removing impurities
A water recovery system from combustion exhaust gas, wherein the water is recovered and reused as a part of supercritical water used in the light fuel conversion process.
【請求項3】 請求項2において、冷却工程に用いる冷
却剤の一種類が重質油であることを特徴とする燃焼排ガ
スからの水回収システム。
3. The system for recovering water from combustion exhaust gas according to claim 2, wherein one kind of the coolant used in the cooling step is heavy oil.
【請求項4】 請求項2において調整工程に添加するア
ルカリがNaOH、KOHのいずれか一方、酸化剤がH
22であることを特徴とする燃焼排ガスからの水回収シ
ステム。
4. The method according to claim 2, wherein the alkali added to the adjusting step is one of NaOH and KOH, and the oxidizing agent is H.
A water recovery system from combustion exhaust gas, wherein the system is 2 O 2 .
【請求項5】 請求項4において、アルカリの添加量は
冷却工程から排出される凝縮水のS濃度を測定し、S濃
度の1〜2倍モルとすることを特徴とする燃焼排ガスか
らの水回収システム。
5. The water from the combustion exhaust gas according to claim 4, wherein the amount of the alkali added is determined by measuring the S concentration of the condensed water discharged from the cooling step and setting the concentration to 1 to 2 times the S concentration. Collection system.
【請求項6】 請求項4において、酸化剤の添加量は冷
却工程から排出される凝縮水のS濃度、C濃度を測定
し、両合計モル数の2〜4倍モルとすることを特徴とす
る燃焼排ガスからの水回収システム。
6. The method according to claim 4, wherein the oxidizing agent is added in an amount of 2 to 4 times the total mole number of the condensed water discharged from the cooling step by measuring the S concentration and the C concentration. Water recovery system from burning flue gas.
【請求項7】 請求項4において、冷却工程から排出さ
れる凝縮水のpHを測定し、添加するアルカリ量を調節
することを特徴とする燃焼排ガスからの水回収システ
ム。
7. The system for recovering water from combustion exhaust gas according to claim 4, wherein the pH of the condensed water discharged from the cooling step is measured and the amount of alkali added is adjusted.
【請求項8】 請求項4において、凝縮水中のCODを
測定し、酸化剤の添加量をCOD値の8〜32倍当量と
することを特徴とする燃焼排ガスからの水回収システ
ム。
8. The system for recovering water from combustion exhaust gas according to claim 4, wherein the COD in the condensed water is measured, and the added amount of the oxidizing agent is set to 8 to 32 equivalents of the COD value.
【請求項9】 請求項2〜8のいずれか1項において、
捕捉工程では、充填剤として石灰石を充填することを特
徴とする燃焼排ガスからの水回収システム。
9. The method according to claim 2, wherein
A water recovery system from combustion exhaust gas, wherein limestone is filled as a filler in the trapping step.
【請求項10】 請求項2〜9のいずれか1項におい
て、冷却工程には、pH調整した吸収液を噴射してこの
吸収液に燃焼排ガス中のSO2を吸収させるスプレー装
置を設けたことを特徴とする燃焼排ガスからの水回収シ
ステム。
10. The cooling step according to any one of claims 2 to 9, wherein the cooling step is provided with a spray device for injecting a pH-adjusted absorbing liquid to absorb the SO 2 in the combustion exhaust gas into the absorbing liquid. A water recovery system from combustion exhaust gas.
【請求項11】 請求項2〜10のいずれか1項におい
て、冷却工程には、硫黄酸化物を空気中の酸素と反応さ
せて硫酸にする工程を付加したことを特徴とする燃焼排
ガスからの水回収システム。
11. The method according to claim 2, wherein a step of reacting sulfur oxides with oxygen in air to form sulfuric acid is added to the cooling step. Water recovery system.
【請求項12】 請求項2〜11のいずれか1項におい
て、調整工程には、pH調整剤の供給量を濃度調整する
濃度調整コントローラを付設したことを特徴とする燃焼
排ガスからの水回収システム。
12. The system for recovering water from combustion exhaust gas according to claim 2, wherein the adjusting step further comprises a concentration adjusting controller for adjusting the concentration of the supply amount of the pH adjusting agent. .
【請求項13】 請求項2〜12のいずれか1項におい
て、冷却工程で冷却された燃焼排ガス中のミストを除去
した後、この排ガスを再度加熱する工程を付加したこと
を特徴とする燃焼排ガスからの水回収システム。
13. The combustion exhaust gas according to claim 2, wherein a step of removing mist in the combustion exhaust gas cooled in the cooling step and then heating the exhaust gas again is added. Water recovery system.
JP2001149659A 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas Expired - Fee Related JP3813835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149659A JP3813835B2 (en) 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149659A JP3813835B2 (en) 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas

Publications (2)

Publication Number Publication Date
JP2002338973A true JP2002338973A (en) 2002-11-27
JP3813835B2 JP3813835B2 (en) 2006-08-23

Family

ID=18994797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149659A Expired - Fee Related JP3813835B2 (en) 2001-05-18 2001-05-18 Water recovery system from combustion exhaust gas

Country Status (1)

Country Link
JP (1) JP3813835B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505141A2 (en) * 2003-08-05 2005-02-09 Hitachi, Ltd. Method and system for heavy oil treating.
EP1616931A1 (en) * 2004-07-15 2006-01-18 Hitachi, Ltd. Modified fuel burning gas turbine and method of operating the same
JP2006233838A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Gas turbine system burning reformed fuel of heavy oil, and its operation method
EP1865171A2 (en) 2006-06-09 2007-12-12 Hitachi, Ltd. Reformed-fuel-burning gas turbine system and method of operating the same
JP2007319832A (en) * 2006-06-05 2007-12-13 Sharp Corp Exhaust gas treatment method and exhaust gas treatment apparatus
JPWO2007114277A1 (en) * 2006-03-30 2009-08-20 新日鉄エンジニアリング株式会社 Liquid fuel synthesis system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505141A2 (en) * 2003-08-05 2005-02-09 Hitachi, Ltd. Method and system for heavy oil treating.
EP1505141A3 (en) * 2003-08-05 2005-12-07 Hitachi, Ltd. Method and system for heavy oil treating.
US7591983B2 (en) 2003-08-05 2009-09-22 Hitachi, Ltd. Heavy oil treating method and heavy oil treating system
JP2006029184A (en) * 2004-07-15 2006-02-02 Hitachi Ltd Reformed fuel combustion gas turbine and method for operating the same
EP1616931A1 (en) * 2004-07-15 2006-01-18 Hitachi, Ltd. Modified fuel burning gas turbine and method of operating the same
US7594387B2 (en) 2004-07-15 2009-09-29 Hitachi, Ltd. Modified fuel burning gas turbine
JP4555010B2 (en) * 2004-07-15 2010-09-29 株式会社日立製作所 Reformed fuel-fired gas turbine and operation method thereof
JP2006233838A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Gas turbine system burning reformed fuel of heavy oil, and its operation method
JP4495004B2 (en) * 2005-02-24 2010-06-30 株式会社日立製作所 Heavy oil reformed fuel-fired gas turbine system and operation method thereof
JPWO2007114277A1 (en) * 2006-03-30 2009-08-20 新日鉄エンジニアリング株式会社 Liquid fuel synthesis system
JP2007319832A (en) * 2006-06-05 2007-12-13 Sharp Corp Exhaust gas treatment method and exhaust gas treatment apparatus
EP1865171A2 (en) 2006-06-09 2007-12-12 Hitachi, Ltd. Reformed-fuel-burning gas turbine system and method of operating the same
JP2007327458A (en) * 2006-06-09 2007-12-20 Hitachi Ltd Reformed fuel burning gas turbine system and operating method of reformed fuel burning gas turbine system
US7926288B2 (en) 2006-06-09 2011-04-19 Hitachi, Ltd. Reformed-fuel-burning gas turbine system and method of operating the same

Also Published As

Publication number Publication date
JP3813835B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US7037434B2 (en) Integrated water treatment and flue gas desulfurization process
JP4959303B2 (en) Exhaust gas treatment method and treatment apparatus
KR101229680B1 (en) System for treating discharge gas and method of removing mercury from discharge gas
JP5773687B2 (en) Seawater flue gas desulfurization system and power generation system
US20100329957A1 (en) Exhaust-gas treatment apparatus and exhaust-gas treatment method
JPS596926A (en) Removal of hydrogen sulfide from liquid stream for minimizing solid formation
US7381389B2 (en) Wet gas purification method and system for practicing the same
JP3676032B2 (en) Smoke exhaust treatment facility and smoke exhaust treatment method
TWI488682B (en) Seawater desulfurization system and power generation system
JP2012179521A5 (en)
US20130089482A1 (en) Water recovery and acid gas capture from flue gas
RU2119375C1 (en) Method and apparatus for selectively separating hydrogen sulfide
JPH1157397A (en) Gas purifying method
WO2013115108A1 (en) Oxidation tank, seawater flue-gas desulfurization system and power generation system
JP2008238113A (en) Co2 recovery apparatus and waste treatment method
US20110308436A1 (en) System and Method for Improved Heat Recovery from Flue Gases with High SO3 Concentrations
JP3813835B2 (en) Water recovery system from combustion exhaust gas
US4223735A (en) Petroleum production technique utilizing a hot aqueous fluid
KR19980079806A (en) Flue gas treatment method and facility
KR100531767B1 (en) H2S Gas Exclusion Method and The Apparatus of Coke Oven Gas
JP3665919B2 (en) Pressurized coal gasification plant
Massey et al. Economics and alternatives for sulfur removal from coke oven gas
JP2000053980A (en) Purification of gas
JP2013220376A (en) Apparatus and method for seawater desulfurization
CA2540870A1 (en) Desulphurization of odorous gases of a pulp mill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees