JP3811720B2 - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer Download PDF

Info

Publication number
JP3811720B2
JP3811720B2 JP2002344934A JP2002344934A JP3811720B2 JP 3811720 B2 JP3811720 B2 JP 3811720B2 JP 2002344934 A JP2002344934 A JP 2002344934A JP 2002344934 A JP2002344934 A JP 2002344934A JP 3811720 B2 JP3811720 B2 JP 3811720B2
Authority
JP
Japan
Prior art keywords
pulse motor
position control
ray
sample
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002344934A
Other languages
Japanese (ja)
Other versions
JP2004177302A (en
Inventor
悦久 山本
潔 小堀
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP2002344934A priority Critical patent/JP3811720B2/en
Publication of JP2004177302A publication Critical patent/JP2004177302A/en
Application granted granted Critical
Publication of JP3811720B2 publication Critical patent/JP3811720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルスモータを駆動源とする可動機構を複数備え、パルスモータの回転を位置制御用ICで制御する蛍光X線分析装置に関する。
【0002】
【従来の技術】
例えば、波長分散型で走査型の蛍光X線分析装置は、試料の交換機構(例えば、特許文献1参照)、試料の位置決め機構(例えば、特願2002−126112の段落0019〜0025、図3、図4参照)、1次フィルタの交換機構(例えば、特許文献2参照)、視野制限ダイアフラムの交換機構(例えば、特許文献3参照)、発散スリットの交換機構(例えば、特許文献4参照)、分光素子と検出器との連動機構(例えば、特許文献5参照)など、パルスモータを駆動源とする(あるいは駆動源とできる)可動機構を多数備えており、それらのパルスモータの回転を位置制御用ICで制御することにより、所望の試料を選択し、その試料の所望の測定部位を位置決めし、光学系を適切に設定し、波長を走査して蛍光X線の強度測定を行うことができる。ここで、各パルスモータに専用の位置制御用ICを設けている。
【0003】
【発明が解決しようとする課題】
しかし、これでは、位置制御用ICはパルスモータと同じ数だけ必要で、それを実装する基板も大きくなり、装置の複雑化、大型化、コストアップを招いている。
【0004】
【特許文献1】
特開2001−21457号公報(段落0013〜0016、図2)
【特許文献2】
特開2001−349851号公報(段落0010〜0011、図1)
【特許文献3】
特開2000−310602号公報(段落0012、図1)
【特許文献4】
特開2000−249667号公報(段落0032〜0034、図2)
【特許文献5】
特開2001−221752号公報(段落0030〜0031、図2)
【0005】
本発明は前記従来の問題に鑑みてなされたもので、パルスモータの回転を位置制御用ICで制御する蛍光X線分析装置において、装置の簡素化、コストダウンを図れるものを提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明は、パルスモータを駆動源とする可動機構を複数備え、前記パルスモータの回転をIOボードに実装された位置制御用ICで制御することにより、試料に1次X線を照射して発生する2次X線の強度を測定する蛍光X線分析装置において、前記位置制御用ICをパルスモータに動的に割り当てる制御手段を備えることにより、前記位置制御用ICの数をパルスモータの数よりも少なくし、前記制御手段が、個々の制御を終了する際には、その制御での割り当て関係を解消し、使用していた位置制御用ICを次回の割り当ての候補として解放するとともに、制御していたパルスモータの回転位置を記憶しておくことを特徴とする。
【0007】
本発明の装置によれば、位置制御用ICをパルスモータに動的に割り当てる制御手段を備えることにより、位置制御用ICの数をパルスモータの数よりも少なくするので、装置の簡素化、コストダウンができる。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態の装置について説明する。図1に示すように、この装置は、波長分散型で走査型の蛍光X線分析装置であって、パルスモータ2を駆動源とする可動機構1を複数備え、パルスモータ2の回転を位置制御用IC4で制御することにより、試料14に1次X線13を照射して発生する蛍光X線などの2次X線15の強度を測定する。
【0009】
複数の可動機構1とは、試料交換機構6におけるX移動機構1AおよびY移動機構1B、試料位置決め機構7におけるr位置決め機構1Cおよびθ位置決め機構1D、1次フィルタ交換機構1E、ダイアフラム交換機構1F、発散スリット交換機構1G、ならびに、分光素子と検出器との連動機構8におけるθ軸駆動機構1Hおよび2θ軸駆動機構1Iの9つである。各可動機構1A,1B…の具体的構成については、従来の技術の欄で一例を参照したが、それ以外にも様々に構成できるので模式的に図示している。各可動機構1A,1B…は、駆動源として1つずつパルスモータ2A,2B…を有している。
【0010】
試料交換機構6におけるX移動機構1AおよびY移動機構1Bは、例えば、縦横(Y方向およびX方向)に多数配置された試料(図示せず)のうち、所望の1つを1次X線13が照射される分析位置(図1の試料14の位置)へ搬送するために、試料(または試料を保持する試料ホルダ)を把持するチャックを所望の試料の直上までパルスモータ2B,2Aの回転により移動させる縦移動台および横移動台である。試料位置決め機構7におけるr位置決め機構1Cおよびθ位置決め機構1Dは、試料14における所望の部位が測定されるように試料14をパルスモータ2C,2Dの回転により位置決めするもので、例えば、rθテーブルにおけるr方向の駆動手段およびθ方向(後述する分光素子18への入射角θとは無関係である)の駆動手段である。
【0011】
1次フィルタ交換機構1Eは、例えば、材質または厚みが相異なる複数の1次フィルタを周方向に配置した円板をパルスモータ2Eで回転させて、X線管11と試料14との間のX線光路に位置する1次フィルタ12を選択するものである。ダイアフラム交換機構1Fは、例えば、孔径が相異なる複数の視野制限用ダイアフラム(試料表面において検出器が見込む面積を決めるもの)を周方向に配置した円板をパルスモータ2Fで回転させて、試料14と発散スリット17との間のX線光路に位置するダイアフラム16を選択するものである。発散スリット交換機構1Gは、例えば、分解能が相異なる複数の発散スリットを周方向に配置した円板をパルスモータ2Gで回転させて、ダイアフラム16と分光素子18との間のX線光路に位置する発散スリット17を選択するものである。
【0012】
分光素子と検出器との連動機構8は、検出器21(前部に受光スリット20を有している)に入射する2次X線19の波長が変化するように分光素子18と検出器21とを連動させる、いわゆるゴニオメータである。すなわち、2次X線15がある入射角θで分光素子18へ入射すると、その2次X線15の延長線22と分光素子18で分光(回折)された2次X線19は入射角θの2倍の分光角2θをなすが、連動機構8は、分光角2θを変化させて分光される2次X線19の波長を変化させつつ、その分光された2次X線19が検出器21に入射し続けるように、分光素子18を、その受光面の中心を通る紙面に垂直な軸心Oを中心に回転させ、その回転角の2倍だけ、検出器21を、軸心Oを中心に円23に沿って回転させる。
【0013】
より具体的には、軸心Oが分光素子18の受光面を通るように分光素子18が取り付けられるθ軸を、連動機構8のθ軸駆動機構1Hで回転させ、θ軸と軸心Oが共通で検出器21が取り付けられる2θ軸を、θ軸の回転角の2倍だけ連動機構8の2θ軸駆動機構1Iで回転させる。θ軸駆動機構1H、2θ軸駆動機構1Iは、それぞれパルスモータ2H,2Iで駆動する。
【0014】
以上の可動機構1A,1B…のパルスモータ2A,2B…の回転を、ドライバ基板9に実装された各パルスモータ専用のドライバ3A,3B…を経由して、位置制御用IC4で制御することにより、所望の試料14を選択し、その試料14の所望の部位を位置決めし、X線管11から発生したX線を適切な1次フィルタ12に通過させて1次X線13とし、その1次X線13を試料14に照射して発生する2次X線15を適切なダイアフラム16および発散スリット17に通過させ、2次X線15の波長を分光素子18で走査して強度を検出器21で測定する。その部位の測定が終了すれば、他の所望の部位を測定し、その試料14の測定が終了すれば、他の所望の試料に交換し、以上の作業を繰り返す。
【0015】
ここで、従来であれば、位置制御用IC4を、各パルスモータ2A,2B…専用に、パルスモータ2と同じ数だけ、つまり9つ設けるところである。これに対し、本発明では、位置制御用ICをパルスモータに動的に割り当てる制御手段を備えることにより、位置制御用ICの数をパルスモータの数よりも少なくする。例えば、この実施形態の装置についても、試料14の交換からその試料14の測定終了までの1工程において、すべてのパルスモータ2が動作(回転)し続けるわけではないので、同時に動作するパルスモータ2の最大数と同じ数だけ位置制御用IC4を備え、各位置制御用IC4A,4B…が制御するパルスモータ2を固定せずに、動作すべきパルスモータ2に対して、そのとき使用されていない位置制御用IC4を制御手段5で適宜割り当てて制御することができる。制御手段5は、回路素子であるMPU(Micro Processing Unit )およびそれを制御するソフト(プログラム)で構成される。
【0016】
制御手段5は、以下のような処理を行う。まず、位置制御用IC4を資源として扱って排他処理を行い、割り当てた位置制御用IC4を解放するまで他に割り当てられないようにする。次に、割り当てた位置制御用IC4に、制御すべきパルスモータ2の初期パラメータ(そのパルスモータ2を有する可動機構1に応じた自起動速度、加減速条件、最高速度など)を設定する。そして、その初期パラメータにしたがって、可動機構1が所定の状態(位置)まで駆動するように、パルスモータ2を制御して動作させる。個々の制御を終了する際には、その制御での割り当て関係を解消し、使用していた位置制御用IC4を次回の割り当ての候補として解放する。その際、制御していたパルスモータ2の回転位置(パルスモータ2で駆動した結果の可動機構1の状態、位置)は記憶しておくので、パルスモータ2に位置制御用IC4を割り当てるたびに、そのパルスモータ2を有する可動機構1を初期化する(所定の機械的な初期状態に戻す)必要はない。
【0017】
この実施形態の装置では、同時に動作するパルスモータ2の最大数は、試料14のある部位を測定中の、1次フィルタ交換機構1Eのパルスモータ2E、ダイアフラム交換機構1Fのパルスモータ2F、θ軸駆動機構1Hのパルスモータ2H、2θ軸駆動機構1Iのパルスモータ2Iの5つであるが、前述したように連動機構8におけるθ軸と2θ軸は回転角が1:2の関係であるので、パルスモータ2Hとパルスモータ2Iは、共通する入力パルスで連動させることができ、つまり、単一の位置制御用IC4で制御できる。したがって、位置制御用IC4をさらに1つ減らして、4つの位置制御用IC4A〜4DをIOボード(基板)10に実装すれば足りる。なお、共通する入力パルスで連動するのであれば、3つ以上のパルスモータに対しても、単一の位置制御用ICを割り当てることができる。
【0018】
このように本実施形態の装置によれば、位置制御用IC4A,4B…をパルスモータ2に動的に割り当てる制御手段5を備えることにより、位置制御用IC4A〜4Dの数(4つ)をパルスモータ2A〜2Iの数(9つ)よりも少なくし、位置制御用IC4A〜4Dを実装するIOボード10も小さくするので、装置の簡素化、コストダウンができる。
【0019】
なお、測定する2次X線15の波長に応じて、1次フィルタ12、ダイアフラム16、発散スリット17の他に、分光素子18も分光特性の異なるものに交換するが、この実施形態の装置では、分光素子の交換機構の駆動源はDCモータであり、パルスモータ2の位置制御用IC4を用いた制御系とは異なる制御系により、制御される。ただし、本発明で対象となる可動機構には特に限定はなく、パルスモータを駆動源とするものであればよい。したがって、分光素子の交換機構やこの実施形態の装置の説明で述べていない種類の可動機構の駆動源にパルスモータを用いるのであれば、それらのパルスモータにも、本発明の装置が備える制御手段により位置制御用ICを動的に割り当てることができる。さらに、実施形態として、波長分散型で走査型の蛍光X線分析装置であって、試料14に下方から1次X線13を照射する下面照射型の装置を例示したが、本発明はこれに限定されず、パルスモータを駆動源とする可動機構を複数備え、パルスモータの回転を位置制御用ICで制御する蛍光X線分析装置であれば適用できる。
【0020】
【発明の効果】
以上詳細に説明したように、本発明の蛍光X線分析装置によれば、位置制御用ICをパルスモータに動的に割り当てる制御手段を備えることにより、位置制御用ICの数をパルスモータの数よりも少なくするので、装置の簡素化、コストダウンができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である蛍光X線分析装置を示す概略図である。
【符号の説明】
1…可動機構、2…パルスモータ、4…位置制御用IC、5…制御手段、13…1次X線、14…試料、15…2次X線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluorescent X-ray analyzer that includes a plurality of movable mechanisms that use a pulse motor as a drive source, and that controls the rotation of the pulse motor with a position control IC.
[0002]
[Prior art]
For example, a wavelength-dispersive scanning X-ray fluorescence analyzer includes a sample replacement mechanism (see, for example, Patent Document 1), a sample positioning mechanism (for example, paragraphs 0019 to 0025 of Japanese Patent Application No. 2002-126112, FIG. (See FIG. 4) Primary filter replacement mechanism (for example, see Patent Document 2), field-of-view diaphragm replacement mechanism (for example, Patent Document 3), diverging slit replacement mechanism (for example, Patent Document 4), spectroscopic It has many movable mechanisms that use (or can be used as) a pulse motor as a drive source, such as a mechanism for interlocking elements and detectors (for example, see Patent Document 5), and the rotation of these pulse motors is used for position control. By controlling with an IC, a desired sample is selected, a desired measurement site of the sample is positioned, an optical system is appropriately set, and a wavelength is scanned to measure the intensity of fluorescent X-rays. Door can be. Here, a dedicated position control IC is provided for each pulse motor.
[0003]
[Problems to be solved by the invention]
However, in this case, the same number of position control ICs as pulse motors are required, and the board on which the position control ICs are mounted becomes larger, resulting in an increase in complexity, size, and cost of the apparatus.
[0004]
[Patent Document 1]
JP 2001-21457 (paragraphs 0013 to 0016, FIG. 2)
[Patent Document 2]
Japanese Patent Laid-Open No. 2001-349851 (paragraphs 0010 to 0011, FIG. 1)
[Patent Document 3]
JP 2000-310602 (paragraph 0012, FIG. 1)
[Patent Document 4]
JP 2000-249667 A (paragraphs 0032 to 0034, FIG. 2)
[Patent Document 5]
JP 2001-221752 (paragraphs 0030 to 0031, FIG. 2)
[0005]
The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a fluorescent X-ray analyzer that controls the rotation of a pulse motor with a position control IC that can simplify the apparatus and reduce the cost. And
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a plurality of movable mechanisms using a pulse motor as a drive source, and controls the rotation of the pulse motor with a position control IC mounted on an IO board. In the fluorescent X-ray analyzer for measuring the intensity of the secondary X-ray generated by irradiating the secondary X-ray, the position control IC is provided with control means for dynamically assigning the position control IC to a pulse motor. When the control means terminates each control, the allocation relationship in the control is canceled and the position control IC used is assigned to the next allocation. The rotation position of the pulse motor that has been controlled is stored while being released as a candidate .
[0007]
According to the apparatus of the present invention, since the number of the position control ICs is smaller than the number of the pulse motors by providing the control means for dynamically assigning the position control ICs to the pulse motors, the apparatus can be simplified and the cost can be reduced. I can go down.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an apparatus according to an embodiment of the present invention will be described. As shown in FIG. 1, this apparatus is a wavelength-dispersive and scanning X-ray fluorescence analyzer, which includes a plurality of movable mechanisms 1 that use a pulse motor 2 as a drive source, and controls the position of rotation of the pulse motor 2. The intensity of the secondary X-ray 15 such as fluorescent X-ray generated by irradiating the sample 14 with the primary X-ray 13 is measured by controlling with the IC 4 for use.
[0009]
The plurality of movable mechanisms 1 are an X movement mechanism 1A and a Y movement mechanism 1B in the sample exchange mechanism 6, an r positioning mechanism 1C and a θ positioning mechanism 1D in the sample positioning mechanism 7, a primary filter exchange mechanism 1E, a diaphragm exchange mechanism 1F, There are nine diverging slit exchanging mechanisms 1G and a θ-axis driving mechanism 1H and a 2θ-axis driving mechanism 1I in the interlocking mechanism 8 of the spectroscopic element and the detector. For the specific configuration of each of the movable mechanisms 1A, 1B,..., An example is referred to in the column of the related art. However, other configurations can be variously configured and are schematically illustrated. Each of the movable mechanisms 1A, 1B,... Has a pulse motor 2A, 2B,.
[0010]
The X moving mechanism 1A and the Y moving mechanism 1B in the sample exchange mechanism 6 are, for example, a desired one of the samples (not shown) arranged vertically and horizontally (Y direction and X direction) as the primary X-ray 13. In order to transport the sample to the analysis position where the sample is irradiated (the position of the sample 14 in FIG. 1), the chuck that holds the sample (or the sample holder that holds the sample) is moved directly above the desired sample by rotating the pulse motors 2B and 2A. A vertical moving table and a horizontal moving table to be moved. The r positioning mechanism 1C and the θ positioning mechanism 1D in the sample positioning mechanism 7 position the sample 14 by rotation of the pulse motors 2C and 2D so that a desired part in the sample 14 is measured. Direction driving means and θ direction driving means (regardless of the incident angle θ to the spectroscopic element 18 described later).
[0011]
The primary filter replacement mechanism 1E rotates, for example, a disk in which a plurality of primary filters of different materials or thicknesses are arranged in the circumferential direction by a pulse motor 2E, so that the X between the X-ray tube 11 and the sample 14 is rotated. The primary filter 12 located in the line optical path is selected. The diaphragm exchanging mechanism 1F, for example, rotates a disk on which a plurality of field-limiting diaphragms having different hole diameters (determining the area that the detector expects on the surface of the sample) are arranged in the circumferential direction by using a pulse motor 2F. The diaphragm 16 located in the X-ray optical path between the divergence slit 17 and the divergence slit 17 is selected. The diverging slit exchanging mechanism 1G is positioned in the X-ray optical path between the diaphragm 16 and the spectroscopic element 18, for example, by rotating a disk in which a plurality of diverging slits having different resolutions are arranged in the circumferential direction by a pulse motor 2G. The diverging slit 17 is selected.
[0012]
The interlocking mechanism 8 between the spectroscopic element and the detector includes a spectroscopic element 18 and a detector 21 so that the wavelength of the secondary X-ray 19 incident on the detector 21 (having the light receiving slit 20 at the front) changes. Is a so-called goniometer. That is, when the secondary X-ray 15 is incident on the spectroscopic element 18 at a certain incident angle θ, the extension line 22 of the secondary X-ray 15 and the secondary X-ray 19 dispersed (diffracted) by the spectroscopic element 18 are incident on the incident angle θ. The interlocking mechanism 8 changes the wavelength of the secondary X-ray 19 that is split by changing the spectral angle 2θ, and the split secondary X-ray 19 is detected by the detector. The spectroscopic element 18 is rotated around an axis O perpendicular to the paper surface passing through the center of the light receiving surface so that the light is incident on the detector 21, and the detector 21 is rotated about the axis O by twice the rotation angle. Rotate along the circle 23 to the center.
[0013]
More specifically, the θ axis to which the spectroscopic element 18 is attached so that the axis O passes through the light receiving surface of the spectroscopic element 18 is rotated by the θ axis drive mechanism 1H of the interlocking mechanism 8 so that the θ axis and the axis O are The 2θ axis to which the detector 21 is commonly attached is rotated by the 2θ axis drive mechanism 1I of the interlocking mechanism 8 by twice the rotation angle of the θ axis. The θ-axis drive mechanism 1H and the 2θ-axis drive mechanism 1I are driven by pulse motors 2H and 2I, respectively.
[0014]
By controlling the rotation of the pulse motors 2A, 2B,... Of the movable mechanisms 1A, 1B,... By the position control IC 4 via the drivers 3A, 3B,. The desired sample 14 is selected, the desired portion of the sample 14 is positioned, and the X-ray generated from the X-ray tube 11 is passed through an appropriate primary filter 12 to form the primary X-ray 13, and the primary The secondary X-ray 15 generated by irradiating the sample 14 with the X-ray 13 is passed through an appropriate diaphragm 16 and a diverging slit 17, the wavelength of the secondary X-ray 15 is scanned with the spectroscopic element 18, and the intensity is detected by a detector 21. Measure with When the measurement of the part is completed, another desired part is measured. When the measurement of the sample 14 is completed, the part 14 is replaced with another desired sample, and the above operation is repeated.
[0015]
Here, conventionally, the same number of position control ICs 4 as the pulse motors 2, that is, nine, are provided exclusively for the pulse motors 2A, 2B,. On the other hand, in the present invention, the number of position control ICs is made smaller than the number of pulse motors by providing control means for dynamically allocating position control ICs to pulse motors. For example, in the apparatus of this embodiment as well, since not all pulse motors 2 continue to operate (rotate) in one step from the replacement of the sample 14 to the end of measurement of the sample 14, the pulse motor 2 that operates simultaneously. As many as the maximum number of position control ICs 4 are provided, and the pulse motors 2 controlled by the position control ICs 4A, 4B,... The position control IC 4 can be appropriately assigned and controlled by the control means 5. The control means 5 is composed of an MPU (Micro Processing Unit) which is a circuit element and software (program) for controlling the MPU.
[0016]
The control means 5 performs the following processing. First, the position control IC 4 is treated as a resource and exclusive processing is performed so that no other assignment is made until the assigned position control IC 4 is released. Next, initial parameters of the pulse motor 2 to be controlled (self-starting speed, acceleration / deceleration conditions, maximum speed, etc. according to the movable mechanism 1 having the pulse motor 2) are set in the assigned position control IC 4. Then, according to the initial parameters, the pulse motor 2 is controlled and operated so that the movable mechanism 1 is driven to a predetermined state (position). When each control is terminated, the allocation relationship in the control is canceled, and the position control IC 4 used is released as a candidate for the next allocation. At this time, since the rotational position of the pulse motor 2 being controlled (the state and position of the movable mechanism 1 as a result of being driven by the pulse motor 2) is stored, each time the position control IC 4 is assigned to the pulse motor 2, There is no need to initialize the movable mechanism 1 having the pulse motor 2 (return it to a predetermined mechanical initial state).
[0017]
In the apparatus of this embodiment, the maximum number of pulse motors 2 that operate simultaneously is set such that the pulse motor 2E of the primary filter exchange mechanism 1E, the pulse motor 2F of the diaphragm exchange mechanism 1F, and the θ-axis that are measuring a portion of the sample 14 are measured. There are five pulse motors 2H of the drive mechanism 1H and pulse motor 2I of the 2θ-axis drive mechanism 1I. As described above, the θ-axis and the 2θ-axis in the interlocking mechanism 8 have a rotation angle of 1: 2. The pulse motor 2H and the pulse motor 2I can be linked by a common input pulse, that is, can be controlled by a single position control IC 4. Therefore, it is sufficient to further reduce the position control IC 4 by one and mount the four position control ICs 4 </ b> A to 4 </ b> D on the IO board (substrate) 10. It should be noted that a single position control IC can be assigned to three or more pulse motors as long as they are linked with a common input pulse.
[0018]
As described above, according to the apparatus of the present embodiment, by providing the control means 5 that dynamically allocates the position control ICs 4A, 4B... To the pulse motor 2, the number (four) of the position control ICs 4A to 4D is pulsed. Since the number of the motors 2A to 2I (9) is reduced and the IO board 10 on which the position control ICs 4A to 4D are mounted is also reduced, the apparatus can be simplified and the cost can be reduced.
[0019]
Depending on the wavelength of the secondary X-ray 15 to be measured, in addition to the primary filter 12, the diaphragm 16, and the diverging slit 17, the spectroscopic element 18 is also replaced with one having a different spectral characteristic. In the apparatus of this embodiment, The drive source of the spectroscopic element exchange mechanism is a DC motor, and is controlled by a control system different from the control system using the position control IC 4 of the pulse motor 2. However, there is no particular limitation on the movable mechanism that is the subject of the present invention, and any mechanism that uses a pulse motor as a drive source may be used. Therefore, if a pulse motor is used as a drive source for a movable mechanism of a type not described in the description of the spectroscopic element replacement mechanism or the apparatus of this embodiment, the control means provided in the apparatus of the present invention also for those pulse motors. Thus, the position control IC can be dynamically allocated. Furthermore, as an embodiment, a wavelength-dispersion scanning X-ray fluorescence analyzer, which is a bottom-illumination type apparatus that irradiates the sample 14 with the primary X-ray 13 from below, is illustrated. The present invention is not limited, and any fluorescent X-ray analyzer that includes a plurality of movable mechanisms using a pulse motor as a drive source and controls the rotation of the pulse motor with a position control IC can be applied.
[0020]
【The invention's effect】
As described in detail above, according to the X-ray fluorescence spectrometer of the present invention, the number of position control ICs is equal to the number of pulse motors by providing control means for dynamically allocating position control ICs to pulse motors. Therefore, the apparatus can be simplified and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a fluorescent X-ray analyzer according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Movable mechanism, 2 ... Pulse motor, 4 ... Position control IC, 5 ... Control means, 13 ... Primary X-ray, 14 ... Sample, 15 ... Secondary X-ray.

Claims (1)

パルスモータを駆動源とする可動機構を複数備え、前記パルスモータの回転をIOボードに実装された位置制御用ICで制御することにより、試料に1次X線を照射して発生する2次X線の強度を測定する蛍光X線分析装置において、
前記位置制御用ICをパルスモータに動的に割り当てる制御手段を備えることにより、前記位置制御用ICの数をパルスモータの数よりも少なくし
前記制御手段が、個々の制御を終了する際には、その制御での割り当て関係を解消し、使用していた位置制御用ICを次回の割り当ての候補として解放するとともに、制御していたパルスモータの回転位置を記憶しておくことを特徴とする蛍光X線分析装置。
A plurality of movable mechanisms having a pulse motor as a drive source are provided, and the rotation of the pulse motor is controlled by a position control IC mounted on the IO board, thereby generating secondary X generated by irradiating the sample with primary X-rays. In a fluorescent X-ray analyzer for measuring the intensity of a ray,
By providing control means for dynamically assigning the position control ICs to the pulse motor, the number of the position control ICs is less than the number of pulse motors ,
When the control means ends individual control, the assignment relationship in the control is canceled, the used position control IC is released as a candidate for the next assignment, and the pulse motor that has been controlled An X-ray fluorescence analyzer characterized by storing the rotational position of
JP2002344934A 2002-11-28 2002-11-28 X-ray fluorescence analyzer Expired - Fee Related JP3811720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344934A JP3811720B2 (en) 2002-11-28 2002-11-28 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344934A JP3811720B2 (en) 2002-11-28 2002-11-28 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2004177302A JP2004177302A (en) 2004-06-24
JP3811720B2 true JP3811720B2 (en) 2006-08-23

Family

ID=32706238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344934A Expired - Fee Related JP3811720B2 (en) 2002-11-28 2002-11-28 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3811720B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033822A (en) * 2007-07-25 2009-02-12 Rigaku Industrial Co Controller for pulse motor, fluorescent x-ray analyzer provided therewith and program for controlling pulse motor

Also Published As

Publication number Publication date
JP2004177302A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4777539B2 (en) Compound X-ray analyzer
EP2513641B1 (en) Method and apparatus for performing x-ray analysis of a sample
WO2012002030A1 (en) Fluorescent x-ray analysis device and method
JP3482896B2 (en) X-ray fluorescence analyzer
JP3811720B2 (en) X-ray fluorescence analyzer
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
JP2007017350A (en) X-ray analyzer
JP3473524B2 (en) Spectrometer
JPH04244947A (en) Fluorescence image densitometer by flying spot system
JP2009033822A (en) Controller for pulse motor, fluorescent x-ray analyzer provided therewith and program for controlling pulse motor
CN112105919B (en) Fluorescent X-ray analysis device and fluorescent X-ray analysis method
JP2000193616A (en) X-ray fluorescence analytical equipment
JP2002357572A (en) Fluorescent x-ray analysis apparatus
JP5353671B2 (en) ICP emission spectrometer
JP2008008864A (en) X-ray analyzer
JP2658127B2 (en) X-ray spectroscopic analysis of thin layers
JP2000009666A (en) X-ray analyzer
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JP3860641B2 (en) X-ray fluorescence analyzer
JPH1114566A (en) X-ray apparatus for x-ray diffraction measurement and for fluorescent x-ray measurement
JP3590681B2 (en) X-ray absorption fine structure analysis method and apparatus
JPS5957145A (en) X-ray analytical apparatus
JP2003329621A (en) Minute-portion fluorescent x-ray analyzer
JP2001013094A (en) X-ray measuring apparatus and method
JP3222720B2 (en) Wavelength dispersion type X-ray detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees