JP3812135B2 - Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant - Google Patents

Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant Download PDF

Info

Publication number
JP3812135B2
JP3812135B2 JP10520298A JP10520298A JP3812135B2 JP 3812135 B2 JP3812135 B2 JP 3812135B2 JP 10520298 A JP10520298 A JP 10520298A JP 10520298 A JP10520298 A JP 10520298A JP 3812135 B2 JP3812135 B2 JP 3812135B2
Authority
JP
Japan
Prior art keywords
supercritical
hydrothermal reaction
reaction
separator
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10520298A
Other languages
Japanese (ja)
Other versions
JPH11290677A (en
Inventor
龍三 平岡
恒夫 阿部
幸治 竹脇
敬一 三輪
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP10520298A priority Critical patent/JP3812135B2/en
Publication of JPH11290677A publication Critical patent/JPH11290677A/en
Application granted granted Critical
Publication of JP3812135B2 publication Critical patent/JP3812135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機物の超臨界・水熱反応処理方法及びその処理プラントに関するものである。
【0002】
【従来の技術】
超臨界条件下の水により人畜に有害な有機物を分解して、無害化状態にする技術として、技術例1:特開平07−275870号公報「有害有機物の超臨界水酸化処理装置および処理方法」や、技術例2:特開平07−275871号公報「有害物質の超臨界水酸化処理方法及び処理装置」が提案されている。
【0003】
前記技術例1は、水の超臨界条件下に、有害有機物の分解処理をする反応器と、分解生成物の気液分離をする気液分離器とを備えるとともに、被処理物とは別個に、反応器に対して水を加圧送給する第1加圧送給手段と、気液分離器の分離液体を第1加圧送給手段に還流する戻し手段とを備える構成を採用としており、そして、前記技術例2は、予熱器,反応器および冷却器並びに気液分離器を備えるとともに、水の超臨界条件下に、有害物質の分解処理を行なった後に、分解生成物の気液分離を行ない、水溶液を予熱器に送給して予熱し、予熱水溶液と有害物質とを反応器の入口において混合する技術を採用している。
【0004】
【発明が解決しようとする課題】
しかし、超臨界・水熱反応処理を行なう被処理物(被処理液状有機物)は、性状の不均一な雑液体であることが多いために、反応処理後に無機分(無機懸濁物)が分離堆積して、配管やバルブ類を閉塞する現象や、流路を狭めてしまう現象の対策が必要になる。
【0005】
本発明は、このような課題に鑑みてなされたものであり、以下の目的を達成するものである。
▲1▼ 超臨界・水熱反応処理後の反応処理物を減圧して、無機分や塩化物を析出させ、液分から無機分の粒子を効率良く分離すること。
▲2▼ 反応処理物の分離を段階的に実施し、分離性を高めること。
▲3▼ 分離処理時における無機分の舞い上がり現象を抑制して、無機分の下流への流出を低減すること。
【0006】
【課題を解決するための手段】
有機物の超臨界・水熱反応処理方法は、被処理物(a)を超臨界・水熱反応させる工程と、生成された反応処理物を分離器(4B,4C)の内部において、一段目を下方向にして上下交互に向きを変えて多段に設定されたディフューザ(44A〜44C)によって噴出を行う工程と、噴出時の横断面積の増大に基づく減圧により反応処理物中の無機分を析出させて無機分と液分とに分離する工程と、を有するようにした。
有機物の超臨界・水熱反応処理プラントは、被処理物(a)を超臨界・水熱反応させる超臨界・水熱反応処理手段(3A,3B)と、該超臨界・水熱反応処理手段に接続され生成された反応処理物を無機分と液分とに分離する分離器(4B,4C)とを具備し、該分離器が、1段目(44A)が下方向に設定され、その回り及び先端に、上方向に反応処理物を移送する2段目(44B)が配されると共に、反応処理物を分離器の内部に噴出させかつ噴出時の横断面積の増大に基づく減圧により反応処理物中の無機分を析出させるディフューザ(44A,44B)を有するようにした。
また、ディフューザ(44A〜44C)が、上下交互に向きを変えて、3段以上配される。
また、最終段目のディフューザ(44C)の噴出口に、反応処理物の流れを分離器(4B,4C)の内部の中心に寄せるための絞り部(46)が配される。
【0007】
【発明の実施の形態】
以下、本発明に係る超臨界・水熱反応処理プラントの第1実施形態について、図1ないし図を参照して説明する。
図1は、超臨界・水熱反応処理プラントの全体構成を示している。
【0008】
超臨界・水熱反応処理プラントXは、図1に示すように、被処理液状有機物aを超臨界・水熱反応処理時に必要な圧力:例えば20MPaまで加圧した状態にして供給するための原液供給手段1と、該原液供給手段1に接続され予め予熱を行なうための予熱器2と、該予熱器2に接続され被処理液状有機物aを超臨界条件雰囲気として水熱反応を行なうための超臨界・水熱反応処理手段3A,3Bと、予熱器2及び超臨界・水熱反応処理手段3A,3Bに接続され超臨界・水熱反応処理物を固形分(懸濁物)と液分とに分離するための分離器4A,4B,4Cと、該分離器4A,4B,4Cに接続され懸濁物(固形分)を減圧状態に戻して排出するための排出手段5とを具備しており、最下流の分離器4Cには、液分を引き取って処理するための処理水処理手段6が接続される。
【0009】
前記被処理液状有機物aは、例えば技術例1,2に記載されているフロン,PCB等の有害有機物や、汚泥,パルプスラッジ等の有機廃棄物に、超臨界・水熱反応処理時に必要な適量の水を添加調整してなるものである。
【0010】
前記原液供給手段1は、図1に示すように、被処理液状有機物aを例えば大気圧あるいは比較的低圧で貯留しておく原液槽11と、該原液槽11から被処理液状有機物aを吸引して例えば前述の20MPa程度の圧力まで加圧して供給するための供給ポンプ12とを有している。
【0011】
前記予熱器2は、図1に示すように、原液供給手段1と超臨界・水熱反応処理手段3Aとの間に介在して、被処理液状有機物aを例えば200℃程度まで予熱した状態にして、通常の場合に超臨界・水熱反応処理手段3Aに送り出し、無機分が多い場合に被処理液状有機物aを、下流の分離器4Aに送り出すものである。
【0012】
前記超臨界・水熱反応処理手段3A,3Bは、予熱器2の下流に直列状態に配される第1の反応槽31A及び第2の反応槽31Bと、該第1の反応槽31A及び第2の反応槽31Bを例えば350℃程度の温度まで加熱することによりその内部の被処理液状有機物aを超臨界条件雰囲気として水熱反応を生じさせるための加熱炉32とを有している。
【0013】
前記分離器4Aは、図1に示すように、予熱器2の下流と第1の反応槽31Aの上流とに対して接続され、分離器4Bは、第1の反応槽31Aの下流と第2の反応槽31Bの上流とに対して接続され、分離器4Cは、第2の反応槽31Bの下流に対して接続されている。
【0014】
分離器4A,4B,4Cの詳細について、図2及び図3を参照して説明する。分離器4A,4B,4Cは、図2に示すように、予熱器2及び第1,第2の超臨界・水熱反応処理手段3A,3Bに直接的に接続されて高圧状態の流体を受け入れる耐圧容器41と、該耐圧容器41を囲む外壁部42と、耐圧容器41及び外壁部42の間に介在させられる保温材43と、耐圧容器41の内部に挿入状態に配される1段目,2段目,3段目のディフューザ44A,44B,44Cと、耐圧容器41の内底部と2段目のディフューザ44Bの基部との間に介在状態に配され2段目のディフューザ44Bを支持してその位置を設定するための支持部材45と、3段目のディフューザ44Cの先端に配され先端の噴出口を狭めた状態の絞り部46とを有するものが適用される。
【0015】
耐圧容器41には、反応処理物を受け入れて1段目のディフューザ44Aに送り込むための取入口4aと、無機分を取り出すための無機分を取り出すための排出口4bと、3段目のディフューザ44Cを経由した反応処理物(液分)を次の超臨界・水熱反応処理手段3A,3Bまたは処理水処理手段6に送り出すための流出路4c及び排液口4dとが配される。
【0016】
前記1段目のディフューザ44Aは、先端の噴出口が下向きに設定され、その回り及び先端には、反応処理物を上方向に移送した後に上向きに噴出させるために底蓋(底板)を有する2段目のディフューザ44Bが配されているとともに、さらに、2段目のディフューザ44Bの回り及び先端には、反応処理物の流れを耐圧容器41の天井部で反転させて下向きに移送した後に下向きに噴出させる3段目のディフューザ44Cが配されている。
これらのディフューザ44A,44B,44Cは、同心円状に配されるとともに、反応処理物を上下方向に相互に向きを変えて噴出させるようにしている。
そして、各ディフューザ44A,44B,44Cの噴出口の横断面積は、次第に大きくなるように設定されている。
【0017】
前記支持部材45は、少なくとも耐圧容器41の内底部近傍に、無機物等を排出口4bに送り出すための連通孔45aを有しているものが採用される。
【0018】
前記排出手段5は、図1に示すように、各分離器4A,4B,4Cの下流に接続状態に配されて、超臨界及び高圧(例えば20MPa程度の圧力)状態の無機分(固形分)を受け入れる被処理物入口5aと、無機分(無機懸濁物)を間欠的に大気圧程度の減圧状態に戻して下流の懸濁物処理手段に払い出す懸濁物排出口5bと、内部で分離したガス成分を適宜のガス処理手段に送り出すためのガス排出口5cとを有している。
【0019】
前記処理水処理手段6は、図1に示すように、最下流位置となっている分離器4Cに接続状態に配され、分離器4Cで分離することにより生じた処理水等の液分を吸引するポンプ機能を具備するものが適用されるとともに、引き取った液分を貯留する機能を有するものが適用される。
【0020】
なお、図1及び図2において、bは切替弁、cは制御弁、dは背圧弁を示している。
【0021】
このような水熱反応処理プラントXでは、原液供給手段1を作動させて、20MPa程度の所望圧力とした被処理液状有機物aを予熱器2に供給し、例えば臨界状態となる前の温度(例えば200℃程度)まで加熱(予熱)してから、超臨界・水熱反応処理手段3Aに送り込んで、目的とする超臨界・水熱反応を発生させる。
【0022】
この際に、被処理液状有機物aから無機分が分離または析出した場合、あるいは無機分の分離量が多い場合には、切替弁bの切り替えにより、予熱された被処理液状有機物aを分離器4Aに送り込んで、被処理液状有機物aから無機分を分離させる工程が採用される。
なお、予熱器2では、超臨界状態となるまでの高温に至らないものとしているので、分離器4Aの内部では、圧力低下が小さくなるように、例えば接続流路4b,噴出スリーブ44,流出路4cの内径を大きくして、多量の被処理液状有機物aが緩やかに挿通するように設定される。
【0023】
超臨界・水熱反応処理手段3Aに送り込まれた予熱状態の被処理液状有機物aは、加熱炉32の作動により、超臨界・水熱反応の発生適温(例えば前述の20MPaの条件下で350℃程度の温度)まで加熱される。
これらの高温高圧条件と、被処理液状有機物aに水が介在している(混入されている)条件とが重畳すると、超臨界環境で水熱反応が発生し、有機物が組成的に分解して水に溶解する現象が促進される。
この際に、有機物(前述したフロン,PCB,汚泥,パルプスラッジ等の炭素化合物)と水との混合体は、超臨界環境において、水に対してほぼ均一に溶け込んだ状態となる。
【0024】
1段目の超臨界・水熱反応処理手段3Aにおいて、十分な温度が得られず、臨界状態に達しない場合や、無機分の分解析出が多い場合には、超臨界・水熱反応処理手段3Aの下流の切替弁bを切り替えて、分離器4Bから次段の超臨界・水熱反応処理手段3Bに液分を送り込むようにして、超臨界・水熱反応処理を行なう。
したがって、超臨界・水熱反応処理手段3A,3Bは、3段以上とすることができる。
【0025】
予熱器2及び超臨界・水熱反応処理手段3A,3Bにおいて、加熱あるいは超臨界・水熱反応処理によって生成された反応処理物は、分離器4A,4B,4Cにおける耐圧容器41の内部に移送され、1段目のディフューザ44Aの噴出口から、図3に矢印で示すように、下向きに噴出させられるとともに、減圧状態となる。
この際に、2段目のディフューザ44Bにあっては、その底部がほぼ閉塞された状態となっているため、反応処理物の流れの向きが変更されて、図3に矢印で示すように、上向きに導かれる。図2例では、1段目のディフューザ44Aの外周面がテーパ状の形状であるために、2段目のディフューザ44Bの内部でも反応処理物の減圧が行なわれる。
2段目のディフューザ44Bの先端には、耐圧容器41の天井部分及び3段目のディフューザ44Cの基部が配されているために、上方まで導かれた反応処理物は、流れの向きが変更されて、図3に矢印で示すように、再び下向きに導かれる。
3段目のディフューザ44Cの内部においても、横断面積が徐々に大きくなるような設定がなされているために、反応処理物の減圧が行なわれる。
【0026】
このように、反応処理物の減圧が複数段繰り返されることにより超臨界状態が消失し、反応処理物中の無機分(シリカ分や塩分等)が析出して徐々に沈降して、耐圧容器41の内底部に堆積すると考えられる。
無機分を分離した液分(反応処理物の大部分)は、排液口4dから下流に送り出される。
【0027】
一方、各段目のディフューザ44A〜44Cで、噴出方向を変えるとともに、その都度横断面積を大きくする設定となっているために、無機分の析出に基づく分離が繰返されるため、2段目のディフューザ44Bの基部(下底部)に、反応処理物の誘導を損なうことなく、沈降した無機分を落下させて除去するスリット等を配しておくことも有効である。
【0028】
反応処理物が超臨界・水熱反応処理手段3A,3Bを経ている場合には、超臨界・水熱反応によって生成された無機分が主として析出沈降して分離した状態となる。
反応処理物が、予熱器2から送り出されたものである場合には、超臨界・水熱反応過程を経由しないことに基づいて、被処理物に混入している無機分が必ずしも析出して分離するとは限らないものの、固形分や、超臨界・水熱反応を経ることなく析出した(または分離した)一部の無機分がある場合には、これらが沈降する。
これらの無機分等は、耐圧容器41の排出口4bから、制御弁cの開放によりさらに下流に移送される。
加えて、最終段目となっている3段目のディフューザ44Cの先端部(噴出口)には、絞り部46が配されているために、反応処理物の流れが、絞り部46により分離器4A,4B,4Cの内部の中心に寄せられて、排液口4dから下流に送り出される液分と干渉することが回避されるものとなり、析出した無機分の舞い上がり現象の発生を抑制することができる。
【0029】
分離器4A,4B,4Cで分離析出または堆積した無機分は、排出手段5との間の制御弁cを開放することにより、排出手段5に移送される。
該排出手段5にあっては、分離器4A,4B,4Cとの間の制御弁cを閉塞して切り離した後、例えば大気圧程度の低圧環境に戻す等により、無機分の必要な処理を行なう。
なお、排出手段5において、圧力低下によって発生したCO2 ,水蒸気等のガス分は、前述例のガス処理手段等により処理されることになる。
【0030】
図4及び図5は、分離器4A,4B,4Cの部分の第2実施形態を示している。
該第2実施形態では、1段目のディフューザ44A,2段目のディフューザ44B及び3段目のディフューザ44Cが、テーパ形状に代えて直円筒形状に形成されている。
この図4例にあっても、各ディフューザ44A,44B,44Cの噴出口が、次段に行くにしたがって、横断面積が徐々に大きくなるように設定されている(例えば3段目のディフューザ44Cの噴出口よりも耐圧容器41の内径が大きい)ことにより、図5に矢印で示すように、反応処理物の流れが広がって、減圧に基づき無機分の析出に基づく分離が繰返されるものとなる。
【0031】
図6及び図7は、分離器4A,4B,4Cの部分の第3実施形態を示している。
該第3実施形態では、図6に示すように、1段目のディフューザ44Aのみが使用されているが、分離器4A,4B,4Cを直列に接続し、かつその段数を多くできる場合等において、図7に矢印で示すように、流体を広げて減速に基づく減圧を行ない、無機分の析出を行なうようにしている。
【0032】
【発明の効果】
本発明に係る有機物の超臨界・水熱反応処理方法及びその処理プラントによれば、以下の効果を奏する。
(1) 超臨界・水熱反応処理後の反応処理物を、分流器のディフューザから噴出させて減圧を行なうことにより、無機分や塩化物を析出させ、反応処理物から無機分等を効率良く分離することができる。
(2) 反応処理物の分離を段階的に多段に行なうことにより、分離性を高め、無機分の堆積等による反応処理物移送時の目詰まり現象の発生を抑制することができる。
(3) ディフューザを同心円状に配するとともに、反応処理物を中心部から外側に導くことにより、ディフューザの長さ寸法の増大を抑制し、全体の小型化を図ることができる。
(4) 上記に際して、反応処理物を上下相互に噴出させることにより、ディフューザの噴出の横断面積を次第に大きくなる設定することが容易になり、かつ一つの分離器の内部で無機分の析出を繰り返すことができる。
(5) ディフューザの噴出口に絞り部を配して、反応処理物の流れを中心に寄せることにより、析出した無機分の舞い上がり現象を抑制し、無機分の下流への送り込みを減少することができる。
【図面の簡単な説明】
【図1】 本発明に係る有機物の超臨界・水熱反応処理方法及びその処理プラントの第1実施形態を示す結線図である。
【図2】 図1の分離器の詳細構造を示す正断面図である。
【図3】 図2の分離器による減圧状況を模式的に示す正断面図である。
【図4】 分離器の部分の第2実施形態を示す正断面図である。
【図5】 図4の分離器による減圧状況を模式的に示す正断面図である。
【図6】 分離器の部分の第3実施形態を示す正断面図である。
【図7】 図6の分離器による減圧状況を模式的に示す正断面図である。
【符号の説明】
X 超臨界・水熱反応処理プラント
a 被処理液状有機物
1 原液供給手段
2 予熱器
3A,3B 超臨界・水熱反応処理手段
4A,4B,4C 分離器
4a 取入口
4b 排出口
4c 流出路
4d 排液口
5 排出手段
5a 被処理物入口
5b 懸濁物排出口
5c ガス排出口
6 処理水処理手段
11 原液槽
12 供給ポンプ
31A 第1の反応槽
31B 第2の反応槽
32 加熱炉
41 耐圧容器
42 外壁部
43 保温材
44A,44B,44C ディフューザ
45 支持部材
45a 連通孔
46 絞り部
b 切替弁
c 制御弁
d 背圧弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a supercritical / hydrothermal reaction treatment method for organic matter and a treatment plant therefor.
[0002]
[Prior art]
As a technique for decomposing organic substances harmful to human livestock with water under supercritical conditions to make them harmless, Technical Example 1: Japanese Patent Application Laid-Open No. 07-275870 “Supercritical Hydroxylation Apparatus and Treatment Method for Harmful Organic Substances” Also, Technical Example 2: Japanese Patent Application Laid-Open No. 07-275871 “Supercritical water oxidation treatment method and treatment apparatus for harmful substances” has been proposed.
[0003]
The technical example 1 includes a reactor that decomposes harmful organic substances under a supercritical condition of water, and a gas-liquid separator that performs gas-liquid separation of decomposition products, and separately from the object to be processed. The first pressure feeding means for pressurizing and feeding water to the reactor, and a return means for returning the separated liquid of the gas-liquid separator to the first pressure feeding means, and The technical example 2 includes a preheater, a reactor and a cooler, and a gas-liquid separator, and performs a gas-liquid separation of the decomposition product after decomposing a harmful substance under supercritical conditions of water. In this method, the aqueous solution is supplied to the preheater for preheating, and the preheated aqueous solution and the harmful substance are mixed at the inlet of the reactor.
[0004]
[Problems to be solved by the invention]
However, since the material to be treated (liquid organic material to be treated) that undergoes supercritical / hydrothermal reaction treatment is often a heterogeneous liquid with properties, the inorganic content (inorganic suspension) is separated after the reaction treatment. It is necessary to take measures against the phenomenon of accumulation and blocking of piping and valves and the phenomenon of narrowing the flow path.
[0005]
This invention is made | formed in view of such a subject, and achieves the following objectives.
(1) Depressurize the reaction product after supercritical / hydrothermal reaction treatment to precipitate inorganic components and chlorides, and efficiently separate inorganic particles from the liquid.
(2) To improve the separability by separating the reaction product in stages.
(3) Suppressing the rising phenomenon of the inorganic component during the separation process and reducing the downstream flow of the inorganic component.
[0006]
[Means for Solving the Problems]
In the supercritical / hydrothermal reaction processing method for organic matter, the first stage of the process (a) is carried out in a supercritical / hydrothermal reaction, and the reaction product thus produced is separated in the separator (4B, 4C). The inorganic component in the reaction product is precipitated by a step of performing jetting by the diffusers (44A to 44C) set in multiple stages by changing the direction alternately up and down in the downward direction, and by reducing the pressure based on the increase in the cross-sectional area at the time of jetting. And a step of separating into an inorganic component and a liquid component.
The supercritical / hydrothermal reaction processing plant for organic matter includes supercritical / hydrothermal reaction processing means (3A, 3B) for subjecting the object (a) to supercritical / hydrothermal reaction, and the supercritical / hydrothermal reaction processing means. A separator (4B, 4C) that separates the reaction-treated product produced by being separated into an inorganic component and a liquid component, the first stage (44A) being set downward , The second stage (44B) for transferring the reaction product in the upward direction is arranged around and at the tip, and the reaction treatment product is ejected into the separator and reacted by depressurization based on an increase in the cross-sectional area at the time of ejection. A diffuser (44A, 44B) for precipitating inorganic components in the treated product was provided.
In addition, the diffusers (44A to 44C) are arranged in three or more stages by alternately changing the direction vertically.
In addition, a throttle part (46) for bringing the flow of the reaction product to the center inside the separators (4B, 4C) is disposed at the outlet of the final stage diffuser (44C).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a supercritical / hydrothermal reaction processing plant according to the present invention will be described with reference to FIGS.
FIG. 1 shows the overall configuration of a supercritical / hydrothermal reaction processing plant.
[0008]
As shown in FIG. 1, the supercritical / hydrothermal reaction treatment plant X is a stock solution for supplying the liquid organic substance a to be treated in a state in which it is pressurized to a pressure necessary for the supercritical / hydrothermal reaction treatment, for example, up to 20 MPa. A supply means 1, a preheater 2 connected to the stock solution supply means 1 for preheating in advance, and a superheater connected to the preheater 2 for performing a hydrothermal reaction with the liquid organic substance a to be treated as a supercritical condition atmosphere. The critical / hydrothermal reaction treatment means 3A, 3B, the superheater / hydrothermal reaction treatment means 3A, 3B connected to the preheater 2 and the supercritical / hydrothermal reaction treatment means 3A, 3B are separated into solid (suspension) and liquid components. And separators 4A, 4B, and 4C for separating the suspensions, and discharge means 5 connected to the separators 4A, 4B, and 4C for returning the suspension (solid content) to a reduced pressure state and discharging the suspensions. In the most downstream separator 4C, the liquid is taken up and processed. Processing water treatment unit 6 is connected.
[0009]
The liquid organic substance a to be treated is, for example, an appropriate amount necessary for supercritical / hydrothermal reaction treatment to harmful organic substances such as chlorofluorocarbon and PCB described in Technical Examples 1 and 2 and organic waste such as sludge and pulp sludge. The water is added and adjusted.
[0010]
As shown in FIG. 1, the undiluted solution supply means 1 sucks the untreated liquid organic material a from the undiluted solution tank 11 for storing the untreated liquid organic material a at, for example, atmospheric pressure or relatively low pressure. For example, it has the supply pump 12 for pressurizing and supplying to the above-mentioned pressure of about 20 MPa.
[0011]
As shown in FIG. 1, the preheater 2 is interposed between the stock solution supplying means 1 and the supercritical / hydrothermal reaction processing means 3A to preheat the liquid organic substance a to be treated to about 200 ° C., for example. Thus, in a normal case, it is sent to the supercritical / hydrothermal reaction treatment means 3A, and when the inorganic content is large, the liquid organic substance a to be treated is sent to the downstream separator 4A.
[0012]
The supercritical / hydrothermal reaction processing means 3A, 3B includes a first reaction tank 31A and a second reaction tank 31B arranged in series downstream of the preheater 2, and the first reaction tank 31A and the first reaction tank 31A. A heating furnace 32 for generating a hydrothermal reaction by heating the second reaction tank 31B to a temperature of, for example, about 350 ° C. and setting the liquid organic substance a to be treated as a supercritical condition atmosphere.
[0013]
As shown in FIG. 1, the separator 4A is connected to the downstream side of the preheater 2 and the upstream side of the first reaction tank 31A, and the separator 4B is connected to the downstream side of the first reaction tank 31A and the second side. The separator 4C is connected to the downstream of the second reaction tank 31B.
[0014]
Details of the separators 4A, 4B, and 4C will be described with reference to FIGS. As shown in FIG. 2, the separators 4A, 4B, and 4C are directly connected to the preheater 2 and the first and second supercritical / hydrothermal reaction processing means 3A and 3B to receive a high-pressure fluid. A pressure vessel 41, an outer wall portion 42 surrounding the pressure vessel 41, a heat insulating material 43 interposed between the pressure vessel 41 and the outer wall portion 42, and a first stage arranged in an inserted state inside the pressure vessel 41, The second-stage and third-stage diffusers 44A, 44B, 44C are arranged between the inner bottom of the pressure vessel 41 and the base of the second-stage diffuser 44B, and support the second-stage diffuser 44B. A member having a support member 45 for setting the position and a throttle portion 46 arranged at the tip of the third-stage diffuser 44C and in which the jet outlet at the tip is narrowed is applied.
[0015]
The pressure vessel 41 has an inlet 4a for receiving the reaction product and feeding it to the first stage diffuser 44A, an outlet 4b for taking out the inorganic part, and a third stage diffuser 44C. An outflow passage 4c and a drainage port 4d are provided for sending the reaction product (liquid component) passing through to the next supercritical / hydrothermal reaction treatment means 3A, 3B or treated water treatment means 6.
[0016]
The first-stage diffuser 44A has a front-end jet outlet set downward, and has a bottom lid (bottom plate) at the periphery and at the front end for transferring the reaction processing product upward and then jetting it upward. A stage diffuser 44B is arranged, and further, around the tip of the second stage diffuser 44B, the flow of the reaction product is reversed at the ceiling of the pressure vessel 41 and transferred downward. A third-stage diffuser 44C to be ejected is arranged.
These diffusers 44A, 44B, and 44C are arranged concentrically, and eject the reaction product in the up and down direction.
And the cross-sectional area of the jet outlet of each diffuser 44A, 44B, 44C is set so that it may become large gradually.
[0017]
As the support member 45, a member having a communication hole 45 a for sending an inorganic substance or the like to the discharge port 4 b at least in the vicinity of the inner bottom portion of the pressure vessel 41 is employed.
[0018]
As shown in FIG. 1, the discharge means 5 is arranged in a connected state downstream of the separators 4A, 4B, 4C, and is in a supercritical and high pressure (for example, a pressure of about 20 MPa) state inorganic content (solid content). And a suspension outlet 5b for intermittently returning the inorganic content (inorganic suspension) to a reduced pressure state of about atmospheric pressure and delivering it to the downstream suspension processing means, It has a gas discharge port 5c for sending the separated gas component to an appropriate gas processing means.
[0019]
As shown in FIG. 1, the treated water treatment means 6 is connected to the separator 4C located at the most downstream position, and sucks liquid components such as treated water generated by separation by the separator 4C. What has a pump function to perform is applied, and what has the function to store the taken-up liquid component is applied.
[0020]
1 and 2, b indicates a switching valve, c indicates a control valve, and d indicates a back pressure valve.
[0021]
In such a hydrothermal reaction processing plant X, the raw liquid supply means 1 is operated to supply the liquid organic substance a to be processed having a desired pressure of about 20 MPa to the preheater 2, for example, a temperature before becoming a critical state (for example, After heating (preheating) to about 200 ° C., it is sent to the supercritical / hydrothermal reaction treatment means 3A to generate the desired supercritical / hydrothermal reaction.
[0022]
At this time, when the inorganic component is separated or precipitated from the liquid organic material to be processed a, or when the amount of separation of the inorganic component is large, the preheated liquid organic material a to be processed is separated by switching the switching valve b. And the step of separating the inorganic component from the liquid organic material to be treated a is employed.
Since the preheater 2 does not reach a high temperature until it reaches a supercritical state, for example, the connection flow path 4b, the ejection sleeve 44, and the outflow path are formed in the separator 4A so as to reduce the pressure drop. The inner diameter of 4c is increased so that a large amount of the liquid organic substance a to be processed is gently inserted.
[0023]
The preheated liquid organic substance a in the preheated state sent to the supercritical / hydrothermal reaction processing means 3A is heated to a supercritical / hydrothermal reaction generation temperature (for example, 350 ° C. under the above-mentioned 20 MPa condition) by the operation of the heating furnace 32. To a certain temperature).
When these high-temperature and high-pressure conditions overlap with the conditions in which water is present (mixed) in the liquid organic material a to be treated, a hydrothermal reaction occurs in a supercritical environment, and the organic matter is decomposed compositionally. The phenomenon of dissolving in water is promoted.
At this time, the mixture of the organic matter (carbon compound such as chlorofluorocarbon, PCB, sludge, pulp sludge and the like) and water is in a state of being almost uniformly dissolved in water in a supercritical environment.
[0024]
In the first-stage supercritical / hydrothermal reaction treatment means 3A, if a sufficient temperature cannot be obtained and the critical state is not reached, or if there is a lot of decomposition and precipitation of inorganic components, supercritical / hydrothermal reaction treatment The supercritical / hydrothermal reaction treatment is performed by switching the switching valve b downstream of the means 3A and sending the liquid component from the separator 4B to the next supercritical / hydrothermal reaction treatment means 3B.
Therefore, the supercritical / hydrothermal reaction treatment means 3A, 3B can be three or more stages.
[0025]
In the preheater 2 and the supercritical / hydrothermal reaction processing means 3A, 3B, the reaction product generated by heating or supercritical / hydrothermal reaction processing is transferred into the pressure vessel 41 in the separators 4A, 4B, 4C. Then, as shown by the arrow in FIG. 3, the first stage diffuser 44 </ b> A is ejected downward and is in a reduced pressure state.
At this time, since the bottom portion of the second-stage diffuser 44B is almost closed, the direction of the flow of the reaction treatment product is changed, as shown by the arrows in FIG. Guided upward. In the example of FIG. 2, since the outer peripheral surface of the first stage diffuser 44A has a tapered shape, the reaction product is depressurized inside the second stage diffuser 44B.
Since the ceiling portion of the pressure vessel 41 and the base of the third-stage diffuser 44C are arranged at the tip of the second-stage diffuser 44B, the direction of the flow of the reaction treatment product guided up is changed. Then, as shown by the arrow in FIG.
Even in the third-stage diffuser 44C, the reaction product is decompressed because the cross-sectional area is set to gradually increase.
[0026]
In this manner, the supercritical state disappears by repeating the depressurization of the reaction treatment product in a plurality of stages, the inorganic content (silica content, salt content, etc.) in the reaction treatment product precipitates and gradually settles, and the pressure vessel 41 It is thought that it accumulates on the inner bottom of this.
The liquid component from which the inorganic component has been separated (most of the reaction product) is sent downstream from the drain port 4d.
[0027]
On the other hand, since each of the diffusers 44A to 44C at each stage changes the ejection direction and increases the cross-sectional area each time, separation based on precipitation of inorganic components is repeated, so that the second stage diffuser It is also effective to arrange a slit or the like for dropping and removing the settled inorganic component without impairing the induction of the reaction product at the base (lower bottom) of 44B.
[0028]
In the case where the reaction product has passed through the supercritical / hydrothermal reaction treatment means 3A, 3B, the inorganic components generated by the supercritical / hydrothermal reaction are mainly precipitated and settled and separated.
In the case where the reaction product is sent from the preheater 2, based on the fact that it does not go through the supercritical / hydrothermal reaction process, the inorganic component mixed in the material to be treated is necessarily deposited and separated. Although there is no limitation, if there is a solid content or a part of the inorganic content deposited (or separated) without undergoing a supercritical / hydrothermal reaction, these precipitate.
These inorganic components and the like are transferred further downstream from the discharge port 4b of the pressure vessel 41 by opening the control valve c.
In addition, since the throttle 46 is arranged at the tip (jet outlet) of the third-stage diffuser 44C, which is the final stage, the flow of the reaction product is separated by the throttle 46 from the separator. 4A, 4B, 4C is brought to the center of the inside, and it is avoided that it interferes with the liquid component sent downstream from the drainage port 4d, and the occurrence of the rising phenomenon of the precipitated inorganic component is suppressed. it can.
[0029]
The inorganic components separated and deposited by the separators 4A, 4B, and 4C are transferred to the discharge means 5 by opening the control valve c between the separators 4A, 4B, and 4C.
In the discharge means 5, after the control valve c between the separators 4A, 4B, and 4C is closed and disconnected, the necessary treatment of the inorganic content is performed by returning to a low pressure environment of about atmospheric pressure, for example. Do.
In the discharge means 5, gas components such as CO 2 and water vapor generated by the pressure drop are processed by the gas processing means in the above-described example.
[0030]
4 and 5 show a second embodiment of the parts of the separators 4A, 4B, 4C.
In the second embodiment, the first-stage diffuser 44A, the second-stage diffuser 44B, and the third-stage diffuser 44C are formed in a right cylindrical shape instead of the tapered shape.
In the example of FIG. 4 as well, the outlet of each diffuser 44A, 44B, 44C is set so that the cross-sectional area gradually increases as it goes to the next stage (for example, the third stage diffuser 44C As the inner diameter of the pressure vessel 41 is larger than that of the jet port), as shown by arrows in FIG. 5, the flow of the reaction product spreads, and separation based on precipitation of inorganic components is repeated based on reduced pressure.
[0031]
6 and 7 show a third embodiment of the parts of the separators 4A, 4B, 4C.
In the third embodiment, as shown in FIG. 6, only the first-stage diffuser 44A is used. However, in the case where the separators 4A, 4B, 4C are connected in series and the number of stages can be increased. As shown by the arrows in FIG. 7, the fluid is expanded and the pressure is reduced based on the deceleration, so that the inorganic content is deposited.
[0032]
【The invention's effect】
According to the supercritical / hydrothermal reaction processing method for organic matter and its processing plant according to the present invention, the following effects can be obtained.
(1) The reaction product after supercritical / hydrothermal reaction treatment is ejected from the diffuser of the flow divider to reduce the pressure, thereby precipitating inorganic components and chlorides and efficiently removing inorganic components from the reaction product. Can be separated.
(2) Separation of the reaction product in multiple stages step by step can improve the separability and suppress the occurrence of a clogging phenomenon during transfer of the reaction product due to deposition of inorganic components.
(3) By arranging the diffuser concentrically and guiding the reaction product from the center to the outside, an increase in the length of the diffuser can be suppressed, and the overall size can be reduced.
(4) At the time of the above, it becomes easy to set the cross-sectional area of the diffuser jets to be gradually increased by jetting the reaction treatment products up and down, and the precipitation of inorganic components is repeated inside one separator. be able to.
(5) By restricting the flow of the reaction product to the center by arranging a constriction part at the jet port of the diffuser, it is possible to suppress the rising phenomenon of the deposited inorganic component and reduce the downstream feed of the inorganic component. it can.
[Brief description of the drawings]
FIG. 1 is a connection diagram illustrating a first embodiment of a supercritical / hydrothermal reaction treatment method and treatment plant for organic matter according to the present invention.
FIG. 2 is a front sectional view showing a detailed structure of the separator shown in FIG.
FIG. 3 is a front sectional view schematically showing a pressure reduction state by the separator of FIG. 2;
FIG. 4 is a front sectional view showing a second embodiment of a separator portion.
FIG. 5 is a front sectional view schematically showing a pressure reduction state by the separator of FIG. 4;
FIG. 6 is a front sectional view showing a third embodiment of the separator portion.
7 is a front cross-sectional view schematically showing a depressurization state by the separator of FIG. 6. FIG.
[Explanation of symbols]
X Supercritical / hydrothermal reaction treatment plant a Processed liquid organic substance 1 Stock solution supply means 2 Preheater 3A, 3B Supercritical / hydrothermal reaction treatment means 4A, 4B, 4C Separator 4a Inlet 4b Outlet 4c Outlet 4d Drain Liquid outlet 5 Discharge means 5a Workpiece inlet 5b Suspension discharge outlet 5c Gas exhaust 6 Treated water treatment means 11 Raw liquid tank 12 Supply pump 31A First reaction tank 31B Second reaction tank 32 Heating furnace 41 Pressure vessel 42 Outer wall part 43 Insulating material 44A, 44B, 44C Diffuser 45 Support member 45a Communication hole 46 Restriction part b Switching valve c Control valve d Back pressure valve

Claims (4)

被処理物(a)を超臨界・水熱反応させる工程と、
生成された反応処理物を分離器(4B,4C)の内部において、一段目を下方向にして上下交互に向きを変えて多段に設定されたディフューザ(44A〜44C)によって噴出を行う工程と、
噴出時の横断面積の増大に基づく減圧により反応処理物中の無機分を析出させて無機分と液分とに分離する工程と、
を有することを特徴とする有機物の超臨界・水熱反応処理方法。
A supercritical / hydrothermal reaction of the workpiece (a);
In the separator (4B, 4C), the step of ejecting the produced reaction treatment product by the diffusers (44A to 44C) set in multiple stages by changing the direction alternately up and down with the first stage downward;
A step of precipitating the inorganic component in the reaction product by depressurization based on the increase in the cross-sectional area at the time of ejection and separating the inorganic component and the liquid component;
A method for supercritical / hydrothermal reaction treatment of an organic substance, comprising:
被処理物(a)を超臨界・水熱反応させる超臨界・水熱反応処理手段(3A,3B)と、該超臨界・水熱反応処理手段に接続され生成された反応処理物を無機分と液分とに分離する分離器(4B,4C)とを具備し、
該分離器が、1段目(44A)が下方向に設定され、その回り及び先端に、上方向に反応処理物を移送する2段目(44B)が配されると共に、反応処理物を分離器の内部に噴出させかつ噴出時の横断面積の増大に基づく減圧により反応処理物中の無機分を析出させるディフューザ(44A,44B)を有していることを特徴とする有機物の超臨界・水熱反応処理プラント。
The supercritical / hydrothermal reaction treatment means (3A, 3B) for reacting the object to be treated (a) with the supercritical / hydrothermal reaction means, and the reaction treatment product produced by being connected to the supercritical / hydrothermal reaction treatment means are treated with an inorganic component. And a separator (4B, 4C) that separates into a liquid component,
In the separator, the first stage (44A) is set in the downward direction , and the second stage (44B) for transferring the reaction process product in the upward direction is arranged around and at the tip, and the reaction process product is separated. Supercritical water of organic matter, characterized by having a diffuser (44A, 44B) that is ejected into the vessel and deposits inorganic components in the reaction product by decompression based on the increase in the cross-sectional area at the time of ejection Thermal reaction processing plant.
ディフューザ(44A〜44C)が、上下交互に向きを変えて、3段以上配されることを特徴とする請求項2記載の有機物の超臨界・水熱反応処理プラント。  The supercritical / hydrothermal reaction processing plant for organic substances according to claim 2, wherein the diffusers (44A to 44C) are arranged in three or more stages while alternately changing the direction. 最終段目のディフューザ(44C)の噴出口に、反応処理物の流れを分離器(4B,4C)の内部の中心に寄せるための絞り部(46)が配されることを特徴とする請求項3記載の有機物の超臨界・水熱反応処理プラント。The ejection port of the final-stage diffuser (44C), claims, characterized in that the flow of the reaction treated separator (4B, 4C) throttle portion for lapping inside the center of (46) disposed 3. A supercritical / hydrothermal reaction treatment plant for organic matter according to 3 .
JP10520298A 1998-04-15 1998-04-15 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant Expired - Fee Related JP3812135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10520298A JP3812135B2 (en) 1998-04-15 1998-04-15 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10520298A JP3812135B2 (en) 1998-04-15 1998-04-15 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant

Publications (2)

Publication Number Publication Date
JPH11290677A JPH11290677A (en) 1999-10-26
JP3812135B2 true JP3812135B2 (en) 2006-08-23

Family

ID=14401091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10520298A Expired - Fee Related JP3812135B2 (en) 1998-04-15 1998-04-15 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant

Country Status (1)

Country Link
JP (1) JP3812135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149767A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Supercritical water treating device and super critical water treating method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338199A (en) * 1980-05-08 1982-07-06 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
US5409617A (en) * 1993-07-13 1995-04-25 Sri International Environmentally acceptable waste disposal by conversion of hydrothermally labile compounds
US6103129A (en) * 1994-01-14 2000-08-15 3500764 Canada Inc. Method for the critical water oxidation of organic compounds
SI9400079B (en) * 1994-02-15 2003-02-28 Dr. Weidner Eckhard, Dipl. Ing. Method and device for extraction and fractionation of small particles from solutions saturated with gas
JPH08290180A (en) * 1995-04-20 1996-11-05 Osaka Gas Co Ltd Method for wet-oxidizing cyanide-containing waste water
JP3131626B2 (en) * 1996-06-10 2001-02-05 工業技術院長 Decomposition method of dioxins by supercritical water
JP3887942B2 (en) * 1998-04-14 2007-02-28 石川島播磨重工業株式会社 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP3887941B2 (en) * 1998-04-14 2007-02-28 石川島播磨重工業株式会社 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP3921801B2 (en) * 1998-04-14 2007-05-30 石川島播磨重工業株式会社 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JPH11290820A (en) * 1998-04-15 1999-10-26 Ishikawajima Harima Heavy Ind Co Ltd Method for decomposing dioxin and its decomposition plant

Also Published As

Publication number Publication date
JPH11290677A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
RU2020100577A (en) REACTOR PLANTS WITH FLUID RECIRCULATION
JP2009018298A (en) Supercritical water oxidation apparatus and process
US7597873B2 (en) Process and apparatus for the recovery of metal oxide particles
JP3812135B2 (en) Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP3887941B2 (en) Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
EP0362978A1 (en) Process for treating caustic cyanide metal wastes
US10301207B2 (en) Non-scaling wet air oxidation process
CN212387938U (en) Oil sludge treatment system
JP3921801B2 (en) Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP2006231126A (en) Treatment apparatus for organic waste liquid and treatment system for organic waste liquid
JP3887942B2 (en) Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP5016795B2 (en) High temperature and high pressure reactor and method for treating organic matter using the high temperature and pressure reactor
JP3783398B2 (en) Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP2002102672A (en) Method and apparatus for hydrothermal reaction
JP4440377B2 (en) Supercritical fluid or subcritical fluid reactor
JP4355246B2 (en) High temperature and high pressure treatment equipment for organic waste
JPH11290820A (en) Method for decomposing dioxin and its decomposition plant
JP2003236594A (en) Apparatus for treating sludge
KR20100006008A (en) Method of treatment of organic wastewater mixed with inorganic wastewater and apparatus for treatment of organic wastewater mixed with inorganic wastewater
JPH03150327A (en) Manufacture of metallic ti
CN111268884B (en) Oil sludge treatment system and method
JP2004105820A (en) Method and apparatus for hydrothermal reaction
JP2015144990A (en) Waste liquid treatment apparatus
KR101866701B1 (en) Discharging system of a high-pressure reactor, an apparatus and a method for continuously pouducing solid-liquid surry from waste sludge
JP2004097997A (en) Method and equipment for treating water-soluble polymer-containing waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees