JP3812350B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP3812350B2
JP3812350B2 JP2001062738A JP2001062738A JP3812350B2 JP 3812350 B2 JP3812350 B2 JP 3812350B2 JP 2001062738 A JP2001062738 A JP 2001062738A JP 2001062738 A JP2001062738 A JP 2001062738A JP 3812350 B2 JP3812350 B2 JP 3812350B2
Authority
JP
Japan
Prior art keywords
phase
signal
voltage
previous
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001062738A
Other languages
Japanese (ja)
Other versions
JP2002272116A (en
Inventor
堅滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2001062738A priority Critical patent/JP3812350B2/en
Publication of JP2002272116A publication Critical patent/JP2002272116A/en
Application granted granted Critical
Publication of JP3812350B2 publication Critical patent/JP3812350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源等の位相を基にして電力変換制御される電力変換装置に係り、特にフォトカプラにより絶縁して交流電圧の位相を検出する検出器に関する。
【0002】
【従来の技術】
回生機能付き順変換装置や回生専用逆変換装置は、回生対象となる電源の位相を検出し、その位相に応じてスイッチング素子の点弧を行うことで回生動作を得る。また、交流電源からランプやヒータなどの負荷への通電率をスイッチング素子で制御する位相制御装置は、電源位相を基にしてスイッチング素子の点弧位相を制御する。また、ベクトル制御方式の逆変換装置は、電動機の速度等を制御するのに、ロータの回転位相を検出して出力電圧位相を制御する。
【0003】
これら装置に必要な電源等の位相検出器は、絶縁と電圧変換するためのトランスを設けた構成、またはフォトカプラによる絶縁して得る交流電圧のゼロクロス点から位相検出する構成にされている。
【0004】
図5は、フォトカプラによる位相検出器の回路図を示す。電源の3相電圧VR.VS.VTは、それぞれ抵抗Rにより分圧されてフォトカプラPCの入力電圧にされ、この入力電圧によりフォトカプラPCの出力にオン動作を得、この信号を抵抗RとコンデンサCのフィルタ回路を通してノイズを除去し、さらにヒステリシス特性をもつ論理素子Gが比較器動作をしてパルス信号に変換し、さらにノイズ除去用コンデンサ・抵抗回路を出力端に有して、線間電圧の零点検出タイミングを立ち上がり点および立ち下がり点とするパルス信号R−S,S−T,T−Rを得る。
【0005】
【発明が解決しようとする課題】
従来の位相検出器のうち、トランス方式のものはトランス自体が大きく、しかも値段が高く、その設置スペースが大きく、コストアップになる。
【0006】
この点、フォトカプラ方式ではスペースおよびコスト面で優れるが、電源等の真の位相に対して検出位相がずれる問題がある。その原因は、フォトカプラの応答遅れやノイズの影響を除去するためのフィルタの遅れ、フォトカプラを動作させるために必要な電流を流すため必要な電圧差が線間電圧に現れるまでの時間によるものである。これら位相検出ずれの原因をまとめると、図6にタイムチャートで示すように、以下のように分類される。
【0007】
(1)フォトカプラのオン時の遅れ原因
(1a)フォトカプラの一次側での遅れ
この遅れは、フォトカプラをオンするために必要な一次側の電流を流すために必要な電圧差が線間電圧に現れるまでの時間と、フォトカプラが動作するまでの時間T1になる。
【0008】
(1b)フォトカプラの二次側での遅れ
この遅れは、ヒステリシスバッファが動作するまでの時間と、フィルタの遅れ時間T2になる。
【0009】
(2)フォトカプラのオフ時の遅れ原因
(2a)フォトカプラの一次側での遅れ
この遅れは、フォトカプラをオフとなる一次側の電流まで線間電圧が低下するまでの時間(このずれは電圧クロス点より早くなる)と、フォトカプラが復帰動作するまでの時間T3になる。
【0010】
(2b)フォトカプラの二次側での遅れ
この遅れは、ヒステリシスバッファが復帰動作するまでの時間と、フィルタの遅れ時間T4になる。
【0011】
本発明の目的は、フォトカプラで絶縁する方式による交流電圧の位相検出に検出ずれを無くし、これによって高精度制御を可能にした電力変換装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、フォトカプラで絶縁する方式により検出した位相と、電圧が零になるタイミングとの位相ずれを演算で求めて検出位相を補正するものである。
【0013】
前記の検出ずれ原因には、フィルタによる遅れ時間と、フォトカプラの動作までの時間という2つの原因が混在し、このままでは位相ずれの原因がいずれにあるかを見極められず、その補正対策が難しくなる。
【0014】
ここで、前記の検出ずれ原因のうち、検出のノイズを除去するためのフィルタによる遅れ時間は、ハードウェアの設計により一定にすることができる。しかし、その他のフォトカプラによる遅れや線間電圧がフォトカプラを動作または復帰させるまでの時間は、フォトカプラの感度のばらつきや電源波形歪みにより変化する。
【0015】
そこで、本発明では、検出位相の補正には、フィルタによるずれを一定の補正量としてあらかじめ求めておき、これに加えて、フォトカプラ等による「変化するずれ」を位相検出信号から演算で求めることで検出ずれを無くした位相補正ができるようにしたもので、以下の構成を特徴とする。
【0016】
(1)交流電源の電圧信号を入力とし、ノイズ除去用フィルタと絶縁用フォトカプラおよび比較器を有する位相検出回路によって、該電圧信号の線間電圧の零点検出タイミングを立ち上がり点および立ち下がり点とするパルス信号を得、このパルス信号の位相を該電圧信号の位相検出信号として電力変換する電力変換装置において、
前記位相検出回路から得る前々回と前回の前記パルス信号からその周期Tfと幅Tdetを求め、これら周期Tfと幅Tdetおよび予め求めた前記フィルタによる一定の遅れ時間Tconstから次の演算、
【0017】
【数4】

Figure 0003812350
【0018】
により、前回の前記パルス信号の零点検出タイミングに対する前記交流電源の線間電圧の次の零点タイミング信号を得る位相補正手段を備えたことを特徴とする。
【0019】
(2)交流電源の電圧信号を入力とし、ノイズ除去用フィルタと絶縁用フォトカプラおよび比較器を有する位相検出回路によって、該電圧信号の線間電圧の零点検出タイミングを立ち上がり点および立ち下がり点とするパルス信号を得、このパルス信号の位相を該電圧信号の位相検出信号として電力変換する電力変換装置において、
前記位相検出回路から得る前々回と前回の前記パルス信号からその周期Tfと幅Tdetを求め、これら周期Tfと幅Tdetおよび予め求めた前記フィルタによる一定の遅れ時間Tconstから次の演算、
【0020】
【数5】
Figure 0003812350
【0021】
により、前回の前記パルス信号の零点検出タイミングに対する前記交流電源の線間電圧の次の零点タイミング信号を得る位相補正手段を備えたことを特徴とする。
【0022】
(3)交流電源の電圧信号を入力とし、ノイズ除去用フィルタと絶縁用フォトカプラおよび比較器を有する位相検出回路によって、該電圧信号の線間電圧の零点検出タイミングを立ち上がり点および立ち下がり点とするパルス信号を得、このパルス信号の位相を該電圧信号の位相検出信号として電力変換する電力変換装置において、
前記位相検出回路から得る前々回と前回の前記パルス信号からその周期Tfと幅Tdetを求め、これら周期Tfと幅Tdetおよび予め求めた前記フィルタによる一定の遅れ時間Tconstから次の演算、
【0023】
【数6】
Figure 0003812350
【0024】
により、前回の前記パルス信号の零点検出タイミングに対する前記交流電源の線間電圧の次の零点タイミング信号を得る位相補正手段を備えたことを特徴とする。
【0025】
(4)前記パルス信号の周期T f と幅T det は、過去の複数回の計測値の移動平均演算で求めることを特徴とする。
【0026】
(5)前記位相検出回路および前記位相補正手段は、前記電圧信号の相毎に位相検出信号を求める構成にしたことを特徴とする。
【0027】
【発明の実施の形態】
(実施形態1)
図1は、本発明の実施形態を示す位相検出器の回路図である。本実施形態では、回生付き順変換器主回路CONとその制御装置(マイクロプロセッサ構成)CPUにより直流電動機DMからの回生電力を3相電源側に回生するのに、制御装置CPUが1つの相の位相検出信号を基に回生制御する場合を示すが、他の電力変換装置にも同様の位相検出器として適用できるものである。
【0028】
位相検出回路1R,1S,1Tは、図5の回路構成と同様に、交流電源から変成した3相電圧VR,VS,VTからフォトカプラによる絶縁とフィルタによるノイズ除去の機能を有して位相検出信号R−S,S−T,T−Rのパルス出力を得る。
【0029】
位相補正回路2R,2S,2Tの回路構成は、回路2Rに代表して示す。パルス周期カウンタ3は、パルス波形になる位相検出信号R−Sの立ち上がりでクロックCLKの計数を開始し、この計数を信号R−Sの次の周期の立ち上がりまで継続することで信号R−Sの周期に相当する計数値Tfを得る。
【0030】
一方、パルス幅カウンタ4は、位相検出信号R−Sの立ち上がりでクロックCLKの計数を開始し、この計数を信号R−Sの立ち下がりまで継続することで信号R−Sのパルス幅に相当する計数値Tdetを得る。
【0031】
これらカウンタ3、4の計数値の関係は、図2に示すタイムチャート中に、Tf、Tdetとして示す。
【0032】
演算回路5は、カウンタ3、4の計数値Tf、Tdetと、フィルタ等によるずれ時間Tconstから以下の演算により位相検出信号の遅れ時間TDを求める。
【0033】
【数7】
Figure 0003812350
【0034】
この遅れ時間TDは、図2中のA点からの遅れ時間に相当する。そして、この遅れ時間TDで信号R−Sを補正すれば、線間電圧が零になるA点のタイミング信号を得ることができる。この補正は、減算回路6によりパルス信号R−Sの時刻から遅れ時間TDを減算する以下の演算になる。
【0035】
【数8】
Figure 0003812350
【0036】
実際には、前々回の電源一周期で計測された補正量で今回の線間電圧が零になるタイミングを推定することになる。
【0037】
なお、位相補正回路2Rによるカウンタ3、4および演算回路5や減算回路6による処理は、制御装置CPUがマイクロプロセッサ構成の場合はそのソフトウェア構成とすることができる。また、位相補正回路2S,2Tは、各相の位相検出を行う場合に設けられるものであり、この場合には3相個別の位相検出により、電源のアンバランスに対応した位相検出が可能となるもので、以下の実施形態でも同様に構成される。
【0038】
(実施形態2)
前記の実施形態1では、前々回計測した周期の2周期後に位相の検出が可能になる。図3にタイムチャートで示すように、前回の計測値を基にして計算した遅れ時間で今回のずれ補正を行うことができる。
【0039】
この補正は、位相検出信号(パルス)の立ち上がりから以下の演算で求められる遅れ時間を線間電圧が実際に零となるタイミングとするもので、前記の実施形態に比べて半周期早く補正することができる。
【0040】
【数9】
Figure 0003812350
【0041】
(実施形態3)
前記の実施形態2では、実施形態1に比べて半周期早く位相補正ができる。しかし、これら実施形態の方式では、電源が歪んでいる場合や周期が変動する場合には、線間電圧が零となるタイミングを正しく計測できない可能性がある。
【0042】
そこで、本実施形態では、図4にタイムチャートを示すように、検出信号の立ち下がりから以下の式で計算される遅れ時間を線間電圧が実際に零になるタイミングとして求める。
【0043】
【数10】
Figure 0003812350
【0044】
これにより、実施形態2に比べてより早く線間電圧が零となるタイミングを得ることにより、電源の歪みや周期の変化による影響が少なくなる。なお、本実施形態では上記の(4)式が正となる場合のみ適用できる。
【0045】
(実施形態4)
前記までの実施形態では、各計測時間Tf、Tdetは、前回値や前々回値を用いて補正するため、検出信号のノイズ等の影響を受ける場合がある。
【0046】
本実施形態では、検出信号のノイズ等の影響を避けるため、過去の数回の計測値の移動平均演算を行うことにより、検出時間の平均化処理を施し、ノイズの影響を受けにくい位相検出を行う。
【0047】
【発明の効果】
以上のとおり、本発明によれば、フォトカプラで絶縁する方式による交流電圧の位相検出において、フィルタによるずれを一定の補正量としてあらかじめ求めておき、これに加えて、フォトカプラ等による「変化するずれ」を位相検出信号から演算で求めるようにしたため、位相検出ずれを無くした確実な位相補正ができ、これを基にした電力変換の高精度制御が可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す位相検出器の回路図。
【図2】実施形態1におけるずれ補正のタイムチャート(その1)。
【図3】実施形態2におけるずれ補正のタイムチャート(その2)。
【図4】実施形態3におけるずれ補正のタイムチャート(その3)。
【図5】従来の位相検出器の回路図。
【図6】3相電源と位相検出回路出力のタイムチャート。
【符号の説明】
R,1S,1T…位相検出回路
R,2S,2T…位相補正回路
3…パルス周期カウンタ
4…パルス幅カウンタ
5…演算回路
6…減算回路
CPU…制御装置
CON…回生付き順変換器
PC…フォトカプラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device that performs power conversion control based on the phase of a power source or the like, and more particularly to a detector that detects the phase of an AC voltage by being insulated by a photocoupler.
[0002]
[Prior art]
A forward conversion device with a regeneration function and a regenerative reverse conversion device detect a phase of a power source to be regenerated and perform a regenerative operation by igniting a switching element according to the phase. In addition, a phase control device that controls the energization rate from an AC power supply to a load such as a lamp or a heater with a switching element controls the ignition phase of the switching element based on the power supply phase. Further, the vector control type inverse conversion device detects the rotational phase of the rotor and controls the output voltage phase in order to control the speed of the motor and the like.
[0003]
A phase detector such as a power source necessary for these devices is configured to provide a transformer for insulation and voltage conversion, or to detect a phase from a zero-cross point of an AC voltage obtained by insulation using a photocoupler.
[0004]
FIG. 5 shows a circuit diagram of a phase detector using a photocoupler. Three-phase voltage V R. V S. Each V T is divided by the resistor R to be an input voltage of the photocoupler PC. The input voltage is used to obtain an ON operation at the output of the photocoupler PC, and this signal is subjected to noise through the filter circuit of the resistor R and the capacitor C. Furthermore, the logic element G having hysteresis characteristics operates as a comparator to convert it into a pulse signal, and further has a noise removal capacitor / resistor circuit at the output end to detect the zero point detection timing of the line voltage. In addition, pulse signals RS, ST, and TR that are falling points are obtained.
[0005]
[Problems to be solved by the invention]
Among conventional phase detectors, the transformer type has a large transformer itself, is expensive, has a large installation space, and increases costs.
[0006]
In this respect, the photocoupler method is excellent in terms of space and cost, but there is a problem that the detection phase is shifted from the true phase of the power source or the like. The cause is due to the delay in the response of the photocoupler and the delay of the filter to eliminate the influence of noise, and the time until the voltage difference necessary to cause the current necessary to operate the photocoupler appears in the line voltage. It is. The causes of the phase detection deviation are summarized as follows, as shown in the time chart of FIG.
[0007]
(1) Cause of delay when the photocoupler is turned on (1a) Delay on the primary side of the photocoupler This delay is caused by the difference in voltage required for flowing the primary current necessary for turning on the photocoupler between the lines. The time until the voltage appears and the time T 1 until the photocoupler operates are set.
[0008]
(1b) behind this delay in the secondary side of the photo coupler, time until the hysteresis buffer operates, the delay time of the filter T 2.
[0009]
(2) Cause of delay when the photocoupler is off (2a) Delay on the primary side of the photocoupler This delay is the time until the line voltage drops to the primary side current that turns off the photocoupler (this deviation is When it becomes earlier than the voltage crossing point), a time T 3 until the photocoupler recovers is reached.
[0010]
(2b) behind this delay in the secondary side of the photo coupler, time until the hysteresis buffer operates return, the delay time of the filter T 4.
[0011]
An object of the present invention is to provide a power conversion device that eliminates a detection shift in the phase detection of an AC voltage by a method of insulating with a photocoupler, thereby enabling high-precision control.
[0012]
[Means for Solving the Problems]
The present invention corrects the detected phase by calculating the phase shift between the phase detected by the method of insulating with a photocoupler and the timing when the voltage becomes zero.
[0013]
There are two causes of the detection deviation, namely, the delay time due to the filter and the time until the operation of the photocoupler. In this state, it is difficult to determine the cause of the phase deviation, and it is difficult to take corrective measures. Become.
[0014]
Here, among the causes of the detection deviation, the delay time due to the filter for removing detection noise can be made constant by hardware design. However, the delay due to other photocouplers and the time until the line voltage operates or restores the photocoupler changes due to variations in sensitivity of the photocoupler and power supply waveform distortion.
[0015]
Therefore, in the present invention, in order to correct the detected phase, the deviation due to the filter is obtained in advance as a fixed correction amount, and in addition to this, the “variation deviation” caused by the photocoupler or the like is obtained from the phase detection signal by calculation. The phase correction can be performed without any detection deviation, and has the following configuration.
[0016]
(1) A phase detection circuit having a voltage signal of an AC power supply as input and having a noise removing filter, an insulating photocoupler, and a comparator determines the zero point detection timing of the line voltage of the voltage signal as a rising point and a falling point. In a power conversion device that obtains a pulse signal to perform power conversion as a phase detection signal of the voltage signal,
The period T f and the width T det are obtained from the previous and previous pulse signals obtained from the phase detection circuit, and the following calculation is performed from the period T f and the width T det and a predetermined delay time T const by the filter obtained in advance. ,
[0017]
[Expression 4]
Figure 0003812350
[0018]
Thus, phase correction means for obtaining the next zero point timing signal of the line voltage of the AC power supply with respect to the previous zero point detection timing of the pulse signal is provided.
[0019]
(2) The phase detection circuit having a voltage signal of an AC power supply as input and having a noise removing filter, an insulating photocoupler, and a comparator determines the zero point detection timing of the line voltage of the voltage signal as a rising point and a falling point. In a power conversion device that obtains a pulse signal to perform power conversion as a phase detection signal of the voltage signal,
The period T f and the width T det are obtained from the previous and previous pulse signals obtained from the phase detection circuit, and the following calculation is performed from the period T f and the width T det and a predetermined delay time T const by the filter obtained in advance. ,
[0020]
[Equation 5]
Figure 0003812350
[0021]
Thus, phase correction means for obtaining the next zero point timing signal of the line voltage of the AC power supply with respect to the previous zero point detection timing of the pulse signal is provided.
[0022]
(3) A phase detection circuit having a voltage signal of an AC power supply as input and having a noise removing filter, an insulating photocoupler, and a comparator determines the zero point detection timing of the line voltage of the voltage signal as a rising point and a falling point. In a power conversion device that obtains a pulse signal to perform power conversion as a phase detection signal of the voltage signal,
The period T f and the width T det are obtained from the previous and previous pulse signals obtained from the phase detection circuit, and the following calculation is performed from the period T f and the width T det and a predetermined delay time T const by the filter obtained in advance. ,
[0023]
[Formula 6]
Figure 0003812350
[0024]
Thus, phase correction means for obtaining the next zero point timing signal of the line voltage of the AC power supply with respect to the previous zero point detection timing of the pulse signal is provided.
[0025]
(4) The period T f and the width T det of the pulse signal are obtained by moving average calculation of a plurality of past measurement values.
[0026]
(5) The phase detection circuit and the phase correction means are configured to obtain a phase detection signal for each phase of the voltage signal.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
FIG. 1 is a circuit diagram of a phase detector showing an embodiment of the present invention. In the present embodiment, the regenerative forward converter main circuit CON and its control device (microprocessor configuration) CPU regenerate the regenerative power from the DC motor DM to the three-phase power source side. Although the case where regenerative control is performed based on a phase detection signal is shown, it can be applied to other power conversion devices as a similar phase detector.
[0028]
The phase detection circuits 1 R , 1 S , 1 T have the function of insulating by a photocoupler and removing noise by a filter from the three-phase voltages V R , V S , V T transformed from an AC power supply, as in the circuit configuration of FIG. To obtain pulse outputs of phase detection signals RS, ST, and TR.
[0029]
The circuit configuration of the phase correction circuits 2 R , 2 S , 2 T is shown as a representative of the circuit 2 R. The pulse period counter 3 starts counting the clock CLK at the rising edge of the phase detection signal R-S having a pulse waveform, and continues this counting until the rising edge of the next period of the signal R-S, thereby A count value T f corresponding to the period is obtained.
[0030]
On the other hand, the pulse width counter 4 starts counting the clock CLK at the rising edge of the phase detection signal RS and continues this counting until the falling edge of the signal RS, thereby corresponding to the pulse width of the signal RS. A count value T det is obtained.
[0031]
The relationship between the count values of the counters 3 and 4 is shown as T f and T det in the time chart shown in FIG.
[0032]
The arithmetic circuit 5 obtains the delay time T D of the phase detection signal from the count values T f and T det of the counters 3 and 4 and the shift time T const by the filter or the like by the following calculation.
[0033]
[Expression 7]
Figure 0003812350
[0034]
The delay time T D corresponds to a delay time from the point A in FIG. Then, by correcting the signal R-S in the delay time T D, it is possible to obtain a timing signal at node A line voltage is zero. This correction is made to the following calculation of subtracting the time T D lag from the time of the pulse signal R-S by subtracting circuit 6.
[0035]
[Equation 8]
Figure 0003812350
[0036]
Actually, the timing at which the current line voltage becomes zero is estimated with the correction amount measured in the previous power supply cycle.
[0037]
Note that the processing by the counters 3 and 4 and the arithmetic circuit 5 and the subtracting circuit 6 by the phase correction circuit 2 R can have a software configuration when the control device CPU has a microprocessor configuration. The phase correction circuits 2 S and 2 T are provided for detecting the phase of each phase. In this case, the phase detection corresponding to the unbalance of the power source can be performed by the individual phase detection of the three phases. Therefore, the following embodiments are similarly configured.
[0038]
(Embodiment 2)
In the first embodiment, the phase can be detected after two cycles of the cycle measured two times before. As shown by the time chart in FIG. 3, the current deviation correction can be performed with the delay time calculated based on the previous measurement value.
[0039]
In this correction, the delay time obtained by the following calculation from the rising edge of the phase detection signal (pulse) is set to a timing at which the line voltage actually becomes zero, and is corrected half a cycle earlier than the previous embodiment. Can do.
[0040]
[Equation 9]
Figure 0003812350
[0041]
(Embodiment 3)
In the second embodiment, the phase can be corrected half a cycle earlier than in the first embodiment. However, in the methods of these embodiments, there is a possibility that the timing when the line voltage becomes zero cannot be measured correctly when the power source is distorted or the period varies.
[0042]
Therefore, in this embodiment, as shown in the time chart of FIG. 4, the delay time calculated by the following formula from the fall of the detection signal is obtained as the timing at which the line voltage actually becomes zero.
[0043]
[Expression 10]
Figure 0003812350
[0044]
As a result, by obtaining the timing at which the line voltage becomes zero earlier than in the second embodiment, the influence due to the distortion of the power source and the change in the period is reduced. It should be noted that this embodiment can be applied only when the above equation (4) is positive.
[0045]
(Embodiment 4)
In the above embodiments, the measurement times T f and T det are corrected using the previous value and the previous time value, and thus may be affected by noise of the detection signal.
[0046]
In this embodiment, in order to avoid the influence of noise and the like of the detection signal, the detection time is averaged by performing the moving average calculation of the past measurement values several times, and the phase detection that is not easily affected by the noise is performed. Do.
[0047]
【The invention's effect】
As described above, according to the present invention, in the AC voltage phase detection by the method of insulating with the photocoupler, the deviation due to the filter is obtained in advance as a fixed correction amount, and in addition to this, “changes” by the photocoupler or the like. Since "shift" is obtained by calculation from the phase detection signal, reliable phase correction without phase detection deviation can be performed, and high-precision control of power conversion based on this can be performed.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a phase detector showing an embodiment of the present invention.
FIG. 2 is a time chart (No. 1) of deviation correction in the first embodiment.
FIG. 3 is a time chart (No. 2) of deviation correction in the second embodiment.
FIG. 4 is a time chart of misalignment correction in the third embodiment (No. 3).
FIG. 5 is a circuit diagram of a conventional phase detector.
FIG. 6 is a time chart of a three-phase power supply and a phase detection circuit output.
[Explanation of symbols]
1 R , 1 S , 1 T ... phase detection circuit 2 R , 2 S , 2 T ... phase correction circuit 3 ... pulse period counter 4 ... pulse width counter 5 ... arithmetic circuit 6 ... subtraction circuit CPU ... control device CON ... with regeneration Forward converter PC ... Photocoupler

Claims (5)

交流電源の電圧信号を入力とし、ノイズ除去用フィルタと絶縁用フォトカプラおよび比較器を有する位相検出回路によって、該電圧信号の線間電圧の零点検出タイミングを立ち上がり点および立ち下がり点とするパルス信号を得、このパルス信号の位相を該電圧信号の位相検出信号として電力変換する電力変換装置において、
前記位相検出回路から得る前々回と前回の前記パルス信号からその周期Tfと幅Tdetを求め、これら周期Tfと幅Tdetおよび予め求めた前記フィルタによる一定の遅れ時間Tconstから次の演算、
Figure 0003812350
により、前回の前記パルス信号の零点検出タイミングに対する前記交流電源の線間電圧の次の零点タイミング信号を得る位相補正手段を備えたことを特徴とする電力変換装置。
A pulse signal that takes the voltage signal of the AC power supply as input and uses the noise detection filter, insulation photocoupler, and comparator as the rising and falling points at the zero point detection timing of the line voltage of the voltage signal In the power conversion device that converts the power of the phase of the pulse signal as the phase detection signal of the voltage signal,
The period T f and the width T det are obtained from the previous and previous pulse signals obtained from the phase detection circuit, and the following calculation is performed from the period T f and the width T det and a predetermined delay time T const by the filter obtained in advance. ,
Figure 0003812350
A power converter comprising: phase correction means for obtaining a next zero point timing signal of the line voltage of the AC power supply with respect to the previous zero point detection timing of the pulse signal .
交流電源の電圧信号を入力とし、ノイズ除去用フィルタと絶縁用フォトカプラおよび比較器を有する位相検出回路によって、該電圧信号の線間電圧の零点検出タイミングを立ち上がり点および立ち下がり点とするパルス信号を得、このパルス信号の位相を該電圧信号の位相検出信号として電力変換する電力変換装置において、
前記位相検出回路から得る前々回と前回の前記パルス信号からその周期Tfと幅Tdetを求め、これら周期Tfと幅Tdetおよび予め求めた前記フィルタによる一定の遅れ時間Tconstから次の演算、
Figure 0003812350
により、前回の前記パルス信号の零点検出タイミングに対する前記交流電源の線間電圧の次の零点タイミング信号を得る位相補正手段を備えたことを特徴とする電力変換装置。
A pulse signal that takes the voltage signal of the AC power supply as input and uses the noise detection filter, insulation photocoupler, and comparator as the rising and falling points at the zero point detection timing of the line voltage of the voltage signal In the power conversion device that converts the power of the phase of the pulse signal as the phase detection signal of the voltage signal,
The period T f and the width T det are obtained from the previous and previous pulse signals obtained from the phase detection circuit, and the following calculation is performed from the period T f and the width T det and a predetermined delay time T const by the filter obtained in advance. ,
Figure 0003812350
A power converter comprising: phase correction means for obtaining a next zero point timing signal of the line voltage of the AC power supply with respect to the previous zero point detection timing of the pulse signal .
交流電源の電圧信号を入力とし、ノイズ除去用フィルタと絶縁用フォトカプラおよび比較器を有する位相検出回路によって、該電圧信号の線間電圧の零点検出タイミングを立ち上がり点および立ち下がり点とするパルス信号を得、このパルス信号の位相を該電圧信号の位相検出信号として電力変換する電力変換装置において、
前記位相検出回路から得る前々回と前回の前記パルス信号からその周期Tfと幅Tdetを求め、これら周期Tfと幅Tdetおよび予め求めた前記フィルタによる一定の遅れ時間Tconstから次の演算、
Figure 0003812350
により、前回の前記パルス信号の零点検出タイミングに対する前記交流電源の線間電圧の次の零点タイミング信号を得る位相補正手段を備えたことを特徴とする電力変換装置。
A pulse signal that takes the voltage signal of the AC power supply as input and uses the noise detection filter, insulation photocoupler, and comparator as the rising and falling points at the zero point detection timing of the line voltage of the voltage signal In the power conversion device that converts the power of the phase of the pulse signal as the phase detection signal of the voltage signal,
The period T f and the width T det are obtained from the previous and previous pulse signals obtained from the phase detection circuit, and the following calculation is performed from the period T f and the width T det and a predetermined delay time T const by the filter obtained in advance. ,
Figure 0003812350
A power converter comprising: phase correction means for obtaining a next zero point timing signal of the line voltage of the AC power supply with respect to the previous zero point detection timing of the pulse signal .
前記パルス信号の周期T f と幅T det は、過去の複数回の計測値の移動平均演算で求めることを特徴とする請求項1〜3のいずれか1項に記載の電力変換装置。 4. The power converter according to claim 1, wherein the period T f and the width T det of the pulse signal are obtained by a moving average calculation of a plurality of past measurement values. 前記位相検出回路および前記位相補正手段は、前記電圧信号の相毎に位相検出信号を求める構成にしたことを特徴とする請求項1〜4のいずれか1項に記載の電力変換装置。  The power conversion device according to claim 1, wherein the phase detection circuit and the phase correction unit are configured to obtain a phase detection signal for each phase of the voltage signal.
JP2001062738A 2001-03-07 2001-03-07 Power converter Expired - Fee Related JP3812350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062738A JP3812350B2 (en) 2001-03-07 2001-03-07 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062738A JP3812350B2 (en) 2001-03-07 2001-03-07 Power converter

Publications (2)

Publication Number Publication Date
JP2002272116A JP2002272116A (en) 2002-09-20
JP3812350B2 true JP3812350B2 (en) 2006-08-23

Family

ID=18921834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062738A Expired - Fee Related JP3812350B2 (en) 2001-03-07 2001-03-07 Power converter

Country Status (1)

Country Link
JP (1) JP3812350B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277186B2 (en) * 2003-08-25 2009-06-10 富士電機ホールディングス株式会社 Control device for power converter
JP2006166650A (en) * 2004-12-09 2006-06-22 Mitsubishi Electric Corp Controller for thyristor converter
JP4254878B2 (en) * 2007-03-30 2009-04-15 ダイキン工業株式会社 Power supply circuit
US7881079B2 (en) * 2008-03-24 2011-02-01 American Power Conversion Corporation UPS frequency converter and line conditioner
JP5520119B2 (en) * 2009-04-08 2014-06-11 パナソニック株式会社 DC power supply device, inverter drive device, and air conditioner using the same
JP2013090358A (en) * 2011-10-13 2013-05-13 Fuji Electric Co Ltd Series multiplex inverter device
KR101849054B1 (en) * 2017-12-21 2018-04-16 이진학 System for power saving of intelligent

Also Published As

Publication number Publication date
JP2002272116A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
CN108303604B (en) Phase sequence detection device and phase sequence detection method
KR100936290B1 (en) Apparatus and method for detecting rotation angle of rotating body
JP3812350B2 (en) Power converter
CN111665400A (en) Phase loss detection device, compressor comprising same and phase loss detection method
JP2007240426A (en) Insulation detection method and insulation detection device
JP4585404B2 (en) Synchronization control method, synchronization control circuit, and communication apparatus
US7831402B2 (en) Method and related device for estimating two currents flowing simultaneously through respective windings of a poly-phase electrical load driven in SVM mode
JP6882044B2 (en) Motor control device and control method
JP3800391B2 (en) Phase loss detection method and circuit of voltage source inverter device.
JP3039593B2 (en) AC power frequency, open-phase and reverse-phase detector
JP2014066566A (en) Open-phase detection device
JPH01153969A (en) Abnormality detecting device for repetitive waveform
JP5293554B2 (en) Power converter
JP4354148B2 (en) Induction motor control device
JP4836659B2 (en) DC / DC converter
US20230318495A1 (en) Bldc motor system with reduced power loss and the initial rotation direction judging method thereof
JP3386688B2 (en) Brushless motor position detection circuit
JP2004286522A (en) Ground detector and insulation resistance measuring device
JP2005130644A (en) Open phase detector
JP4165377B2 (en) Phase difference detection method when synchronous generator is synchronously turned on
JP5309500B2 (en) Power supply device and method for determining phase loss thereof
CN108152572B (en) Current Hall detection method and device for grid-connected converter
WO2007074636A1 (en) Output signal generating device
JP2000156982A (en) Ac output current abnormality detector
JP2658527B2 (en) Power failure detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees