JP3813389B2 - Refractory wire and manufacturing method thereof - Google Patents

Refractory wire and manufacturing method thereof Download PDF

Info

Publication number
JP3813389B2
JP3813389B2 JP24670299A JP24670299A JP3813389B2 JP 3813389 B2 JP3813389 B2 JP 3813389B2 JP 24670299 A JP24670299 A JP 24670299A JP 24670299 A JP24670299 A JP 24670299A JP 3813389 B2 JP3813389 B2 JP 3813389B2
Authority
JP
Japan
Prior art keywords
layer
presser
refractory
tape
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24670299A
Other languages
Japanese (ja)
Other versions
JP2001076549A (en
Inventor
守 八城
精一 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP24670299A priority Critical patent/JP3813389B2/en
Publication of JP2001076549A publication Critical patent/JP2001076549A/en
Application granted granted Critical
Publication of JP3813389B2 publication Critical patent/JP3813389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、部分放電特性等の電気特性に優れた耐火電線およびその製造方法に関するものである。
【0002】
【従来の技術】
ビル用配線、各種消防設備や警報設備の給電線等に耐火電線が多く用いられている。代表的な耐火電線は、図6に示すように、導体1上にガラスマイカテープ等の耐火テープを巻付けてなる耐火層2、押え巻層3、押出絶縁体4、半導電層5、遮蔽層6、押え巻層7およびシース8を順に設けて構成される(3芯構造の場合は、これを3芯撚合せて構成される)。そのうち、押え巻層3は、耐火層2の外表面のけばだち、押出絶縁体4との界面不整を防止するために、耐火層2の上にポリエステルテープを1/2ラップ巻きして形成され、押出絶縁体4は例えば有機過酸化物等の架橋剤を配合した未架橋ポリエチレン材料を加圧下で押出被覆すると共に、加圧下で200℃以上の高温に加熱して架橋処理し、加圧冷却する化学架橋方式により形成されるものである。
【0003】
【発明が解決しようとする課題】
耐火電線の押出絶縁体4を化学架橋方式で架橋して形成した場合には、架橋設備が大型化して、電線の製造コストが高くなるという問題がある。
この問題を解決するため、最近、耐火電線の押出絶縁体4をシラン架橋方式、即ち、有機シラン化合物及び有機過酸化物を配合した未架橋ポリエチレン材料を大気圧下で押出被覆して冷却し、その後、これを60〜80℃の温水中で触媒の作用のもとに架橋処理する方式により形成し、設備の小型化、電線製造コストの低減化を図ろうとする試みが進んでいる。
【0004】
しかしながら、このようなシラン架橋方式により電線の押出絶縁体4を形成すると、上記押出被覆材料の押出時の熱で、耐火層2内に含まれる空気その他の気体が熱膨張して、押えテープ巻層3を構成する押えテープの重ね合せ目を通って押出絶縁体4の内面に達し、一部は加熱軟化状態の押出絶縁体4内に侵入する。そして、上記加熱軟化状態の押出絶縁体4が固化すると、この気体が押え巻層3と押出絶縁体4との界面や押出絶縁体4内部に閉じ込められてボイドを形成する。押え巻層3と押出絶縁体4との界面にボイドが閉じ込められると、さらにこの界面の密着性および押出絶縁体4内面の平滑性が損なわれる。
このように、押え巻層と押出絶縁体との界面や押出絶縁体の内部にボイドが形成され、またこの界面の密着性および押出絶縁体4内面の平滑性が損なわれて欠陥が生じると、高電圧印加によって、これらの欠陥部位に電界が集中し、電線に要求される規格値以下の課電圧で該部位から微弱な放電、即ち、部分放電が発生し、長期間にわたって部分放電が繰り返されると、押出絶縁体4が絶縁劣化を起こして電気特性が悪化し、遂には絶縁破壊に到るという問題がある。
【0005】
このような問題は、シラン架橋方式以外の常圧架橋方式で押出絶縁体を形成する耐火電線の場合にも当てはまる。さらに、最近は、火災時における安全性の要求が強くなり、低電圧電線の分野でも耐火電線を採用しようとする試みがされている。この電線の押出絶縁体は架橋処理を行わず、導体上に高分子絶縁材料を大気圧下で押出被覆し、冷却することにより形成される。従って、このような低電圧電線の場合にも同様な問題がある。
【0006】
本発明は、このような問題を解決し、押え巻層と押出絶縁体との界面や押出絶縁体の内部にボイドが形成されないようにして、部分放電の発生を押さえ、電線の電気特性を向上させるようにした耐火電線およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の耐火電線は、導体上に耐火層、押え巻層および高分子絶縁材料からなる押出絶縁体を備え、押え巻層が通気性を有する押えテープを巻付けて形成されるとともに、前記高分子絶縁材料は大気圧下で押出被覆されて架橋されてなるものである。
また、本発明の耐火電線の製造方法は、導体上に耐火層および通気性を有する押え巻層を形成し、この周囲に高分子絶縁材料を押出被覆して押出絶縁体を形成する際、押え巻層と高分子絶縁材料間の隙間を減圧しながら、押え巻層の周囲に高分子絶縁材料を大気圧下で押出被覆し、架橋することを特徴とするものである。
【0008】
上記のように、押え巻層が通気性を有する押えテープを巻付けて形成されているので、押え巻層の周囲に高分子絶縁材料を押出被覆するときの熱で耐火層が加熱され、層内に含まれる空気その他の気体が熱膨張して耐火層の外表面に滲出してくるが、押え巻層が通気性を有するため、この層内を比較的容易に通り抜けて押え巻層の周囲に高分子絶縁材料を押出被覆する前に押え巻層の外表面に放出される。
このため、押え巻層の周囲に高分子絶縁材料を押出被覆する際、前記気体が後方(導体の走行方向と反対方向)に締め出され、押え巻層と押出絶縁体との界面に閉じ込められたり、押出絶縁体の内部に侵入することがない。
従って、本発明の耐火電線では、押え巻層と押出絶縁体との界面や押出絶縁体の内部にボイドが形成されず、また、その界面の密着性および押出絶縁体内面の平滑性を損なうこともなくなり、これらの欠陥部分に電界が集中しないから、部分放電の発生を押さえ、電線の電気特性を向上させることができ、長期間にわたり安定した絶縁特性を保持し、電線の耐寿命性を高めることができる。
【0009】
さらに、本発明では、押え巻層の周囲に高分子絶縁材料を押出被覆する際、押え巻層と高分子絶縁材料間の隙間を減圧しながら押出被覆するので、押出被覆直前に押え巻層の外表面に放出された耐火層内に含まれる空気その他の気体を確実に、また速やかに押出機外へ排出させながら、押出被覆することができる。従って、押出絶縁体の内面や内部にボイドが形成されず、押え巻層と押出絶縁体間の密着性も良好で電気特性の優れた耐火電線を能率よく製造することができる。
【0010】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づき詳細に説明する。図1は本発明に係る耐火電線10A、10B、10Cを3芯撚合わせて構成された耐火電線10を示す側面図である。各芯の耐火電線10A、10B、10Cは同じ構成のものなので、代表として耐火電線10Aについて説明する。図2は図1に示す耐火電線10AのX領域部分を拡大して示す部分拡大側面図である。耐火電線10Aは、導体11上に順次耐火層12、押え巻層13、押出絶縁体14を備えている。耐火層12は、例えば、ガラステープにマイカ箔を接着剤で貼り合わせてなるガラスマイカテープを重ね巻きして複数層に積層させて形成される。
【0011】
押え巻層13は、通気性を有するテープ、例えば、短繊維間に通気穴13aを有する不織布テープ13A(図5参照)又は多数の通気用の微小穴を設けたポリエステルテープ等を重ね巻きして形成される。
例えば、通気性を有するテープとして、短繊維間に多数の通気穴13aを有し、単位面積当り重量が45g/m2で約20cm3/cm2・sec(フラジール法・1枚重ね・ノズル4φで測定)の通気性を有する不織布テープ13Aを重ね巻きで1層巻付けることにより形成される。
不織布テープ13Aの通気性は、単位面積当り重量(目付量)によって変化し、重量が軽くなると増加し、重量が重くなると減少する。耐火層内に含まれる空気その他の気体の層外への抜け易さという点では、通気性の大きい方が好ましいが、該テープの引張り強度が弱くなり押え巻層の形成に支障を来す恐れがある。一方、引張り強度を大きくすれば、そのような問題は解消するが、通気性が小さくなり、上記気体の抜けが悪くなったり、強制的に減圧して気体を抜く場合の真空度を高める必要があり、設備上の限界がある。
このようなことを考慮し、不織布テープ13Aとしては、単位面積当り重量が25〜55g/m2で通気性が60〜10cm3/cm2・sec(フラジール法・1枚重ね・ノズル4φで測定)程度のものを用いるのが実用的である。
なお、通気性を有するテープとして不織布テープ以外の繊維布テープ、多数の微小穴を設けたポリエステルテープ等を用いた場合にも、同様な範囲の通気性を有するものを用いることができる。
本発明においては、この押え巻層13が通気性を有するテープを巻付けて構成されるので、その周囲に高分子絶縁材料を押出被覆するときの熱で耐火層12内の気体が熱膨張したとき、この気体を比較的容易に押え巻層13を通過して外表面に放出させることができる。
【0012】
押出絶縁体14は、例えば、ポリエチレン100重量部に対してビニルトリメトキシシラン等の有機シラン化合物を1.0〜3.0重量部、有機過酸化物を0.05〜0.30重量部の割合で配合した未架橋ポリエチレンコンパウンドを押出機(設定温度180〜220℃、クロスヘッド部210℃)により、押え巻層13の周囲に押出被覆し、冷却後、60〜80℃の温水槽内でジブチル錫ラウレート等のシラノール縮合触媒の存在下でシラン架橋処理を施すことにより形成する。本発明における押出絶縁体14は、シラン架橋方式で形成するものばかりでなく、電子線若しくは放射線照射架橋方式、又は超音波架橋方式で架橋処理して形成するもの、或いは化学架橋方式であるが常圧下で架橋処理することにより形成する。なお、15は半導電性テープを巻付けて形成された半導電層、16は銅テープを巻付けて形成された遮蔽層、17は不織布テープを巻付けて形成された押え巻層、18は難燃性ポリエチレン材料からなるシースである。
【0013】
次に本発明の耐火電線の製造方法を説明する。先ず、前工程において、導体11上に順次耐火層12および押え巻層13を形成する。この形成作業は、耐火層を形成するためのテープ巻ヘッド又はテープ巻機および押え巻層を形成するためのテープ巻ヘッド又はテープ巻機をタンデムに配列し、耐火層12および押え巻層13を連続的に形成することにより一工程で行う(図示せず)。
【0014】
次に、このようにして導体11上に耐火層12および押え巻層13を形成してなる電線コア19を、図3に示すように、押出成形装置20に供給して、電線コア19の周囲に高分子絶縁材料を押出被覆する。
押出成形装置20は、押出機21とその先端に設けられたクロスヘッド22により構成される。クロスヘッド22は、図4に詳細に示すように、ヘッド本体23と、ヘッド本体23内に設けられたダイス24と、ニップル25と、真空吸引手段26により構成される。真空吸引手段26は、内部を通す電線コア19の供給口にパッキン27Aと、側部に真空吸引口27Bを有し、クロスヘッド22の後部に取付けられた真空吸引管体27と、真空吸引管体27内を真空吸引する真空ポンプ28(図3参照)と、真空吸引口27Bと真空ポンプ28とを連結する配管29により構成される。なお、図3において、30は真空ゲージである。
そして、前記電線コア19を図4、5に示すように、押出成形装置20のクロスヘッド22の真空吸引管体27、ニップル25およびダイス24の内部に通してクロスヘッド外へ引き出して走行させると共に、押出機21で押出成形可能に加熱された高分子絶縁材料、例えば、有機シラン化合物を配合した未架橋ポリエチレン材料Aをクロスヘッド22内に供給し、ダイス24、ニップル25間の押出流路を通して電線コア19の周囲に押出被覆して押出絶縁体14を形成する。
【0015】
本発明では、この作業を行うと同時に、図5に示すように、真空吸引手段26の真空ポンプ28(図3参照)を駆動して真空吸引管体27内を絶対圧力500mmHg以下に真空吸引することにより、電線コア19の押え巻層13と押出成形可能に加熱軟化された未架橋ポリエチレン材料A間の先細り筒状の隙間31を減圧しながら、押え巻層13の周囲に未架橋ポリエチレン材料Aを押出被覆する。
この隙間31を減圧することにより、この隙間31と押え巻層13との間に圧力差が生じ、未架橋ポリエチレン材料Aの押出時の熱で、熱膨張した耐火層12内に含まれる空気その他の気体を、図5に示すように、押え巻層13を構成する通気性を有するテープ、例えば不織布テープ13の通気穴13aを通して吸出して速やかに押え巻層13の外表面に放出させ、さらに真空吸引管体27を通して押出成形装置20の外方へ排出させる。このような気体の処理を行うので、前記材料の押出被覆の際、押え巻層13と押出絶縁体14との界面や押出絶縁体14内にボイドが形成される不具合を確実に防止することができる。
【0016】
このようにして、押え巻層13の周囲に未架橋ポリエチレン材料Aを押出被覆し、その後に、押出成形装置20の後段に配置された冷却水槽(図示せず)に通して水冷し、ドラム等に巻き取る。この後は、これをシラン架橋用の温水槽(図示せず)に入れて、シラン架橋処理を施して押出絶縁体14を形成する。
押出絶縁体14を形成した後は、公知の方法で、この周囲に順次半導電層15、遮蔽層16、押え巻層17およびシース18を形成し、耐火電線10Aを製造する。他の耐火電線10B、10Cも同様な方法で製造し、3芯撚合せて耐火電線10を製造する。
【0017】
【実施例】
本発明の具体的な実施例について説明する。先ず、導体断面積が38mm2の銅撚線の導体11上に、0.18mm厚さのガラスマイカテープを1/2重ね巻きで6層に巻付けることにより、耐火層12を形成し、その上に単位面積当り重量が45g/m2で通気性が約20cm3/cm2・sec(フラジール法)の不織布テープを1/5重ね巻きで1層巻付けることにより押え巻層13を形成し、電線コア19を得た。次に、この電線コア19を押出成形装置20のクロスヘッド22内に走行させると共に、クロスヘッド22内を絶対圧力200mmHgに減圧しながら、電線コア19の周囲に、有機シラン化合物を配合させた未架橋ポリエチレン材料Aを4mm厚さに押出被覆し、冷却水槽で冷却し、ドラムに巻き取った。その後、この電線コア19をドラム毎、大気圧下で70℃の温水中に浸し、シラン架橋処理を施し押出絶縁体14を形成した。
【0018】
この後、この押出絶縁体14の上に、半導電テープを1/6重ね巻きで1層巻付けることにより、半導電層15を形成し、その上に銅テープを1/6重ね巻きで1層巻付けることにより遮蔽層16を形成し、その上に不織布テープを1/5重ね巻きで巻付けることにより押え巻層17を形成し、さらにその上にノンハロゲン難燃材を配合したポリエチレン材料を2.3mmの厚さに押出被覆してシース18を形成し、6.6kV用の高電圧耐火電線を試作した。
【0019】
またこの耐火電線と電気性能を比較するため、従来の耐火電線、即ち、押え巻層として、通気用の通気穴が設けられていない厚さ35μmのポリエステルテープを1/2重ね巻きで1層巻付けて形成したものを用い、他の構造は試作電線と同材質、同サイズの耐火電線(比較例、内部にボイド有り)を製作した。これらの耐火電線について電気特性を比較した結果を表1に示す。
【0020】
【表1】

Figure 0003813389
【0021】
上記表から分かるように、本発明のシラン架橋耐火電線(内部にボイドなし)は、部分放電発生電圧(平均値)が10.5kVで、規格値の6.9kVより高くなり、試験に合格した。このため、部分放電特性が向上し、長期絶縁特性が確保される。これに対して、通気性のないポリエステルテープを押え巻層とする耐火電線(比較例、内部にボイド有り)は、部分放電発生電圧(平均値)が5.9kVで、規格値より低くなり不合格となった。このため、部分放電特性が悪く、長期絶縁特性を確保することが難しい。
【0022】
【発明の効果】
上記したように、本発明の耐火電線は、導体上に耐火層、押え巻層および高分子絶縁材料からなる押出絶縁体を備え、押え巻層が通気性を有する押えテープを巻付けて形成してなるから、押え巻層の周囲に高分子絶縁材料を押出被覆するときの熱で耐火層が加熱され、層内に含まれる空気その他の気体が熱膨張すると、押え巻層内を容易に通り抜け、押え巻層の周囲に高分子絶縁材料を押出被覆する前に押え巻層の外表面に放出されるから、該気体が押え巻層と押出絶縁体との界面に閉じ込められたり、押出絶縁体の内部に侵入することがない。
従って、押え巻層と押出絶縁体との界面や押出絶縁体の内部にボイドが形成されず、また、その界面の密着性および押出絶縁体内面の平滑性も損なわれず、これらの欠陥部分に電界が集中しないから、部分放電の発生を押さえ、電線の電気特性を向上させることができ、長期間にわたり安定した絶縁特性を保持し、電線の耐寿命性を高めることができる。
【0023】
また、本発明の耐火電線の製造方法は、導体上に耐火層および押え巻層を形成し、この周囲に高分子絶縁材料を押出被覆して押出絶縁体を形成する際、押え巻層と高分子絶縁材料間の隙間を減圧しながら、押え巻層の周囲に高分子絶縁材料を押出被覆するので、押出被覆前に耐火層内に含まれる空気その他の気体を確実に、また速やかにその隙間から排除することができ、押出絶縁体の内面や内部にボイドが形成されず、また押え巻層と押出絶縁体間の密着性が良好で界面に不整のない電気特性の優れた耐火電線を能率よく製造することができる。
【図面の簡単な説明】
【図1】本発明の耐火電線(3芯構造)を示す側面図である。
【図2】図1に示す耐火電線のX領域部分を拡大して示す部分拡大側面図である。
【図3】本発明の耐火電線の押出絶縁体を形成する押出成形装置を示す概要図である。
【図4】押出成形装置のクロスヘッドを示す断面図である。
【図5】押出成形装置を用いて押え巻層の周囲に押出絶縁体を押出被覆する状態を示す断面図である。
【図6】従来の耐火電線を示す側面図である。
【符号の説明】
10 耐火電線(3芯構造)
10A 耐火電線
10B 耐火電線
10C 耐火電線
11 導体
12 耐火層
13 押え巻層
13A 不織布テープ
13a 通気穴
14 押出絶縁体
15 半導電層
16 遮蔽層
17 押え巻層
18 シース
19 電線コア
20 押出成形装置
21 押出機
22 クロスヘッド
23 ヘッド本体
24 ダイス
25 ニップル
26 真空吸引手段
27A パッキン
27B 真空吸引口
28 真空ポンプ
29 配管
30 真空ゲージ
31 隙間
A 未架橋ポリエチレン材料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refractory wire excellent in electrical characteristics such as partial discharge characteristics and a method for manufacturing the same.
[0002]
[Prior art]
Many fireproof electric wires are used for building wiring, power supply lines for various fire-fighting equipment and alarm equipment. As shown in FIG. 6, a typical refractory electric wire includes a refractory layer 2 formed by winding a refractory tape such as glass mica tape on a conductor 1, a presser wound layer 3, an extruded insulator 4, a semiconductive layer 5, a shield. The layer 6, the presser winding layer 7, and the sheath 8 are provided in this order (in the case of a three-core structure, this is formed by twisting three cores). Among them, the presser wound layer 3 is formed by winding a polyester tape on the refractory layer 2 in 1/2 wrap so as to prevent irregularities on the outer surface of the refractory layer 2 and the interface with the extruded insulator 4. The extruded insulator 4 is formed by, for example, extruding and coating an uncrosslinked polyethylene material containing a crosslinking agent such as an organic peroxide under pressure, and heating to 200 ° C. or higher under pressure to perform a crosslinking treatment. It is formed by a chemical cross-linking system that is pressure-cooled.
[0003]
[Problems to be solved by the invention]
When the extruded insulator 4 of the refractory wire is formed by cross-linking by a chemical cross-linking method, there is a problem that the cross-linking facility is enlarged and the manufacturing cost of the electric wire is increased.
In order to solve this problem, recently, the extruded insulator 4 of the refractory wire is cooled by silane crosslinking, that is, an uncrosslinked polyethylene material blended with an organic silane compound and an organic peroxide is extruded and coated at atmospheric pressure. After that, attempts are being made to reduce the size of the equipment and reduce the manufacturing cost of the equipment by forming this by hot crosslinking at 60 to 80 ° C. under the action of a catalyst.
[0004]
However, when the extruded insulator 4 of the electric wire is formed by such a silane crosslinking method, air or other gas contained in the refractory layer 2 is thermally expanded by heat at the time of extrusion of the extruded coating material, and the press tape winding is performed. The inner surface of the extruded insulator 4 is reached through the overlap of the presser tapes constituting the layer 3, and a part thereof enters the extruded insulator 4 in the heat-softened state. Then, when the extruded insulator 4 in the heat softened state is solidified, this gas is confined in the interface between the presser wound layer 3 and the extruded insulator 4 or inside the extruded insulator 4 to form a void. When a void is confined at the interface between the presser winding layer 3 and the extruded insulator 4, the adhesion at the interface and the smoothness of the inner surface of the extruded insulator 4 are further impaired.
As described above, when a void is formed at the interface between the presser winding layer and the extruded insulator or inside the extruded insulator, and the adhesion of this interface and the smoothness of the inner surface of the extruded insulator 4 are impaired, a defect occurs. By applying a high voltage, the electric field concentrates on these defective parts, and a weak discharge, that is, a partial discharge is generated from the part with a voltage applied below the standard value required for the electric wire, and the partial discharge is repeated over a long period of time. Then, there is a problem that the extruded insulator 4 is deteriorated in electrical insulation, resulting in deterioration of electrical characteristics, and finally dielectric breakdown.
[0005]
Such a problem also applies to a refractory wire that forms an extruded insulator by an atmospheric pressure crosslinking method other than the silane crosslinking method. Furthermore, recently, there has been an increasing demand for safety in the event of a fire, and attempts have been made to adopt refractory wires in the field of low-voltage wires. The extruded insulator of this electric wire is formed by subjecting a polymer insulating material to extrusion coating under atmospheric pressure on a conductor and cooling without performing a crosslinking treatment. Therefore, there is a similar problem in the case of such a low voltage electric wire.
[0006]
The present invention solves such problems and prevents the formation of voids at the interface between the presser wound layer and the extruded insulator or inside the extruded insulator, thereby suppressing the occurrence of partial discharge and improving the electrical characteristics of the electric wire. An object of the present invention is to provide a refractory electric wire and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the refractory electric wire of the present invention comprises an extruded insulator made of a refractory layer, a presser wound layer and a polymer insulating material on a conductor, and the presser wound layer is wound with a presser tape having air permeability. The polymer insulating material is formed by extrusion coating under atmospheric pressure and crosslinked .
In addition, the method for manufacturing a refractory wire according to the present invention includes a refractory layer and a presser wound layer having air permeability formed on a conductor, and a press-fitting layer formed by extrusion coating a polymer insulating material around the refractory layer. While the pressure gap between the wound layer and the polymer insulating material is reduced, the polymer insulating material is extrusion-coated at atmospheric pressure around the presser wound layer and crosslinked .
[0008]
As described above, since the presser wound layer is formed by winding a presser tape having air permeability, the refractory layer is heated by the heat when extruding the polymeric insulating material around the presser wound layer. Air or other gas contained inside expands and exudes to the outer surface of the refractory layer, but the presser wound layer has air permeability, so it can pass through this layer relatively easily and surround the presser wound layer. Before the polymer insulating material is extrusion coated, it is released to the outer surface of the presser wound layer.
For this reason, when the polymer insulating material is extrusion-coated around the presser winding layer, the gas is squeezed backward (opposite to the direction in which the conductor travels) and trapped at the interface between the presser winding layer and the extruded insulator. No intrusion into the extruded insulator.
Therefore, in the refractory electric wire of the present invention, voids are not formed at the interface between the presser wound layer and the extruded insulator or inside the extruded insulator, and the adhesion of the interface and the smoothness of the inner surface of the extruded insulator are impaired. Since the electric field does not concentrate on these defective parts, the occurrence of partial discharge can be suppressed and the electric characteristics of the electric wire can be improved. The stable insulation characteristic can be maintained over a long period of time, and the life of the electric wire can be improved. be able to.
[0009]
Furthermore, in the present invention, when the polymer insulating material is extrusion coated around the presser winding layer, the gap between the presser winding layer and the polymer insulating material is extrusion coated while reducing the pressure. Air or other gas contained in the refractory layer released to the outer surface can be extrusion coated while reliably and quickly exhausting out of the extruder. Therefore, voids are not formed on the inner surface or inside of the extruded insulator, and a refractory electric wire having excellent electrical properties with good adhesion between the presser wound layer and the extruded insulator can be efficiently produced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a side view showing a refractory wire 10 constructed by twisting three cores of refractory wires 10A, 10B, and 10C according to the present invention. Since the refractory wires 10A, 10B, and 10C of each core have the same configuration, the refractory wire 10A will be described as a representative. FIG. 2 is a partially enlarged side view showing an X region portion of the refractory wire 10A shown in FIG. The refractory wire 10 </ b> A includes a refractory layer 12, a presser winding layer 13, and an extruded insulator 14 sequentially on the conductor 11. The refractory layer 12 is formed, for example, by laminating and laminating a glass mica tape formed by laminating a mica foil on a glass tape with an adhesive.
[0011]
The presser winding layer 13 is formed by wrapping a tape having air permeability, for example, a non-woven tape 13A (see FIG. 5) having ventilation holes 13a between short fibers or a polyester tape having a large number of ventilation micro holes. It is formed.
For example, as a tape having air permeability, have a large number of vent holes 13a between the short fibers, about weight per unit area is at 45g / m 2 20cm 3 / cm 2 · sec ( Frazier method, 1 ply nozzle 4φ The non-woven tape 13A having air permeability measured in (1) is wound by one layer by lap winding.
The air permeability of the nonwoven fabric tape 13A varies depending on the weight per unit area (weight per unit area), and increases as the weight decreases and decreases as the weight increases. In terms of ease of air or other gas contained in the refractory layer, it is preferable that the air permeability is large. However, the tensile strength of the tape may be weakened and the formation of the presser wound layer may be hindered. There is. On the other hand, if the tensile strength is increased, such a problem is solved, but the air permeability is reduced, and the above-mentioned gas escape becomes worse, or it is necessary to increase the degree of vacuum when the gas is forcibly decompressed and vented. There are limitations on equipment.
Considering this, as the nonwoven fabric tape 13A, the weight per unit area is 25 to 55 g / m 2 and the air permeability is 60 to 10 cm 3 / cm 2 · sec (measured by the Frazier method, single-ply, nozzle 4φ) ) Is practical.
In addition, when using a fiber cloth tape other than the nonwoven fabric tape, a polyester tape provided with a large number of minute holes, or the like as the tape having air permeability, one having air permeability in a similar range can be used.
In the present invention, since the presser wound layer 13 is formed by winding a tape having air permeability, the gas in the refractory layer 12 is thermally expanded by heat when the polymer insulating material is covered by extrusion. At this time, the gas can be released to the outer surface through the presser winding layer 13 with relative ease.
[0012]
The extruded insulator 14 is, for example, 1.0 to 3.0 parts by weight of an organic silane compound such as vinyltrimethoxysilane and 0.05 to 0.30 parts by weight of an organic peroxide with respect to 100 parts by weight of polyethylene. The uncrosslinked polyethylene compound blended at a ratio is extrusion coated around the presser winding layer 13 by an extruder (set temperature: 180 to 220 ° C., cross head portion: 210 ° C.), and after cooling, in a hot water bath at 60 to 80 ° C. It is formed by performing a silane crosslinking treatment in the presence of a silanol condensation catalyst such as dibutyltin laurate. The extruded insulator 14 in the present invention is not only one formed by a silane crosslinking method, but one formed by crosslinking treatment by an electron beam or radiation irradiation crosslinking method, an ultrasonic crosslinking method, or a chemical crosslinking method. it formed by crosslinking treatment with pressure. 15 is a semiconductive layer formed by winding a semiconductive tape, 16 is a shielding layer formed by winding a copper tape, 17 is a presser wound layer formed by winding a non-woven tape, and 18 is A sheath made of a flame retardant polyethylene material.
[0013]
Next, the manufacturing method of the fireproof electric wire of this invention is demonstrated. First, in the previous step, the fireproof layer 12 and the presser winding layer 13 are sequentially formed on the conductor 11. In this forming operation, the tape winding head or tape winding machine for forming the fireproof layer and the tape winding head or tape winding machine for forming the presser winding layer are arranged in tandem, and the fireproof layer 12 and the presser winding layer 13 are arranged. It is performed in one step by forming it continuously (not shown).
[0014]
Next, as shown in FIG. 3, the electric wire core 19 formed by forming the refractory layer 12 and the presser winding layer 13 on the conductor 11 in this way is supplied to the extrusion molding device 20, and the periphery of the electric wire core 19 is A polymeric insulating material is extrusion coated.
The extrusion molding apparatus 20 includes an extruder 21 and a cross head 22 provided at the tip thereof. As shown in detail in FIG. 4, the cross head 22 includes a head main body 23, a die 24 provided in the head main body 23, a nipple 25, and a vacuum suction means 26. The vacuum suction means 26 has a packing 27A at the supply port of the electric wire core 19 passing through the inside, a vacuum suction port 27B at the side, and a vacuum suction tube body 27 attached to the rear portion of the crosshead 22, and a vacuum suction tube The vacuum pump 28 (see FIG. 3) that vacuums the inside of the body 27 and a pipe 29 that connects the vacuum suction port 27B and the vacuum pump 28 are configured. In FIG. 3, 30 is a vacuum gauge.
4 and 5, the wire core 19 is passed through the vacuum suction tube 27, the nipple 25, and the die 24 of the crosshead 22 of the extrusion molding apparatus 20 to be pulled out of the crosshead and run. Then, a polymer insulating material heated so as to be extrudable by the extruder 21, for example, an uncrosslinked polyethylene material A blended with an organosilane compound, is supplied into the crosshead 22, and passed through an extrusion flow path between the die 24 and the nipple 25. The extrusion insulator 14 is formed by extrusion coating around the wire core 19.
[0015]
In the present invention, simultaneously with this operation, as shown in FIG. 5, the vacuum pump 28 (see FIG. 3) of the vacuum suction means 26 is driven to vacuum the vacuum suction tube 27 to an absolute pressure of 500 mmHg or less. Thus, the uncrosslinked polyethylene material A is formed around the presser winding layer 13 while decompressing the tapered cylindrical gap 31 between the presser winding layer 13 of the electric wire core 19 and the uncrosslinked polyethylene material A heat-softened so as to be extruded. Is extrusion coated.
By depressurizing the gap 31, a pressure difference is generated between the gap 31 and the presser wound layer 13, and air contained in the refractory layer 12 that has been thermally expanded by heat generated when the uncrosslinked polyethylene material A is extruded. As shown in FIG. 5, the gas is sucked through the ventilation hole 13a of the tape having air permeability constituting the presser winding layer 13, for example, the nonwoven fabric tape 13, and promptly discharged to the outer surface of the presser winding layer 13, and further vacuumed. It is discharged to the outside of the extrusion apparatus 20 through the suction tube body 27. Since such a gas treatment is performed, it is possible to reliably prevent a problem that voids are formed in the interface between the presser wound layer 13 and the extruded insulator 14 or in the extruded insulator 14 during the extrusion coating of the material. it can.
[0016]
In this way, the uncrosslinked polyethylene material A is extrusion-coated around the presser winding layer 13, and then water-cooled through a cooling water tank (not shown) arranged at the subsequent stage of the extrusion molding apparatus 20, drums, etc. Take up around. Thereafter, this is put in a hot water tank (not shown) for silane crosslinking, and subjected to silane crosslinking treatment to form an extruded insulator 14.
After the extrusion insulator 14 is formed, the semiconductive layer 15, the shielding layer 16, the presser winding layer 17 and the sheath 18 are sequentially formed around this by a known method, and the refractory electric wire 10A is manufactured. The other refractory wires 10B and 10C are manufactured in the same manner, and the refractory wire 10 is manufactured by twisting three cores.
[0017]
【Example】
Specific examples of the present invention will be described. First, a refractory layer 12 is formed by winding a glass mica tape having a thickness of 0.18 mm onto a conductor 11 of a copper twisted wire having a conductor cross-sectional area of 38 mm 2 in six layers by 1/2 lap winding. A presser winding layer 13 is formed by winding a non-woven tape having a weight per unit area of 45 g / m 2 and a breathability of about 20 cm 3 / cm 2 · sec (Fragile method) by 1/5 lap winding. The electric wire core 19 was obtained. Next, the electric wire core 19 is caused to run in the cross head 22 of the extrusion molding apparatus 20, and the inside of the cross head 22 is reduced to an absolute pressure of 200 mmHg while an organosilane compound is mixed around the electric wire core 19. Crosslinked polyethylene material A was extrusion coated to a thickness of 4 mm, cooled in a cooling water bath, and wound up on a drum. Then, this electric wire core 19 was immersed in 70 degreeC warm water for each drum under atmospheric pressure, the silane bridge | crosslinking process was performed, and the extrusion insulator 14 was formed.
[0018]
Thereafter, a semiconductive tape 15 is wound on the extruded insulator 14 by 1/6 lap winding to form a semiconductive layer 15, and a copper tape is 1/6 wrapped thereon. A shielding layer 16 is formed by layer winding, and a presser winding layer 17 is formed by winding a non-woven tape on the wrapping layer by 1/5, and a polyethylene material blended with a non-halogen flame retardant is further formed thereon. A sheath 18 was formed by extrusion coating to a thickness of 2.3 mm, and a high-voltage refractory electric wire for 6.6 kV was prototyped.
[0019]
In addition, in order to compare the electrical performance with this refractory electric wire, a conventional refractory electric wire, that is, as a presser winding layer, a polyester tape having a thickness of 35 μm without a vent hole for ventilation is wound in a single layer by 1/2 wrapping. The other structure was made of a refractory wire of the same material and size as the prototype wire (comparative example, with voids inside). Table 1 shows the results of comparing the electrical characteristics of these refractory wires.
[0020]
[Table 1]
Figure 0003813389
[0021]
As can be seen from the above table, the silane cross-linked refractory wire of the present invention (with no void inside) has a partial discharge generation voltage (average value) of 10.5 kV, which is higher than the standard value of 6.9 kV, and has passed the test. . For this reason, partial discharge characteristics are improved and long-term insulation characteristics are ensured. In contrast, a refractory electric wire (comparative example, with voids inside) using a non-breathable polyester tape as a holding layer has a partial discharge generation voltage (average value) of 5.9 kV, which is lower than the standard value. Passed. For this reason, partial discharge characteristics are poor and it is difficult to ensure long-term insulation characteristics.
[0022]
【The invention's effect】
As described above, the refractory wire of the present invention is formed by wrapping a presser tape having a breathable layer provided with a fireproof layer, a presser wound layer, and a polymer insulating material on the conductor, and the presser wound layer having air permeability. Therefore, if the refractory layer is heated by the heat generated when the polymer insulation material is coated around the presser wound layer and the air or other gas contained in the layer expands thermally, it easily passes through the presser wound layer. Since the outer surface of the presser winding layer is released before the polymer insulating material is extrusion coated around the presser wound layer, the gas is trapped at the interface between the presser wound layer and the extruded insulator, or the extruded insulator There is no intrusion inside.
Therefore, voids are not formed at the interface between the presser winding layer and the extruded insulator or inside the extruded insulator, and the adhesion at the interface and the smoothness of the inner surface of the extruded insulator are not impaired. Therefore, the occurrence of partial discharge can be suppressed and the electric characteristics of the electric wire can be improved, the stable insulating characteristic can be maintained over a long period of time, and the life resistance of the electric wire can be improved.
[0023]
In addition, the method for producing a refractory wire according to the present invention includes forming a refractory layer and a presser wound layer on a conductor and extruding a polymer insulating material around the conductor to form an extruded insulator. The polymer insulation material is extrusion coated around the presser foot layer while reducing the gap between the molecular insulation materials, so that the air and other gases contained in the refractory layer can be surely and quickly removed before extrusion coating. Efficient refractory wires with excellent electrical properties, with no voids formed on the inner surface or inside of the extruded insulator, good adhesion between the presser wound layer and the extruded insulator, and no irregularities at the interface Can be manufactured well.
[Brief description of the drawings]
FIG. 1 is a side view showing a refractory wire (three-core structure) according to the present invention.
2 is an enlarged partial side view showing an X region portion of the refractory wire shown in FIG. 1; FIG.
FIG. 3 is a schematic view showing an extrusion molding apparatus for forming an extruded insulator of a refractory wire according to the present invention.
FIG. 4 is a cross-sectional view showing a crosshead of the extrusion molding apparatus.
FIG. 5 is a cross-sectional view showing a state in which an extrusion insulator is extrusion coated around the presser winding layer using an extrusion molding apparatus.
FIG. 6 is a side view showing a conventional refractory wire.
[Explanation of symbols]
10 Fireproof wire (3-core structure)
10A refractory electric wire 10B refractory electric wire 10C refractory electric wire 11 conductor 12 refractory layer 13 presser winding layer 13A nonwoven fabric tape 13a vent hole 14 extruded insulator 15 semiconductive layer 16 shielding layer 17 presser winding layer 18 sheath 19 electric wire core 20 extrusion molding device 21 extrusion Machine 22 Crosshead 23 Head body 24 Die 25 Nipple 26 Vacuum suction means 27A Packing 27B Vacuum suction port 28 Vacuum pump 29 Pipe 30 Vacuum gauge 31 Clearance A Uncrosslinked polyethylene material

Claims (4)

導体上に耐火層、押え巻層および高分子絶縁材料からなる押出絶縁体を備え、押え巻層が通気性を有する押えテープを巻付けて形成されるとともに、前記高分子絶縁材料は大気圧下で押出被覆されて架橋されていることを特徴とする耐火電線。An extruded insulator made of a refractory layer, a presser wound layer and a polymer insulating material is provided on a conductor, and the presser wound layer is formed by winding a presser tape having air permeability, and the polymer insulating material is under atmospheric pressure. A fireproof electric wire characterized by being extrusion-coated and crosslinked . 前記押えテープは、単位面積当り重量が25〜55g/mThe presser tape has a weight per unit area of 25 to 55 g / m. 2 で、通気性が60〜10cmAnd breathability is 60-10cm 3 /cm/ Cm 2 ・sec(フラジール法・1枚重ね・ノズル4φで測定)の不織布テープであることを特徴とする請求項1記載の耐火電線。The refractory electric wire according to claim 1, wherein the refractory wire is a non-woven tape of sec (fragile method / single-ply / measured with a nozzle 4φ). 導体上に耐火層および通気性を有する押え巻層を形成し、この周囲に高分子絶縁材料を押出被覆して押出絶縁体を形成する際、押え巻層と高分子絶縁材料間の隙間を減圧しながら、押え巻層の周囲に高分子絶縁材料を大気圧下で押出被覆し、架橋することを特徴とする耐火電線の製造方法。When a fireproof layer and a breathable presser foot layer are formed on the conductor, and a polymer insulating material is formed by extrusion coating around this layer, the gap between the presser wound layer and the polymer insulating material is reduced. On the other hand, a method for producing a refractory wire, characterized in that a polymeric insulating material is extrusion-coated at atmospheric pressure around the presser winding layer and crosslinked . 前記押え巻き層は、単位面積当り重量が25〜55g/mThe presser wound layer has a weight per unit area of 25 to 55 g / m. 2 で、通気性が60〜10cmAnd breathability is 60-10cm 3 /cm/ Cm 2 ・sec(フラジール法・1枚重ね・ノズル4φで測定)の不織布テープで形成されていることを特徴とする請求項3記載の耐火電線の製造方法。4. The method for producing a refractory electric wire according to claim 3, wherein the method is made of a non-woven tape of sec (fragile method / single-ply / measured with a nozzle 4φ).
JP24670299A 1999-08-31 1999-08-31 Refractory wire and manufacturing method thereof Expired - Lifetime JP3813389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24670299A JP3813389B2 (en) 1999-08-31 1999-08-31 Refractory wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24670299A JP3813389B2 (en) 1999-08-31 1999-08-31 Refractory wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001076549A JP2001076549A (en) 2001-03-23
JP3813389B2 true JP3813389B2 (en) 2006-08-23

Family

ID=17152374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24670299A Expired - Lifetime JP3813389B2 (en) 1999-08-31 1999-08-31 Refractory wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3813389B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952160B1 (en) 2008-01-30 2010-04-09 김백규 A production way of silicon flame resisting fireproof cable
JP5962536B2 (en) * 2013-02-19 2016-08-03 住友電装株式会社 Manufacturing method of water-bridged wire
JP2015149145A (en) * 2014-02-05 2015-08-20 東日本旅客鉄道株式会社 power distribution cable and signal system

Also Published As

Publication number Publication date
JP2001076549A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
JP3813389B2 (en) Refractory wire and manufacturing method thereof
JP2007305389A (en) High voltage fire-resistant cable and its manufacturing method
JP2000011772A (en) Fire-resistant electric cable
JP2002298673A (en) Manufacturing method of crosslinked polyethylene insulation power cable
JP2002095125A (en) Cable joint and fabrication method therefor
JP2004259671A (en) Manufacturing device of insulated cable
JP7136103B2 (en) Power cable manufacturing method
JP4007844B2 (en) CV cable manufacturing method
JPH1118270A (en) Cable connection and terminal sections
JP2003036736A (en) Insulated electric wire
JP3129084B2 (en) Fire resistant cable and method of manufacturing the same
JP2002260464A (en) Method for removing crosslinked residue of crosslinked polyolefin insulating cable
JP3118137B2 (en) Fire resistant wire
JP2018022636A (en) Insulated wire and fusible insulated wire, and method for producing the same
JP2002260454A (en) Fire proof electric wire
JPH1031919A (en) Manufacture of high-voltage cv cable
JP3067352B2 (en) Rubber insulated wire and method of manufacturing the same
JP2903215B2 (en) Cable mold joint method
JPH1031920A (en) Manufacture of high-voltage cv cable
JP3830017B2 (en) Refractory wire
JPH0680221U (en) Cable bridge equipment
JPH06260042A (en) Manufacture of electric cable
JPH11345524A (en) Fire-resisting wire
CN114974659A (en) Graphene composite high-performance large-section medium-voltage cable and preparation method thereof
JPH0326569Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060531

R151 Written notification of patent or utility model registration

Ref document number: 3813389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term