JP3812961B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP3812961B2
JP3812961B2 JP10624895A JP10624895A JP3812961B2 JP 3812961 B2 JP3812961 B2 JP 3812961B2 JP 10624895 A JP10624895 A JP 10624895A JP 10624895 A JP10624895 A JP 10624895A JP 3812961 B2 JP3812961 B2 JP 3812961B2
Authority
JP
Japan
Prior art keywords
sewage
ppm
organic
treatment
aluminum hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10624895A
Other languages
Japanese (ja)
Other versions
JPH08299978A (en
Inventor
明 木村
淳史 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd filed Critical Onoda Chemico Co Ltd
Priority to JP10624895A priority Critical patent/JP3812961B2/en
Publication of JPH08299978A publication Critical patent/JPH08299978A/en
Application granted granted Critical
Publication of JP3812961B2 publication Critical patent/JP3812961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【0001】
【産業上の利用分野】
この発明は有機性汚水の処理方法に関し、特にりん、窒素、色度、難分解性有機物質などを低減できるようにした有機性汚水の好適な処理方法に関するものである。
【0002】
【従来の技術】
現在、都市下水や大規模な生活排水の有機性汚水を対象に好気性微生物を利用した活性汚泥法による汚水処理が広く行われている。しかしながら、有機性廃水は標準的な活性汚泥法では十分な処理が得られていないのが実情である。さらに近年は、有機性汚水に関して特に湖や湾などの閉鎖水系域において富栄養化現象の進行が顕著で、それらに流入する廃水の対策にも苦慮している。
【0003】
こうした事態に対する対策として、りん、窒素などの栄養塩類の除去は勿論、色度の低減、界面活性剤に代表される難分解性有機物の除去を含めた有機性汚水の有効な処理が必要で、そのために各種の高度処理プロセスが提案されている。例えば、活性汚泥処理プロセスの後に濾過プロセスを組合わせた方法が提案され、これが現在では最も普及しつつある。これは浮遊性懸濁物質の除去には効果があるが、溶解性の窒素、りんといった栄養塩類の除去、或いはフミン酸などによる着色物質や界面活性剤類などの難分解性有機物に対しては十分な効果が得られないといった問題がある。
【0004】
また別の方法として、溶解性りんや窒素を除去するために、一般的な活性汚泥法を改良して嫌気性処理−無酸素−好気性処理を行うもの、凝集剤併用型循環式硝化脱窒法が開発されている。
【0005】
しかしながら、前者の方法は嫌気槽、無酸素槽、撹拌槽、撹拌装置などの反応槽や設備が伴なう問題があった。また、後者の方法も各種の設備を必要とする他に、アルミニウム塩などの無機凝集剤の添加量が過剰になると、沈降性の悪い水酸化アルミニウムの微粒子が生成し、これが処理水の中へ流入するといった問題があった。さらに、NaOHなどの添加により硝化活性が阻害され処理能力が低下するなどの問題もあった。
【0006】
色度や難分解性有機物などの溶解性有機物の除去を目的としたものとして、粉末活性炭を曝気槽へ添加するいわゆるPACT法や粒状活性炭による濾過法などがあるが、溶解性りんやアンモニア態窒素に対する十分な効果は発揮されない。溶解性りん、アンモニア態窒素、色度、難分解性有機物質を同時に除去するには、これらの高度処理法のほかにRO膜などの機能性膜を組合わせたプロセスを行うことが必要で、そのためには広大な敷地を必要として市街地では用地の確保が困難であるばかりか、設備の維持管理が複雑となるといった問題点があった。
【0007】
【発明が解決しようとする課題】
この発明は、従来の活性汚泥プロセスの設備を変更することなく、有機性汚水のりん、窒素、色度とともに、生物難分解の溶解性有機物質を含めた全体の有機物質を低減し、しかも通常の活性汚泥法の処理能力を低下させることなく有機性汚水の処理を行なおうとするものである。
【0008】
【課題を解決するための手段】
この発明は、有機性汚水の微生物処理とともに、汚水色度を改善する汚水処理において、非結晶質水酸化アルミニウムの懸濁液に有機系高分子凝集剤を添加して得られる濃縮分離液を脱水した着色成分除去機能を併せ持つ脱水乾燥生成物(A)を非結晶質水酸化アルミニウム濃度換算で100〜500 ppm 、結晶質アルミノ珪酸塩(B)を固形物換算で2500〜12000 ppmと褐炭乾留物(C)を固形物換算で1100〜5500 ppmのいずれか一方又は双方を、微生物処理槽またはそれ以前の処理工程にある汚水のいずれかに同時にまたは別個に添加することを特徴とする有機性汚水の処理方法(請求項1)、有機性汚水の微生物処理とともに、汚水色度を改善する汚水処理において、非結晶質水酸化アルミニウムの懸濁液に有機系高分子凝集剤を添加して得られる濃縮分離液を脱水した着色成分除去機能を併せ持つ脱水乾燥生成物(A)を非結晶質水酸化アルミニウム濃度換算で100〜500 ppm 、結晶質アルミノ珪酸塩(B)を固形物換算で2500〜12000 ppmと褐炭乾留物(C)を固形物換算で1100〜5500 ppm いずれか一方または双方を混合してなる水処理剤を、微生物処理槽またはそれ以前にある有機性汚水のいずれかに添加することを特徴とする有機性汚水の処理方法(請求項2)および前記有機系高分子凝集剤が、アクリル酸とアクリルアミドの共重合体とポリアクリルアミド部分加水分解物の中のいずれか一つである請求項1または2に記載の有機性汚水の処理方法(請求項3)である。以下に、これらの発明の詳細を説明する。
【0009】
この発明の対象汚水は、都市下水、し尿などの有機性汚水で、例えば水質が1〜20ppm の溶解性りん(PをPO4 として)、10〜40ppm のアンモニア態窒素(N−NH3 として)、30〜200度の色度、50〜500ppm のBOD、50〜250ppm のCOD、0.1〜5ppm のMBAS(メチレンブルー活性物質)を対象目安とする。また、処理水は、これまで下水処理水循環再利用水質として採用されているレベルを目標として、溶解性りん0.5ppm 以下、アンモニア態窒素 ppm 以下、色度10度以下、BOD7ppm 以下、COD7ppm 以下、MBAS0.05ppm 以下とし、これらを達成する高度処理方法を得ようとするものである。
【0010】
そのために、この発明では非結晶質水酸化アルミニウムの懸濁液に有機系高分子凝集剤を添加して得られる濃縮分離液を脱水した着色成分除去機能を併せ持つ脱水乾燥生成物(A)を非結晶質水酸化アルミニウム濃度換算で100〜500 ppm と、結晶質アルミノ珪酸塩(B)を固形物換算で2500〜12000 ppm と褐炭乾留物(C)を固形物換算で1100〜5500 ppmのいずれか一方又は双方を汚水の処理工程で添加するものである。
【0011】
非結晶質水酸化アルミニウムの懸濁液に有機系高分子凝集剤を添加して得られる濃縮分離液を脱水した着色成分除去機能を併せ持つ脱水乾燥生成物(A)は、この発明の水処理剤の主成分で添加量は非結晶質水酸化アルミニウム濃度換算で100〜500 ppm である。ここで用いる非結晶質水酸化アルミニウムは、粒径50μm以下の微粒子であり、その懸濁液のpHを10以下とする。
【0012】
例えば、アルミン酸ナトリウムやアルミン酸カリウム等のアルミン酸塩に硫酸や塩酸等の強酸を添加して、pHを10以下に低下させると、非結晶質水酸化アルミニウムの微粒子が生成する。これらの微粒子の粒径は一般に50μm以下を主体とし、こうして生成した非結晶質水酸化アルミニウム懸濁液は非常に安定して分散している。この懸濁液のpHを10以下に調整した後、有機系高分子凝集剤を添加しながら、上記酸でpHをさらに中性域まで低減させると、予め生成させておいた粒径50μm以下の非結晶質水酸化アルミニウムの微粒子を種として添加した有機系高分子凝集剤の凝集作用により、粒径が50μm以上の非結晶質水酸化アルミニウムの粒子のフロックが形成される。その結果、凝集後の非結晶質水酸化アルミニウムは速やかに沈降分離し、しかも濾過性に優れるので脱水が容易となる。その際、使用する有機系高分子凝集剤添加量はアルミン酸塩に対して0.1〜1.0重量%である。それに対して有機系高分子凝集剤無添加の条件で生成させた非結晶質水酸化アルミニウム懸濁液は、非常に安定な分散系を形成するため、濾過性が非常に悪く、脱水が困難となる。
【0013】
さらに、この発明の脱水乾燥物(A)は、工場の廃棄物から生成することも出来る。例示すると、アルミサッシ製造工程に代表される表面処理工程(アルマイト加工)で排出されるアルカリ性排水に、陽極処理工程から出る酸性排水を添加して非結晶質水酸化アルミニウム懸濁液とし、これにさらに有機系高分子凝集剤を加えてから濃縮し脱水乾燥物とする。この脱水乾燥は水分20%以下とするが、上記のようにアルミサッシ工場が近くにあって非晶質アルミニウムが下水処理場に近接して得られる場合は、有機系高分子凝集剤を加えた濃縮液またはその脱水生成物をそまま使用してもよい。
【0014】
この発明で用いる有機系高分子凝集剤は、例えばアクリル酸とアクリルアミドの共重合体或いはポリアクリルアミド部分加水分解物であり、水中で解離した場合に、アニオン性あるいは非イオン性を示す。特に平均分子量が500×104 〜2500×104 の範囲にあるものが望ましい。このような有機系高分子凝集剤が非結晶質水酸化アルミニウム懸濁液の沈降分離性を向上させると同時に濾過及び脱水を容易とする。
【0015】
上記の(A)成分を汚水処理プロセス中に供給すると、非結晶質水酸化アルミニウムおよびその表面に付着する有機系高分子凝集剤の両方の機能により従来の活性汚泥法ではほとんど除去できないオルトりん酸、ピロリン酸等のポリりん酸の低減に効果を発揮する。
【0016】
同時に、この発明によるとSS性物質の吸着除去も有効に行われる。このため、従来の活性汚泥法のように有機性りんだけでなく無機性りんを含めたトータルりんに対する除去能力を大幅に向上させることが出来る。
【0017】
さらに、上記(A)成分によると、現在発がん性物質として問題となっているトリハロメタンの前駆体でもあるフミン酸、フルボ酸などのフミン質などの有機系高分子着色成分の除去に対しても有効であることが確認され、処理水質の色度を著しく低下させることも出来るようになる。
【0018】
(A)成分の使用粒径は、300μm以下とし、特に50〜150μmが好ましい。(A)成分添加量は、汚水に対し非結晶質水酸化アルミニウム濃度換算で100〜500ppm である。汚水に対する添加量が500ppm を超えると活性汚泥微生物群の栄養源であるりんが過剰吸着され微生物活性を低下させる。その結果、本来持ち合わせている活性汚泥による浄化能力が十分に発揮されない。また、一部の活性汚泥微生物群への悪影響も懸念される。添加量が100ppm 未満では溶解性りんや着色成分などの除去に対して十分な効果は得られない。さらに好ましい添加量は、250〜450ppm である。
【0019】
(A)成分の添加位置については、以下に説明する(B)成分およびC成分と同様で、好気性微生物処理の中でも一般的な活性汚泥法との組み合わせでは曝気槽前段以前の工程中の汚水、即ち初沈流入水、初沈、初沈流出水、曝気槽流入水または曝気槽のいずれかなどが適当である。さらに、これらの(A)、(B)、(C)は、上記の添加位置にあって同じであってもよいが、上記の範囲で添加位置をそれぞれ異にしてもよい。
【0020】
非結晶質水酸化アルミニウムに有機系高分子凝集剤を添加して得た脱水生成物の(A)成分は、次に説明する結晶質アルミノ珪酸塩(B)と褐炭乾留物(C)のいずれかまたは双方と組み合わせて使用される。
【0021】
ここに用いる結晶質アルミノ珪酸塩(B)には、例えばモルデナイトやクリノプチオライトなどの天然ゼオライトが用いられる。これを有機性汚水に添加すると、標準的な活性汚泥法ではほとんど除去されない溶解性窒素の主成分であるアンモニア態窒素の吸着除去が効果的に行われる。また、SS成分や活性汚泥フロックに対する吸着性が高く、凝集性を高めることで終沈における沈降分離速度を向上させる。さらに、バルキング対策にも効果を発揮して安定した処理水を得ることが出来る。
【0022】
結晶質アルミノ珪酸塩の使用粒径は300μm以下とし、特に50〜150μmが好ましい。粒径をこの範囲で用いると、添加後数分以内にほぼイオン交換は平衡状態に達し、活性汚泥やそれ以外のSS成分による細孔閉塞の影響を最小限に抑えることが可能となり、水温の影響も受けることなく、効果的にアンモニア態窒素の除去が可能となる。
【0023】
B成分の添加量は、汚水に対し固形分換算で2500〜12000ppm が好ましい。これが2500 ppm 未満ではアンモニア態窒素に対する吸着効果が十分でなく、また12000 ppm を超えると活性汚泥微生物群の栄養源である窒素を過剰に吸着するため、微生物活性を低下させ活性汚泥法による浄化能力が十分に発揮されなくなる。
【0024】
この発明のその他の構成成分は、褐炭乾留物(C)である。褐炭乾留物(C)は、褐炭を300〜800℃、好ましくは500〜700℃で5〜10時間炭化して得られたものである。その灰分は3%以下、揮発分5%以下、固定炭素分90%以上で、比表面積が200m2 /g以上の多孔質炭素材である。
【0025】
この褐炭乾留物は分子量1000以下の低分子難分解性有機物質の除去に有効である。いわゆるCOD成分の除去に効果がある。例えば、一般的な都市下水をみた場合、その中に含まれている難分解性有機物質ではフェノール等の芳香族ベンゾピレン等の多環芳香族に代表される低分子量の疎水性有機物質や発泡の原因であるアルキルベンゼンスルフォン酸塩(ABS)やアルキルフェノールエトキシレート(APE)などの界面活性剤に対する吸着性能に優れている。これは、褐炭乾留物(C)が炭素系多孔質素材としての特性と数十A以下の細孔が発達した構造を持つためである。また、(C)成分は同時に浮遊状粒子物質(SS)の吸着除去に有効であるため、BOD低減にも有効である。さらに、初沈や曝気槽中の汚水から発生する、硫化水素やメチルメルカプタンなどの硫黄系悪臭成分低減機能も付与することが可能である。
【0026】
褐炭乾留物の粒径は、結晶質アルミノ珪酸塩(B)と同様に300μm以下で、好ましくは50〜150μmである。また、添加量は汚水に対して固形分換算で1100〜5500ppm とする。これが1100 ppm 未満では吸着機能が十分でなく有機物質は低減されない。これが5500 ppm を超えると難分解の溶解性有機物質に対する吸着除去効果がほぼ収束してしまうため、分子量の大きい炭水化物や蛋白質など活性汚泥微生物群の栄養源の吸着が急激に進行し、その結果微生物活性への影響が浄化能力を低下させる。
【0027】
この発明は、以上に説明したように対象汚水の水質と目標処理水質に応じて、溶解性りん、SS性物質、フミン質などの着色成分の除去に有効な、非結晶質水酸化アルミニウムに高分子凝集剤を添加して得た乾燥生成物(A)に、アンモニア態窒素、SS成分の除去効果のある結晶質アルミノ珪酸塩(B)および難分解溶解性有機物質の吸着除去に有効な褐炭乾留物(C)のいずれか一方または双方と組合わせた水処理剤を用いて処理を行うものである。
【0028】
従って、この発明によれば下水高度処理に必要なプロセスを新に増設しなくとも、従来の設備を用いてこれまで大きな問題となっていた水質に対し、一般の活性汚泥法による処理能力を低下させないで溶解性りんの低減、フミン質などによる着色が原因となる色度の低減、アンモニア態窒素の低減、曝気槽での発泡現象の抑制、難分解性低分子有機物質の低減、硫化水素などの悪臭成分の低減、汚泥沈降分離性向上によるバルキング防止、温度やpHの変化に対応し年間の安定した操業、活性汚泥微生物群の活性の向上といったことをもたらすことが出来るようになった。
【0029】
なお、本発明によれば水処理剤の各成分の配合比を調整することにより、下水以外の染色廃水中の色度成分の除去、し尿廃水中のアンモニア態窒素及び色度の除去、各種産業廃水中のりん成分の除去に利用することが出来る。
【0030】
この発明は、非結晶質水酸化アルミニウムの懸濁液に有機系高分子凝集剤を添加して得られる濃縮分離液を脱水した着色成分除去機能を併せ持つ脱水乾燥生成物で、従来の活性汚泥法では除去できないオルトリン酸、ピロリン酸などのポリリン酸や、フミン酸などの着色成分を除去するとともに、結晶質アルミノ珪酸塩でこれも通常の活性汚泥法では除去されないアンモニア態窒素の吸着除去を行い、さらに褐炭乾留物で難分解性有機物を除去しようとするものである。
【0031】
【実施例】
(実施例1〜4,比較例1〜6)
A市の下水処理場で採取した沈砂池流出水、返送汚泥を用いて次のような実験装置で連続式水処理実験を行った。最初沈殿池を長さ100cm、幅25cm、水深40cmとして、これに上記の沈砂池流出水を0.8m3 /日の割合で連続的に供給した。
【0032】
さらに、最初沈殿池から流出した下水を、活性汚泥を満たした長さ100cm、幅20cm、水深50cmの曝気槽に連続的に供給し、曝気槽の底から16m3 /日で空気を送り曝気を行った。
曝気槽から流出した下水は、最初沈殿槽と同じサイズの最終沈殿槽に送り上澄液を処理水として採取した。一方、最終沈殿槽の下部からは沈降汚泥の界面が上昇して上澄液に混入しないように汚泥を引き抜いた。引抜いた汚泥の一部を平均で0.2m3 /日の割合で曝気槽に返送した。こうした条件下で2週間連続運転して処理水が安定した後に実験を開始した。
【0033】
実験に使用した下水の水質および水質評価項目は表1に示す通りである。水処理剤成分の(A),(B),(C)成分は次の通りとした。まず、(A)はアルミン酸ナトリウム5重量%水溶液1000gのpHを濃硫酸で10以下に調整した後、アニオン性有機系高分子凝集剤カヤフロック A210( 日本化薬(株))商品0.1重量%水溶液を250g添加しながら、さらに濃硫酸でpHを6〜7に低下させた後、緩やかに1時間撹拌を行った。こうして得られた懸濁液を濾過分離、加熱乾燥した。
【0034】
(B)の結晶質アルミノ珪酸塩は、秋田県二ツ町産天然ゼオライトであるクリノブチオライト、(C)は褐炭を800℃で10時間乾留したのもので、灰分2.8%,揮発分4.2%,固定炭素分92%,比表面積300m2 /gを用いた。
【0035】
なお、嫌気−無酸素−好気法および凝集剤併用型硝化脱窒法の実験条件は、「高度処理施設設計マニュアル(案)」(平成6年5月25日 社団法人日本下水道協会発行)によった。結果は表2ないし表5に示す通りであった。
【0036】
【表1】

Figure 0003812961
【0037】
【表2】
Figure 0003812961
【0038】
【表3】
Figure 0003812961
【0039】
【表4】
Figure 0003812961
【0040】
【表5】
Figure 0003812961
【0041】
表2および表3に見られるように、実施例1ないし4は、処理水がいずれも表1に示す基準値を満足していることが分かる。これに対して、表4および表5に示す比較例1ないし比較例6は満足すべき水質とはなっていない。
【0042】
(実施例5および6)
水処理剤として、実施例1に用いた同じ成分(A)および(B),(A)および(C)を用いて、実施例1と同じようにして汚水処理の実験を行ったところ、結果は表6の通りであった。
【0043】
【表6】
Figure 0003812961
【0044】
【発明の効果】
以上の通り、従来の活性汚泥の設備を変更することなく、有機性汚水のりん、窒素、色度、生物難分解の溶解性有機物質を含めた全体の有機物質を低減することが出来るようになった。しかも、この発明のよれば通常の活性汚泥法の処理能力を低下させることなく有機性汚水の処理を行なうことが出来るようになった。[0001]
[Industrial application fields]
The present invention relates to a method for treating organic sewage, and more particularly to a suitable method for treating organic sewage that can reduce phosphorus, nitrogen, chromaticity, persistent organic substances and the like.
[0002]
[Prior art]
Currently, sewage treatment by an activated sludge method using aerobic microorganisms is widely performed for municipal sewage and organic sewage from large-scale domestic wastewater. However, the actual situation is that organic wastewater is not sufficiently treated by the standard activated sludge method. Furthermore, in recent years, the eutrophication phenomenon has progressed remarkably in closed water systems such as lakes and bays with regard to organic wastewater, and it has been difficult to take measures against wastewater flowing into them.
[0003]
As countermeasures against this situation, effective treatment of organic sewage including removal of nutrients such as phosphorus and nitrogen as well as reduction of chromaticity and removal of persistent organic substances represented by surfactants is necessary. For this purpose, various advanced processing processes have been proposed. For example, a method in which an activated sludge treatment process is combined with a filtration process has been proposed, which is currently most popular. This is effective for removing suspended suspended solids, but for removing nutrient salts such as soluble nitrogen and phosphorus, or for persistent substances such as colored substances and surfactants by humic acid. There is a problem that a sufficient effect cannot be obtained.
[0004]
As another method, in order to remove soluble phosphorus and nitrogen, the general activated sludge method is improved and anaerobic treatment-anoxic-aerobic treatment is performed. Has been developed.
[0005]
However, the former method has a problem involving reaction tanks and facilities such as an anaerobic tank, an oxygen-free tank, a stirring tank, and a stirring device. In addition, the latter method requires various facilities, and when the amount of an inorganic flocculant such as an aluminum salt is excessive, fine particles of aluminum hydroxide having poor settling properties are generated, and this enters the treated water. There was a problem of inflow. Furthermore, there has been a problem that the addition of NaOH or the like inhibits the nitrification activity and lowers the processing capacity.
[0006]
The so-called PACT method in which powdered activated carbon is added to the aeration tank and the filtration method using granular activated carbon are the means for removing soluble organic substances such as chromaticity and persistent organic substances. The sufficient effect on is not exhibited. In order to simultaneously remove soluble phosphorus, ammonia nitrogen, chromaticity, and persistent organic substances, it is necessary to perform a process that combines functional membranes such as RO membranes in addition to these advanced treatment methods. For this purpose, there is a problem that a large site is required and it is difficult to secure a site in an urban area, and the maintenance of facilities is complicated.
[0007]
[Problems to be solved by the invention]
This invention reduces the total organic substances including organic organic wastewater phosphorous, nitrogen, chromaticity, and organic organic sewage soluble organic substances without changing the conventional activated sludge process equipment. It is intended to treat organic sewage without reducing the treatment capacity of the activated sludge process.
[0008]
[Means for Solving the Problems]
The present invention dehydrates a concentrated separated liquid obtained by adding an organic polymer flocculant to a suspension of amorphous aluminum hydroxide in sewage treatment for improving sewage color together with microbial treatment of organic wastewater. The dehydrated and dried product (A), which has the function of removing colored components, is 100 to 500 ppm in terms of amorphous aluminum hydroxide concentration, and the crystalline aluminosilicate (B) is 2500 to 12000 ppm in terms of solid matter and brown coal dry distillation. Organic substance characterized by adding either or both of 1100 to 5500 ppm of the product (C) in terms of solids simultaneously or separately to either the microorganism treatment tank or the sewage in the previous treatment process processing method sewage (claim 1), together with the microbial treatment of organic wastewater, the wastewater treatment to improve the sewage chromaticity, organic high amount to a suspension of amorphous aluminum hydroxide And 100 to 500 ppm dehydrated dry product (A) in amorphous aluminum hydroxide concentration conversion that combines a coloring component removal function to dehydrate the concentrated separated liquid obtained by adding an aggregating agent, the crystalline aluminosilicate (B ) at solid basis from 2,500 to 12000 ppm and lignite carbonization was either one with solid basis of from 1,100 to 5,500 ppm or a mixture of consisting WTA both the (C), in microbial treatment vessel or earlier A method for treating organic sewage characterized in that it is added to any of organic sewage (Claim 2) and the organic polymer flocculant is a copolymer of acrylic acid and acrylamide and a polyacrylamide partial hydrolyzate. It is any one of these, It is the processing method (claim 3) of the organic waste water of Claim 1 or 2. Details of these inventions will be described below.
[0009]
The target sewage of the present invention is organic sewage such as municipal sewage and human waste, for example, soluble phosphorus having a water quality of 1 to 20 ppm (P as PO 4 ), 10 to 40 ppm of ammonia nitrogen (as N-NH 3 ). 30-200 degree chromaticity, 50-500 ppm BOD, 50-250 ppm COD, 0.1-5 ppm MBAS (methylene blue active substance). In addition, treated water is targeted at the level used as the sewage treated water recycle water quality so far, soluble phosphorus 0.5 ppm or less, ammonia nitrogen 7 ppm or less , chromaticity 10 degrees or less, BOD 7 ppm or less, COD 7 ppm or less Therefore, an MBAS of 0.05 ppm or less is intended to obtain an advanced processing method for achieving these.
[0010]
Therefore, in the present invention, the dehydrated and dried product (A) having the function of removing the coloring component by dehydrating the concentrated separation liquid obtained by adding the organic polymer flocculant to the suspension of amorphous aluminum hydroxide is removed. and 100 to 500 ppm of a crystalline aluminum hydroxide concentration conversion, either from 1,100 to 5,500 ppm crystalline aluminosilicate and (B) in solid basis from 2,500 to 12000 ppm and lignite carbonization was (C) in solid basis One or both are added in the wastewater treatment process.
[0011]
The dehydrated and dried product (A) having the function of removing the coloring component by dehydrating the concentrated separation liquid obtained by adding the organic polymer flocculant to the suspension of amorphous aluminum hydroxide is the water treatment agent of the present invention. The amount added is 100 to 500 ppm in terms of amorphous aluminum hydroxide concentration . The amorphous aluminum hydroxide used here is fine particles having a particle size of 50 μm or less, and the pH of the suspension is 10 or less.
[0012]
For example, when a strong acid such as sulfuric acid or hydrochloric acid is added to an aluminate such as sodium aluminate or potassium aluminate to lower the pH to 10 or less, fine particles of amorphous aluminum hydroxide are generated. The particle diameter of these fine particles is generally 50 μm or less, and the amorphous aluminum hydroxide suspension thus produced is very stably dispersed. After adjusting the pH of this suspension to 10 or less, adding the organic polymer flocculant and further reducing the pH to the neutral range with the acid, the particle size of 50 μm or less previously generated was added. The flocs of amorphous aluminum hydroxide particles having a particle size of 50 μm or more are formed by the aggregating action of the organic polymer flocculant added with the fine particles of amorphous aluminum hydroxide as seeds. As a result, the agglomerated amorphous aluminum hydroxide quickly settles and separates, and is excellent in filterability, so that dehydration is facilitated. In that case, the addition amount of the organic polymer flocculant used is 0.1 to 1.0% by weight with respect to the aluminate. On the other hand, the amorphous aluminum hydroxide suspension produced under the condition of no addition of the organic polymer flocculant forms a very stable dispersion, so that the filterability is very poor and dehydration is difficult. Become.
[0013]
Furthermore, the dehydrated dried product (A) of the present invention can be produced from factory waste. For example, to the alkaline drainage discharged in the surface treatment process (alumite processing) represented by the aluminum sash manufacturing process, the acidic drainage from the anodizing process is added to form an amorphous aluminum hydroxide suspension. Further, an organic polymer flocculant is added and concentrated to obtain a dehydrated dried product. This dehydration drying is performed at a moisture content of 20% or less, but when an aluminum sash factory is nearby and amorphous aluminum is obtained close to the sewage treatment plant, an organic polymer flocculant is added. The concentrate or its dehydrated product may be used as it is.
[0014]
The organic polymer flocculant used in the present invention is, for example, a copolymer of acrylic acid and acrylamide or a polyacrylamide partial hydrolyzate, and exhibits anionic or nonionic properties when dissociated in water. In particular, those having an average molecular weight in the range of 500 × 10 4 to 2500 × 10 4 are desirable. Such an organic polymer flocculant improves the sedimentation and separability of the amorphous aluminum hydroxide suspension, and at the same time facilitates filtration and dehydration.
[0015]
When the component (A) is supplied during the sewage treatment process, orthophosphoric acid that can hardly be removed by the conventional activated sludge method due to the functions of both the amorphous aluminum hydroxide and the organic polymer flocculant adhering to the surface. It is effective in reducing polyphosphoric acid such as pyrophosphoric acid.
[0016]
At the same time, according to the present invention, the adsorption and removal of the SS substance is also effectively performed. For this reason, the removal capability with respect to the total phosphorus including not only organic phosphorus but inorganic phosphorus like the conventional activated sludge method can be improved significantly.
[0017]
Furthermore, according to the component (A), it is also effective for removing organic polymer coloring components such as humic substances such as humic acid and fulvic acid, which are also precursors of trihalomethane, which is currently a problem as a carcinogenic substance. It is confirmed that the chromaticity of the treated water can be remarkably lowered.
[0018]
The particle size used of the component (A) is 300 μm or less, and preferably 50 to 150 μm. (A) Component addition amount is 100-500 ppm in conversion of the amorphous aluminum hydroxide density | concentration with respect to sewage. If the amount added to the sewage exceeds 500 ppm, phosphorus, which is a nutrient source of the activated sludge microbial community, is excessively adsorbed and the microbial activity is reduced. As a result, the purification ability by the activated sludge that is originally possessed is not fully exhibited. In addition, there are concerns about adverse effects on some activated sludge microorganisms. If the amount added is less than 100 ppm, sufficient effects cannot be obtained for removal of soluble phosphorus, coloring components and the like. A more preferable addition amount is 250 to 450 ppm.
[0019]
About the addition position of (A) component, it is the same as (B) component and C component which are demonstrated below, and in the combination with a general activated sludge method among aerobic microorganism treatment, the sewage in the process before an aeration tank That is, any of the initial sinking water, initial sinking, initial sinking effluent, aeration tank inflow water or aeration tank is suitable. Furthermore, these (A), (B), and (C) may be the same at the above-mentioned addition positions, but the addition positions may be different within the above-mentioned range.
[0020]
The component (A) of the dehydrated product obtained by adding the organic polymer flocculant to the amorphous aluminum hydroxide is either a crystalline aluminosilicate (B) or a lignite dry-distilled product (C) described below. Or in combination with both.
[0021]
As the crystalline aluminosilicate (B) used here, natural zeolite such as mordenite and clinoptiolite is used. When this is added to organic sewage, adsorption and removal of ammonia nitrogen, which is the main component of soluble nitrogen, which is hardly removed by the standard activated sludge method, is effectively performed. Moreover, the adsorptivity with respect to SS component and activated sludge floc is high, and the sedimentation speed | rate in final precipitation is improved by improving aggregability. Furthermore, stable treated water can be obtained by exerting an effect on bulking measures.
[0022]
The use particle diameter of the crystalline aluminosilicate is 300 μm or less, and 50 to 150 μm is particularly preferable. If the particle size is within this range, the ion exchange almost reaches equilibrium within a few minutes after the addition, and it becomes possible to minimize the influence of pore clogging by activated sludge and other SS components. Ammonia nitrogen can be effectively removed without being affected.
[0023]
The amount of component B added is preferably 2500 to 12000 ppm in terms of solid content with respect to sewage. If it is less than 2500 ppm , the adsorbing effect on ammonia nitrogen is not sufficient, and if it exceeds 12000 ppm , nitrogen, which is a nutrient source for activated sludge microorganisms, is excessively adsorbed, so the microbial activity is reduced and the purification ability by the activated sludge method Will not be fully demonstrated.
[0024]
The other component of this invention is a brown coal dry distillation product (C). The lignite coal distillate (C) is obtained by carbonizing lignite at 300 to 800 ° C, preferably at 500 to 700 ° C for 5 to 10 hours. The ash content is 3% or less, the volatile content is 5% or less, the fixed carbon content is 90% or more, and the porous carbon material has a specific surface area of 200 m 2 / g or more.
[0025]
This lignite dry product is effective for removing low molecular weight hardly decomposable organic substances having a molecular weight of 1000 or less. It is effective in removing so-called COD components. For example, when looking at general municipal sewage, the persistent organic substances contained in it are low molecular weight hydrophobic organic substances typified by polycyclic aromatics such as aromatic benzopyrene such as phenol and foaming substances. It has excellent adsorption performance for surfactants such as alkylbenzene sulfonate (ABS) and alkylphenol ethoxylate (APE), which are the causes. This is because the lignite carbonized product (C) has a structure in which characteristics as a carbon-based porous material and pores of several tens of A or less are developed. In addition, since the component (C) is effective for adsorbing and removing the suspended particulate matter (SS), it is also effective for reducing BOD. Furthermore, it is possible to provide a function for reducing sulfur-based malodorous components such as hydrogen sulfide and methyl mercaptan, which are generated from primary sedimentation or sewage in an aeration tank.
[0026]
The particle size of the brown coal dry distillate is not more than 300 μm, preferably 50 to 150 μm, like the crystalline aluminosilicate (B). The amount added is 1100-5500 ppm in terms of solid content with respect to sewage. If this is less than 1100 ppm , the adsorption function is not sufficient and the organic substances are not reduced. If this exceeds 5500 ppm , the adsorption and removal effect on hardly-dissolvable soluble organic substances will almost converge, so the adsorption of nutrient sources of activated sludge microorganisms such as carbohydrates and proteins with large molecular weight will proceed rapidly. The effect on activity reduces the purification capacity.
[0027]
As described above, the present invention is highly effective for amorphous aluminum hydroxide, which is effective for removing colored components such as soluble phosphorus, SS substances, and humic substances depending on the quality of the target wastewater and the target treated water quality. Brown coal effective for adsorbing and removing ammonia nitrogen, crystalline aluminosilicate (B), which has an effect of removing SS components, and hardly-decomposable soluble organic substances, to the dried product (A) obtained by adding a molecular flocculant The treatment is performed using a water treatment agent combined with one or both of the dry distillate (C).
[0028]
Therefore, according to the present invention, even if a new process necessary for advanced sewage treatment is not newly added, the treatment capacity by the general activated sludge method is reduced with respect to the water quality which has been a big problem until now using conventional equipment. Reduction of soluble phosphorus without coloring, reduction of chromaticity caused by coloring due to humic substances, reduction of ammonia nitrogen, suppression of foaming phenomenon in aeration tank, reduction of persistent low molecular organic substances, hydrogen sulfide, etc. It has become possible to reduce the malodorous components of the plant, to prevent bulking by improving the sludge sedimentation separation, to cope with changes in temperature and pH, to operate stably for the year, and to improve the activity of the activated sludge microorganism group.
[0029]
According to the present invention, by adjusting the mixing ratio of each component of the water treatment agent, removal of chromaticity components in dyeing wastewater other than sewage, removal of ammonia nitrogen and chromaticity in human wastewater, various industries It can be used to remove phosphorus components from wastewater.
[0030]
The present invention relates to a dehydrated and dried product having a function of removing a colored component by dehydrating a concentrated separation liquid obtained by adding an organic polymer flocculant to a suspension of amorphous aluminum hydroxide. In addition to removing polyphosphoric acid such as orthophosphoric acid and pyrophosphoric acid, and coloring components such as humic acid that can not be removed by the process, adsorption and removal of ammonia nitrogen, which is not removed by the normal activated sludge method, is also performed with crystalline aluminosilicate. Furthermore, it is intended to remove the hardly decomposable organic matter with lignite dry distillation.
[0031]
【Example】
(Examples 1-4, Comparative Examples 1-6)
A continuous water treatment experiment was conducted with the following experimental equipment using the sedimentation basin effluent and return sludge collected at the sewage treatment plant in City A. Initially, the sedimentation basin was 100 cm long, 25 cm wide and 40 cm deep, and the above sedimentation basin effluent was continuously supplied at a rate of 0.8 m 3 / day.
[0032]
Furthermore, the sewage discharged from the first sedimentation basin is continuously supplied to an aeration tank with a length of 100 cm, a width of 20 cm and a depth of 50 cm filled with activated sludge, and air is sent from the bottom of the aeration tank at a rate of 16 m 3 / day for aeration. went.
The sewage flowing out from the aeration tank was sent to a final precipitation tank having the same size as the first precipitation tank, and the supernatant was collected as treated water. On the other hand, the sludge was pulled out from the lower part of the final sedimentation tank so that the interface of the settled sludge would rise and not be mixed into the supernatant. Part of the extracted sludge was returned to the aeration tank at a rate of 0.2 m 3 / day on average. The experiment was started after the treated water was stabilized after 2 weeks of continuous operation under these conditions.
[0033]
The quality of sewage used in the experiment and the water quality evaluation items are as shown in Table 1. The components (A), (B), and (C) of the water treatment agent component were as follows. First, (A) adjusts the pH of 1000 g of a 5 wt% aqueous solution of sodium aluminate to 10 or less with concentrated sulfuric acid, and then 0.1 weight of an anionic organic polymer flocculant Kayaflock A210 ( Nippon Kayaku Co., Ltd.) While adding 250 g of a% aqueous solution, the pH was further lowered to 6-7 with concentrated sulfuric acid, and then gently stirred for 1 hour. The suspension thus obtained was separated by filtration and dried by heating.
[0034]
(B) Crystalline aluminosilicate is a natural zeolite from Futatsu-cho, Akita Prefecture, and (C) is a lignite charcoal-dried at 800 ° C for 10 hours, with an ash content of 2.8% and a volatile content. 4.2%, fixed carbon content 92%, specific surface area 300 m 2 / g were used.
[0035]
The experimental conditions for the anaerobic-anoxic-aerobic method and the coagulant combined nitrification denitrification method were determined by the “Advanced Treatment Facility Design Manual (draft)” (issued by the Japan Sewerage Association on May 25, 1994). It was. The results were as shown in Tables 2 to 5.
[0036]
[Table 1]
Figure 0003812961
[0037]
[Table 2]
Figure 0003812961
[0038]
[Table 3]
Figure 0003812961
[0039]
[Table 4]
Figure 0003812961
[0040]
[Table 5]
Figure 0003812961
[0041]
As can be seen from Tables 2 and 3, in Examples 1 to 4, it can be seen that the treated water satisfies the reference values shown in Table 1. On the other hand, Comparative Examples 1 to 6 shown in Tables 4 and 5 do not have satisfactory water quality.
[0042]
(Examples 5 and 6)
As a water treatment agent, the same components (A) and (B), (A) and (C) used in Example 1 were used, and a sewage treatment experiment was conducted in the same manner as in Example 1. Was as shown in Table 6.
[0043]
[Table 6]
Figure 0003812961
[0044]
【The invention's effect】
As described above, it is possible to reduce the total organic materials including organic wastewater phosphorus, nitrogen, chromaticity, biologically insoluble organic materials without changing the existing activated sludge equipment. became. Moreover, according to the present invention, organic sewage can be treated without lowering the treatment capacity of a normal activated sludge process.

Claims (3)

有機性汚水の微生物処理とともに、汚水色度を改善する汚水処理において、非結晶質水酸化アルミニウムの懸濁液に有機系高分子凝集剤を添加して得られる濃縮分離液を脱水した着色成分除去機能を併せ持つ脱水乾燥生成物(A)を非結晶質水酸化アルミニウム濃度換算で100〜500 ppm 、結晶質アルミノ珪酸塩(B)を固形物換算で2500〜12000 ppmと褐炭乾留物(C)を固形物換算で1100〜5500 ppmのいずれか一方又は双方を、微生物処理槽またはそれ以前の処理工程にある汚水のいずれかに同時にまたは別個に添加することを特徴とする有機性汚水の処理方法。 In addition to microbial treatment of organic sewage, in sewage treatment to improve sewage chromaticity, removal of colored components by dehydrating concentrated separation liquid obtained by adding organic polymer flocculant to suspension of amorphous aluminum hydroxide dehydrated dry product having both a functional and 100 to 500 ppm by amorphous aluminum hydroxide concentration converted (a), 2500~12000 ppm and lignite carbonization was crystalline aluminosilicate (B) in solid basis (C) A method for treating organic sewage, characterized in that either or both of 1100 to 5500 ppm in terms of solid matter are added simultaneously or separately to either the sewage in the microorganism treatment tank or the previous treatment step . 有機性汚水の微生物処理とともに、汚水色度を改善する汚水処理において、非結晶質水酸化アルミニウムの懸濁液に有機系高分子凝集剤を添加して得られる濃縮分離液を脱水した着色成分除去機能を併せ持つ脱水乾燥生成物(A)を非結晶質水酸化アルミニウム濃度換算で100〜500 ppm 、結晶質アルミノ珪酸塩(B)を固形物換算で2500〜12000 ppmと褐炭乾留物(C)を固形物換算で1100〜5500 ppm いずれか一方または双方を混合してなる水処理剤を、微生物処理槽またはそれ以前にある有機性汚水のいずれかに添加することを特徴とする有機性汚水の処理方法。 In addition to microbial treatment of organic sewage, in sewage treatment to improve sewage chromaticity, removal of colored components by dehydrating concentrated separation liquid obtained by adding organic polymer flocculant to suspension of amorphous aluminum hydroxide dehydrated dry product having both a functional and 100 to 500 ppm by amorphous aluminum hydroxide concentration converted (a), 2500~12000 ppm and lignite carbonization was crystalline aluminosilicate (B) in solid basis (C) Organic wastewater, characterized in that a water treatment agent obtained by mixing any one or both of 1100 to 5500 ppm in terms of solid matter is added to either the microorganism treatment tank or the organic wastewater existing before Processing method. 前記有機系高分子凝集剤が、アクリル酸とアクリルアミドの共重合体とポリアクリルアミド部分加水分解物の中のいずれか一つである請求項1または2に記載の有機性汚水の処理方法。 The method for treating organic sewage according to claim 1 or 2, wherein the organic polymer flocculant is any one of a copolymer of acrylic acid and acrylamide and a polyacrylamide partial hydrolyzate.
JP10624895A 1995-04-28 1995-04-28 Organic wastewater treatment method Expired - Fee Related JP3812961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10624895A JP3812961B2 (en) 1995-04-28 1995-04-28 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10624895A JP3812961B2 (en) 1995-04-28 1995-04-28 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH08299978A JPH08299978A (en) 1996-11-19
JP3812961B2 true JP3812961B2 (en) 2006-08-23

Family

ID=14428810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10624895A Expired - Fee Related JP3812961B2 (en) 1995-04-28 1995-04-28 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3812961B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628558B2 (en) * 2001-02-09 2011-02-09 日本ケミコン株式会社 Method for recovering aluminum hydroxide from waste liquid containing aluminum

Also Published As

Publication number Publication date
JPH08299978A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
US7384573B2 (en) Compositions for wastewater treatment
WO2006102362A3 (en) Activated sludge process wtth ballasted flocculation
JP2013506550A (en) Method for improving biological water treatment
CN106242179A (en) The compositions of a kind of quasi-east coal chemical industrial waste water process and method of wastewater treatment thereof
Ansari et al. Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater
CN113058546B (en) Lanthanum-modified kaolin phosphorus removal agent and preparation method and application thereof
CN108821473A (en) A kind of dyeing and printing sewage treatment process
KR100413203B1 (en) No wasting activated sludge process
Moges et al. Performance of biochar and filtralite as polishing step for on-site greywater treatment plant
Ødegaard Appropriate technology for wastewater treatment in coastal tourist areas
JP3812961B2 (en) Organic wastewater treatment method
WO2005035448A1 (en) Process for purification of waste water
JPS6048200A (en) Treatment of sludge
Elsergany et al. Optimizing the performance of a paper mill effluent treatment
Hamoda et al. Investigation of Petroleum Refinery Effluent Treatment in an Aerobic Fixed‐film Biological System
CN111302601A (en) Clean high-efficiency sludge dehydrating agent
JPH0352699A (en) Treatment of sewage of night soil system
Yetis et al. Improvement of primary settling performance with activated sludge
JPS59206092A (en) Treating process of waste water
Karlsson et al. Thermic sludge treatment
US3480541A (en) Sewage flocculation
JP3468269B2 (en) Purification treatment method for high SS waste liquid and sludge
CN112520911B (en) Landfill leachate concentrated water treatment method
JPH03275197A (en) Treatment of night soil type sewage
Suschka et al. Full scale treatment of phenolic coke coking waste water under unsteady conditions

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees