JP3811441B2 - Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method - Google Patents

Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method Download PDF

Info

Publication number
JP3811441B2
JP3811441B2 JP2002317094A JP2002317094A JP3811441B2 JP 3811441 B2 JP3811441 B2 JP 3811441B2 JP 2002317094 A JP2002317094 A JP 2002317094A JP 2002317094 A JP2002317094 A JP 2002317094A JP 3811441 B2 JP3811441 B2 JP 3811441B2
Authority
JP
Japan
Prior art keywords
water
monitoring
leakage
wall
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002317094A
Other languages
Japanese (ja)
Other versions
JP2004150968A (en
Inventor
俊彦 吉住
政弘 萩原
尚 大平
成彦 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002317094A priority Critical patent/JP3811441B2/en
Publication of JP2004150968A publication Critical patent/JP2004150968A/en
Application granted granted Critical
Publication of JP3811441B2 publication Critical patent/JP3811441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遮水壁により外部の地下水と遮断される廃棄物処分場等の管理区域における有害物質を含む内部保有水の漏出を検知する装置と方法および、漏出を検知した場合の漏出補修方法に関するものである。
【0002】
【従来の技術】
産業廃棄物あるいは一般廃棄物を埋め立てる陸上処分場や海面処分場、また河川、湖沼等の公共用水域や地下水汚染を引起すの恐れのある汚染土壌箇所では、汚染された内部保有水の外部への漏出を防止することが、環境上極めて重要である。
【0003】
例えば、臨海地域に廃棄物処分場として海面埋め立て処分場を造成する場合は、予定された海面埋め立て地に境界線に沿って護岸(遮水壁)を構築して外海と遮断した埋め立て処分場を造り、この処分場内に廃棄物を投棄してきた。この護岸形式としては、鋼管矢板護岸、鋼製箱形矢板護岸、鋼矢板セル式護岸、二重鋼矢板護岸等が知られている。
【0004】
これらを用いた海面埋め立て護岸では、護岸(遮水壁)が内部保有水の漏出の可能性のある継手を有する複数の壁部材から構成されるため、有害物質を含む内部保有水の漏出の有無をいかに検知するか、また漏出を検知した場合にはその部位をいかに特定し、補修の措置を講ずるかが重要となる。
【0005】
従来から廃棄物処分場の護岸(遮水壁)からの漏出を検知する方法および漏水の対処方法については多数提案されている。例えば、特開平7−42130号公報(特許文献1)に開示されているものは、二重壁からなる遮水壁内に水位計を設けて水位を監視しておき、常に遮水壁内の水位を処分場内の水位より高くして漏水を防止するものである。
【0006】
また、特開2001−288739号公報(特許文献2)では、海面処分場において鋼管矢板、鋼製箱形矢板等から構成される遮水壁の鉛直方向に設けられているモルタル、アスファルト混合物等の止水材を充填した継手部分を透過する内部保有水等を管理するモニタリング用井戸を鋼管矢板、鋼製箱形矢板等の継手部に設置し、その内部の水位、水質、濃度を管理することで、内部保有水の浸出を検知・管理し、所定の管理値を超えた場合、止水材を強制充填し浸透路を遮断するものである。
【0007】
【特許文献1】
特開平7−42130号公報
【特許文献2】
特開2001−288739号公報
【0008】
【発明が解決しようとする課題】
特開平10−165916号公報に開示されている漏出を検知する管理方法では、二重壁内部が護岸全長に渡って連続しており、底部、内壁、外壁のどこが欠損または欠陥箇所かを特定するのが難しい。また、同時に二重壁両方に数箇所の欠損または欠陥箇所が発生した場合は、特定するのがより難しく、補修も遅くなり、外海へ内部保有水が浸出する欠点がある。
【0009】
また、この二重壁内部の水位を処分場より高くして、内部保有水の流出を防止することが提案されているが、二重壁内全体の水位を処分場内より高くするには、二重壁内の平面積が非常に広く、水(無害な海水や水)を注入するには大変大がかりな設備と時間を要し、常に一定の高水位を維持するための費用も高くなる。
【0010】
さらに、前記の方法は、二重壁に欠損または欠陥箇所が発生した場所の特定に時間を要すると共に、二重壁内部を高水位に保持するためには大量の水を注入する必要があり、その注入された水は、二重壁内部に滞留する処分場からの内部保有水と混合し、新たな内部保有水となると共に、処分場内に流入させた水も新たな内部保有水となり、これらをポンプで汲み上げ、汚水処理施設で処理する量が膨大な量となるため、それに要する費用も高くなる欠点がある。
【0011】
一方、特開2001−288739号公報に開示される管理方法では、鋼管矢板、鋼製箱型矢板等の鋼部材の継手を含む中空部又は、継手の内部にモニタリング用井戸を配置し、このモニタリング用井戸の水位、水質、濃度を監視することが提案されているが、遮水性を確実に確保すべき、継手の中に透水性を有するモニタリング用井戸を配置することから、継手部の遮水性能を低下させる課題があった。
【0012】
また、前記いずれの管理方法においても、漏出が検知された場合、内部保有水の漏出部位の深度方向の特定ができず、補修範囲を壁体近傍の深さ方向全体としなければならないため補修に費用が嵩む欠点を有する。
【0013】
本発明は、前記の問題点を解決し、経済的に、かつ確実に遮水壁で管理された区域からの内部保有水の漏出を検知し、漏出があった場合に該漏出を速やかに補修する方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る内部保有水の漏出検知装置と方法および遮水壁の補修方法は次のように構成する。
【0015】
第1の発明の漏出検知装置は、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された区域(管理区域)の内部保有水の漏出検知装置であって、前記遮水壁部材の管理区域の外側表面に、鉛直方向の所定間隔で開孔を有する、管内の水質を監視するためのモニタリング管を設けて、該モニタリング管を水平方向に任意の間隔で配置し、前記モニタリング管の内部の水質を監視することにより前記内部保有水の漏出の検知を可能に構成したことを特徴とする。
【0016】
第2の発明の漏水検知装置は、第1の発明において、前記モニタリング管を、全ての或いは複数本おきの前記壁部材の管理区域外側部の継手部近傍に取り付けることを特徴とする。
【0017】
第3の発明の漏水検知方法は、第1または第2の漏出検知装置を用いて内部保有水の漏出箇所を平面的に特定した後、モニタリング管内部の水の水質の深度方向分布を調査して深度方向に特定することを特徴とする。
【0018】
第4の発明の漏出検知方法は、第3の発明における前記モニタリング管の内部の水質監視を、当該モニタリング管内に挿入した水質センサーまたは、モニタリング管内で採取した水の水質測定等により行うことを特徴とする。
【0019】
第5の発明の漏出補修方法は、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出補修方法であって、前記遮水壁部材の管理区域外側表面に、鉛直方向の所定間隔で開孔を有するモニタリング管を設け、該モニタリング管を水平方向に所定の間隔で配置し、前記モニタリング管内の水質を監視することにより、前記管理区域からの前記内部保有水の漏出の検知を行い、漏出箇所を平面的に特定した後、前記モニタリング管内部の水質の深度方向分布を調査して深度方向に特定し、その漏出箇所の近傍の位置に補修対策を施すことを特徴とする。
【0020】
第6の発明の漏出補修方法は、第5発明の補修対策を、注入管を用いた薬液注入、高圧噴射撹拌等による漏出箇所周辺の不透水化、または掘削による止水材充填にて行うことを特徴とする。
【0021】
【作用】
本発明は、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出を、前記遮水壁部材の管理区域の外側表面に設けた、鉛直方向の所定間隔で開孔を有するモニタリング管で、かつ、水平方向に所定の間隔で配置した前記モニタリング管内の水質を監視することにより行なう。したがって、モニタリング管は、管理区域からみて遮水壁の外側で、かつ周囲が透水性を有する土の部分に配置される。このことから、遮水壁の継手部の遮水性能を損なうことはなく、内部保有水の検知が可能である。
【0022】
また、管理区域からの内部保有水の漏出がある場合に、モニタリング管の内部の水の水質を深度方向に調査することにより、水質の深度方向の分布から、漏出箇所を深度方向にも特定でき、漏出箇所の補修を経済的、かつ確実に実施することが可能となる。
【0023】
管理区域からの漏出によって変化するモニタリング管内の水質は、以下のものがあげられる。色、透明度、臭気、比重、電気伝導率(あるいは塩化物イオン濃度)、水素イオン濃度(PH)、有害成分(カドミウム、全シアン、有機燐、鉛、六価クロム、砒素、アルキル銀、PCB、ジクロロメタン、四塩化炭素、トリクロロエチレン、ベンゼン等)含有等がある。これらの水質変化のうち、いずれのものを調査対象とするかは、管理区域内の管理物質により選択すればよい。
【0024】
【発明の実施の形態】
[第1実施形態]
以下、本発明の第1実施形態を図1〜5を参照して説明する。
【0025】
図1は、海面廃棄物処分場(管理区域)1での遮水壁として、一般的に用いられているものと同様の遮水壁、つまり外壁2aと内壁2bとからなり、両壁の間に中詰土砂11を充填した鋼管矢板二重護岸(遮水壁2)において、廃棄物処分場1に位置する内壁2bの矢板列の鋼管矢板3の外表面(つまり、廃棄物処分場1の外側)に、鉛直方向に所定の間隔で開孔4(図2)を施されたパイプ状のモニタリング管5が設置され、このモニタリング管5内の水質を監視することにより、鋼管矢板3の継手部3aから漏出した廃棄物処分場の内部保有水の管理を行なう図を示す。
【0026】
モニタリング管5には、図2に示すように、周囲の地下水が浸入するように、所定の間隔で開孔4が施されている。なお、土砂がモニタリング管5内に侵入しないように、鋼管矢板3の打設に先立ち、この開孔4には樹脂フィルターや金網が取付けられている。モニタリング管5の断面形状は図示の山形に限らず、半円、コ字形、円形、矩形など任意の断面形状で構わない。
【0027】
図3は、海面の廃棄物処分場1で一般的に用いられている鋼管矢板二重護岸(遮水壁2)の平面図を示す。図4は、廃棄物処分場1の護岸の縦断面図である。なお、遮水壁2は、二重の鋼管矢板列を設置する構造に限定されるものではなく、内壁2bの鋼管矢板3だけの単列の遮水壁を設置する構造であってもよい。
【0028】
図4に示すように、左方の外海側と右方の廃棄物処分場側との間に二重の遮水壁として外壁(外海側)2aと内壁(処分場側)2bの各鋼管矢板列が海底下の透水性地層(砂層)6を貫通して難透水性地層や不透水性地層(粘土層)7に至る深さまで打設されている。これにより、廃棄物処分場の内部保有水が海面8側へ漏出するのを防止する構造となっている。なお、廃棄物処分場の内部保有水の鉛直方向の漏出を防止するため、廃棄物処分場の底面、つまり、廃棄物10と透水性地層6との境界部位に遮水シートが施される場合もある(図示せず)。また、鋼管矢板3を用いる代わりに、鋼矢板、ボックス形鋼矢板などが用いられる場合もある。
【0029】
前記のとおり難透水性地層や不透水性地層7の上には透水性地層6が存在し、透水性地層6の上側で、かつ内壁2bと外壁2aの間に中詰土砂11が充填されている。また、各鋼管矢板3同士の継手部3aを構成する継手部材にはスリット付きの鋼製パイプ部材や、T字形継手部材が用いられ、パイプ継手部材やT字形継手部材は鉛直方向に延びて各鋼管矢板3に溶接されている。継手部3aの連結時には、パイプ継手部材同士或いは、パイプ継手部材とT字形継手部材が互いに組み合わせられて連結される。そして、パイプ継手部材の内部には空間が確保され、その内部空間にモルタル、アスファルト混合物等の止水材が充填され、継手部が水密的に構成されている。
【0030】
内壁2bと外壁2aを構成する各鋼管矢板列が海底下の難透水性地層や不透水性地層7に至る深さに打設されている遮水壁2では、廃棄物処分場1から内部保有水の漏出が生ずる場合、漏出経路は鋼管矢板3の継手部3aに限定される。そのため、鋼管矢板3の継手部3aから漏出した廃棄物処分場1の内部保有水の管理は、図1、図2に示すように、廃棄物処分場1側に位置する内壁2bの矢板列を構成する各鋼管矢板3の外表面(中詰土砂11側)に、所定の間隔で鉛直方向に開孔4を施されたパイプ状のモニタリング管5を設置し、このモニタリング管5内の水質を監視することにより行なうことができる。モニタリング管5内の水質監視の手段は、あらかじめ管内に水質センサーを配置しておくか、または管内の水を採水して定期的に水質分析することとする。
【0031】
また、廃棄物処分場からの内部保有水の漏出が確認された場合、遮水壁に所定の間隔で取り付けた複数のモニタリング管5内部の水質を測定すれば、鋼管矢板3等の壁部材から構成される遮水壁2での内部保有水の漏出経路である継手部3aからの漏出箇所の位置を平面的に特定できる。これにより、内部保有水の漏出補修等の対応策も早期に可能となる。図1に示すように、間隔Lをあけてモニタリング管5を配置した場合、各モニタリング管5毎に、それぞれを中心とする鋼管矢板列方向の両側が検知ゾーン▲1▼、▲2▼、▲3▼となる。また、図5に示すように、全ての鋼管矢板3の継手部3aの近傍にモニタリング管5を配置しておけば、より的確に漏出箇所を平面的に特定でき、漏出補修の範囲もより的確に絞り込むことができ、内部保有水漏出の補修を早期かつ経済的に実施可能となる。
【0032】
[第2実施形態]
本発明の第2実施形態を図6(a)〜図8を参照して説明する。
【0033】
廃棄物処分場1からの内部保有水の中詰土砂11側への漏出が確認された場合、第1実施形態の方法で漏出箇所を平面的に特定した後、さらに深度方向の漏出位置を特定すると補修箇所を特定できる。図6(a)は、モニタリング管5内の深度方向の水質分布を測定するために、所定間隔毎に電気伝導率測定のためのセンサー12を配置したものである。
【0034】
このセンサー12を用いて深度方向の漏出箇所を特定するには、以下の手順を用いて行う。
【0035】
廃棄物処分場1の汚染された内部保有水が漏出した箇所付近のモニタリング管5の内部水は、比重の重い成分が下方に沈降した分布状態となっており、そのままの状態で水質を測定しても、漏出箇所を深度方向に特定するのは難しい。そのため、まず、図6(b)に示すように、モニタリング管5内にパイプ13を挿入し、内部水をポンプ14により吸引して除去した後、真水で置換して清浄な状態とする。
【0036】
次に、モニタリング管5内に、図6(a)に示したように電気伝導率測定用の複数のセンサー12を挿入設置し、モニタリング管5内の電気伝導率を測定する。
【0037】
図7は、この深度方向に所定の間隔で配置された複数の電気伝導率測定用のセンサー12で測定されたモニタリング管5の内部保有水の電気伝導率の深度方向分布の例を示し、米印で示す深度方向の漏水箇所(イ)のところで、電気伝導率は横向き山形の曲線を描くように変化し、それにより深度方向の漏水箇所(イ)を特定できる。
【0038】
廃棄物処分場1の汚染された内部保有水が漏出する遮水壁付近の地下水は、電気伝導率が周囲に比べて高い値を示すが、上記の手順でモニタリング管5の内部水の電気伝導率の深度方向分布を測定することによって、漏出箇所の深度を特定することができる。
【0039】
なお、図6(a)に示す電気伝導率測定センサー12は、あらかじめ各モニタリング管5に固定設置しておくか、または、ひも状15にしたものを測定時に吊り下げ挿入してもよい。また、深度方向の漏出箇所を特定する手段として、モリタリング管5から深度毎の水を採水して水質分析するようにしてもよい。
【0040】
内部保有水の漏出箇所を、平面的に特定し、その後さらに深度方向に特定すれば、図8(a)、(b)に示すように、廃棄物処分場内側から漏出箇所(イ)に向かって注入管16を挿し込み、薬液注入、高圧噴射攪拌等により、遮水壁の漏出箇所周辺の地盤を不透水化させ、漏出部の補修範囲17を限定して補修することができる。なお、漏出箇所(イ)の深度(h)が浅い場合には、もちろん漏出箇所付近を掘削し、止水材等を用いて遮水壁の漏出箇所を補修するといった方法をとることもできる。
【0041】
このようにして第2実施形態によると、第1実施形態とあわせ、遮水壁の漏出箇所を、平面的かつ深度方向に的確に限定して特定することができ、その補修を経済的かつ早期に実施することが可能となる。なお、第1、第2実施形態を設計変更して実施することは構わない。
【0042】
【発明の効果】
本発明によると、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出を、前記遮水壁部材の管理区域の外側表面に水平方向に所定の間隔で設けた、鉛直方向の所定間隔で開孔を有するモニタリング管により、その管内の水質を監視することで行うので、簡潔な構成で、かつ継手部の水密性を損なうことなく漏水を検知できて迅速な補修対策を施すことが可能となる。さらに、管理区域からの内部保有水の漏出がある場合に、モニタリング管の水質の深度方向の分布から、漏出箇所を深度方向にも容易かつ確実に特定できると共に、漏出箇所の補修を経済的、かつ確実に実施することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示し、モニタリング管を所定の間隔で配置した全体平面説明図である。
【図2】モニタリング管を鋼管矢板に取り付けた斜視図である。
【図3】鋼管矢板二重壁護岸の平面図である。
【図4】鋼管矢板二重壁護岸の縦断面図である。
【図5】鋼管矢板の全ての継手にモニタリング管を取り付けた平面図である。
【図6】(a)は、モニタリング管内に、モニタリング管内の深度方向の水質分布測定用の電気伝導率測定センサーを配置した図、(b)は、モニタリング管の内部保有水をポンプで吸引する図である。
【図7】深度方向に所定の間隔で配置された複数の電気伝導率測定用のセンサーを所定時間放置した後に測定される、モニタリング管の内部保有水の電気伝導率の深度方向分布の例を示す図である。
【図8】(a)は、廃棄物処分場内側から、薬液注入、高圧噴射攪拌等により、遮水壁の漏出箇所周辺の地盤を不透水化させ、漏出箇所の補修を行なう状態を平面的に示す図、(b)は、縦断側面で示す図である。
【符号の説明】
1 廃棄物処分場
2 遮水壁2a
3 鋼管矢板
3a 継手部
4 開孔
5 モニタリング管
6 透水性地層(砂層)
7 不透水性地層(粘土層)
8 海面
10 廃棄物
11 中詰土砂
12 電気伝導率測定センサー
13 パイプ
14 ポンプ
15 ひも
16 注入管
17 補修範囲
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method for detecting leakage of internally retained water containing hazardous substances in a management area such as a waste disposal site that is blocked from external groundwater by a water shielding wall, and a leakage repair method when leakage is detected. It is about.
[0002]
[Prior art]
In landfills and sea-level disposal sites where industrial waste or general waste is reclaimed, and in public water areas such as rivers and lakes and contaminated soils that may cause groundwater contamination, the contaminated internal retained water is discharged to the outside. It is extremely important for the environment to prevent leakage.
[0003]
For example, when creating a sea surface landfill site as a waste landfill site in the coastal area, a landfill site that has been built off the sea by building a revetment (water-impervious wall) along the boundary at the planned sea surface landfill site. Made and dumped waste in this disposal site. Steel pipe sheet pile revetment, steel box-type sheet pile revetment, steel sheet pile cell type revetment, double steel sheet pile revetment, and the like are known.
[0004]
In seawater reclamation revetment using these, the revetment (water-impervious wall) is composed of multiple wall members with joints that may leak internal retained water, so there is no leakage of internal retained water containing harmful substances It is important how to detect the leak and how to identify the part and take corrective action if a leak is detected.
[0005]
Many methods have been proposed for detecting leakage from a revetment (water-impervious wall) at a waste disposal site and for dealing with water leakage. For example, in Japanese Patent Laid-Open No. 7-42130 (Patent Document 1), a water level gauge is provided in a double-walled impermeable wall to monitor the water level. The water level is set higher than the water level in the disposal site to prevent water leakage.
[0006]
Moreover, in Unexamined-Japanese-Patent No. 2001-28739 (patent document 2), the mortar, asphalt mixture, etc. which are provided in the vertical direction of the impermeable wall comprised from a steel pipe sheet pile, a steel box-type sheet pile, etc. in a sea surface disposal site Install monitoring wells that manage internally retained water that passes through joints filled with water-stopping materials at joints such as steel pipe sheet piles and steel box sheet piles, and manage the water level, water quality, and concentration inside the wells. Thus, the leaching of the internal water is detected and managed, and when the specified control value is exceeded, the water stop material is forcibly filled and the permeation path is blocked.
[0007]
[Patent Document 1]
JP-A-7-42130 [Patent Document 2]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-288839
[Problems to be solved by the invention]
In the management method for detecting leakage disclosed in JP-A-10-165916, the inside of the double wall is continuous over the entire length of the revetment, and the bottom, inner wall, or outer wall is specified as a defect or defective part. It is difficult. Also, if several missing or defective parts occur on both the double walls at the same time, it is more difficult to identify, the repair is slowed down, and there is a drawback that the internal retained water leaches out to the open sea.
[0009]
In addition, it has been proposed that the water level inside the double wall be made higher than the disposal site to prevent the outflow of retained water. The plane area in the heavy wall is very large, and it takes a very large amount of equipment and time to inject water (harmless seawater and water), and the cost for maintaining a constant high water level is also high.
[0010]
Furthermore, the above method requires time to identify the location where a defect or defect occurred in the double wall, and it is necessary to inject a large amount of water in order to maintain the inside of the double wall at a high water level. The injected water is mixed with the internal retained water from the disposal site that stays inside the double wall to become new internal retained water, and the water that has flowed into the disposal site also becomes new internal retained water. The amount of water pumped up and processed at the sewage treatment facility is enormous, so there is a disadvantage that the cost required for it is high.
[0011]
On the other hand, in the management method disclosed in Japanese Patent Laid-Open No. 2001-28839, a monitoring well is disposed in a hollow portion including a joint of a steel member such as a steel pipe sheet pile or a steel box-type sheet pile, or the inside of the joint. It has been proposed to monitor the water level, water quality, and concentration of a well, but since a water-permeable monitoring well should be installed in the joint to ensure water shielding, it is necessary to There was a problem of lowering the performance.
[0012]
In any of the above management methods, when leakage is detected, it is impossible to specify the depth direction of the leaked portion of the internal retained water, and the repair range must be the entire depth direction near the wall body. It has the disadvantage of increasing costs.
[0013]
The present invention solves the above-mentioned problems, economically and reliably detects the leakage of internal retained water from an area controlled by a water shielding wall, and promptly repairs the leakage if there is a leakage. It aims to provide a way to do.
[0014]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the leakage detection device and method and the impermeable wall repair method according to the present invention are configured as follows.
[0015]
A leak detection device according to a first aspect of the present invention is a leak detection device for internal retained water in an area (management area) managed by a water shielding wall composed of a plurality of impermeable material wall members having joints, A monitoring pipe for monitoring the water quality in the pipe having openings at predetermined intervals in the vertical direction is provided on the outer surface of the management area of the water shielding wall member, and the monitoring pipes are arranged at arbitrary intervals in the horizontal direction. In addition, it is possible to detect leakage of the internal retained water by monitoring the water quality inside the monitoring pipe.
[0016]
The water leakage detection device according to a second aspect of the present invention is characterized in that, in the first aspect, the monitoring pipe is attached in the vicinity of a joint portion on the outer side of the management area of all or a plurality of the wall members.
[0017]
In the water leakage detection method of the third aspect of the invention, the first or second leakage detection device is used to planarly identify the leakage location of the internal retained water and then investigate the depth direction distribution of the water quality inside the monitoring pipe. And specifying in the depth direction.
[0018]
The leakage detection method of the fourth invention is characterized in that the water quality monitoring inside the monitoring pipe in the third invention is performed by a water quality sensor inserted in the monitoring pipe or a water quality measurement of water collected in the monitoring pipe. And
[0019]
A leakage repair method according to a fifth aspect of the present invention is a leakage repair method for internally retained water in a management area managed by a water shielding wall composed of a plurality of impermeable material wall members having joints. By providing monitoring pipes having openings at predetermined intervals in the vertical direction on the outer surface of the management area of the wall member, arranging the monitoring pipes at predetermined intervals in the horizontal direction, and monitoring the water quality in the monitoring pipe, After detecting the leakage of the internal retained water from the management area and specifying the leakage location in a plane, the depth distribution of the water quality inside the monitoring pipe is investigated and specified in the depth direction, and the vicinity of the leakage location It is characterized in that repair measures are taken at the position of.
[0020]
In the leakage repair method of the sixth invention, the repair measures of the fifth invention are carried out by injecting a chemical solution using an injection tube, making water impermeable around the leakage site by high-pressure jet agitation, or filling a water stop material by excavation It is characterized by.
[0021]
[Action]
According to the present invention, leakage of water retained inside a management area managed by a water shielding wall composed of a plurality of impermeable material wall members having joints is provided on the outer surface of the management area of the water shielding wall member. In addition, the monitoring is performed by monitoring the water quality in the monitoring pipes having holes at predetermined intervals in the vertical direction and arranged at predetermined intervals in the horizontal direction. Therefore, the monitoring pipe is disposed outside the water-impervious wall as viewed from the management area and in a portion of the soil where the surroundings are permeable. For this reason, it is possible to detect the water retained inside without impairing the water shielding performance of the joint portion of the water shielding wall.
[0022]
In addition, if there is a leakage of internal water from the management area, the location of the leakage can be identified in the depth direction from the depth distribution of the water quality by investigating the water quality inside the monitoring pipe in the depth direction. In addition, it becomes possible to repair the leaked portion economically and reliably.
[0023]
The water quality in the monitoring pipe that changes due to leakage from the management area is as follows. Color, transparency, odor, specific gravity, electrical conductivity (or chloride ion concentration), hydrogen ion concentration (PH), harmful components (cadmium, total cyanide, organic phosphorus, lead, hexavalent chromium, arsenic, alkyl silver, PCB, Including dichloromethane, carbon tetrachloride, trichloroethylene, benzene, etc.). Which of these water quality changes is to be investigated may be selected according to the managed substance in the controlled area.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
[0025]
FIG. 1 shows a water-impervious wall generally used as a water-impervious wall in a sea surface waste disposal site (management area) 1, that is, an outer wall 2a and an inner wall 2b. In the steel pipe sheet pile double revetment (water-impervious wall 2) filled with medium-filled earth and sand 11, the outer surface of the steel pipe sheet pile 3 of the sheet pile row of the inner wall 2 b located at the waste disposal site 1 (that is, the waste disposal site 1 On the outside), pipe-shaped monitoring pipes 5 with openings 4 (FIG. 2) provided at predetermined intervals in the vertical direction are installed, and by monitoring the water quality in the monitoring pipe 5, the joint of the steel pipe sheet pile 3 The figure which manages the internal water holding of the waste disposal site leaked from the part 3a is shown.
[0026]
As shown in FIG. 2, the monitoring pipe 5 is provided with openings 4 at predetermined intervals so that surrounding groundwater enters. In addition, a resin filter or a wire net is attached to the opening 4 before the steel pipe sheet pile 3 is placed so that earth and sand do not enter the monitoring pipe 5. The cross-sectional shape of the monitoring tube 5 is not limited to the mountain shape shown in the figure, and may be any cross-sectional shape such as a semicircle, a U-shape, a circle, or a rectangle.
[0027]
FIG. 3 is a plan view of a steel pipe sheet pile double revetment (water-impervious wall 2) that is generally used in a waste disposal site 1 on the sea surface. FIG. 4 is a longitudinal sectional view of the revetment of the waste disposal site 1. The impermeable wall 2 is not limited to a structure in which a double steel pipe sheet pile array is installed, and may be a structure in which a single row impermeable wall is formed with only the steel pipe sheet pile 3 on the inner wall 2b.
[0028]
As shown in FIG. 4, each steel pipe sheet pile on the outer wall (outer sea side) 2a and the inner wall (disposal site side) 2b as a double impermeable wall between the left outer sea side and the right waste disposal site side The rows are laid down to a depth that penetrates the water-permeable stratum (sand layer) 6 below the seabed to reach the water-impervious strata or the impermeable strata (clay layer) 7. Thereby, it has the structure which prevents that the internal holding water of a waste disposal site leaks to the sea level 8 side. In addition, in order to prevent the leakage of the water retained in the waste disposal site in the vertical direction, a water shielding sheet is applied to the bottom surface of the waste disposal site, that is, the boundary portion between the waste 10 and the water permeable formation 6. There is also (not shown). Moreover, instead of using the steel pipe sheet pile 3, a steel sheet pile, a box-type steel sheet pile, etc. may be used.
[0029]
As described above, the permeable formation 6 exists on the hardly permeable formation or the impermeable formation 7, and the middle soil 11 is filled above the permeable formation 6 and between the inner wall 2b and the outer wall 2a. Yes. Moreover, the steel pipe member with a slit and a T-shaped joint member are used for the joint member which comprises the joint part 3a of each steel pipe sheet pile 3, and a pipe joint member and a T-shaped joint member are extended in a perpendicular direction, respectively. It is welded to the steel pipe sheet pile 3. At the time of connecting the joint portion 3a, the pipe joint members or the pipe joint member and the T-shaped joint member are combined and connected. A space is secured inside the pipe joint member, and the interior space is filled with a water-stopping material such as mortar and asphalt mixture, so that the joint portion is watertight.
[0030]
The impervious wall 2 in which the steel pipe sheet piles constituting the inner wall 2b and the outer wall 2a are driven to a depth reaching the impermeable layer 7 or the impermeable layer 7 below the seabed is internally held from the waste disposal site 1 When water leakage occurs, the leakage path is limited to the joint portion 3 a of the steel pipe sheet pile 3. Therefore, as shown in FIG. 1 and FIG. 2, the management of the water retained in the waste disposal site 1 leaked from the joint portion 3a of the steel pipe sheet pile 3 is performed by using the sheet pile row of the inner wall 2b located on the waste disposal site 1 side. On the outer surface of each steel pipe sheet pile 3 (medium-filled earth and sand 11 side), a pipe-shaped monitoring pipe 5 having openings 4 in the vertical direction at predetermined intervals is installed, and the water quality in the monitoring pipe 5 is measured. This can be done by monitoring. As a means for monitoring the water quality in the monitoring pipe 5, a water quality sensor is arranged in the pipe in advance, or the water in the pipe is sampled and periodically analyzed.
[0031]
In addition, if leakage of internal retained water from the waste disposal site is confirmed, if the water quality inside the plurality of monitoring pipes 5 attached to the impermeable wall at a predetermined interval is measured, the wall member such as the steel pipe sheet pile 3 can be used. The position of the leak location from the joint part 3a which is the leak path of the internal retained water in the impermeable wall 2 can be specified in a plane. As a result, countermeasures such as leakage repair of internal water can be made early. As shown in FIG. 1, when the monitoring pipes 5 are arranged at intervals L, both sides of the steel pipe sheet pile direction around each of the monitoring pipes 5 are in the detection zones (1), (2), 3 ▼. Further, as shown in FIG. 5, if the monitoring pipe 5 is arranged in the vicinity of the joint portion 3a of all the steel pipe sheet piles 3, it is possible to more accurately identify the leak location in a plane and the range of leak repair is more accurate. This makes it possible to quickly and economically repair internal water leakage.
[0032]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS.
[0033]
If leakage from the waste disposal site 1 to the filled sediment 11 side of the internal retained water is confirmed, specify the leakage location in a plane using the method of the first embodiment, and then specify the leakage position in the depth direction. Then, the repair location can be specified. FIG. 6A shows a sensor 12 for measuring electrical conductivity at predetermined intervals in order to measure the water quality distribution in the depth direction in the monitoring pipe 5.
[0034]
In order to specify the leak location in the depth direction using this sensor 12, the following procedure is used.
[0035]
The internal water in the monitoring pipe 5 in the vicinity of the location where the contaminated internal water leaked from the waste disposal site 1 has a distribution state in which components with heavy specific gravity have settled downward, and the water quality is measured as it is. However, it is difficult to specify the leak location in the depth direction. Therefore, first, as shown in FIG. 6B, the pipe 13 is inserted into the monitoring pipe 5, the internal water is sucked and removed by the pump 14, and then replaced with fresh water to obtain a clean state.
[0036]
Next, as shown in FIG. 6A, a plurality of sensors 12 for measuring electrical conductivity are inserted and installed in the monitoring tube 5, and the electrical conductivity in the monitoring tube 5 is measured.
[0037]
FIG. 7 shows an example of the distribution in the depth direction of the electrical conductivity of the internal water of the monitoring pipe 5 measured by a plurality of sensors 12 for measuring electrical conductivity arranged at predetermined intervals in the depth direction. The electrical conductivity changes so as to draw a horizontal mountain-shaped curve at the depth-direction water leakage location (A) indicated by the mark, thereby identifying the depth-direction water leakage location (A).
[0038]
The groundwater near the impervious wall where the contaminated internal water leaks from the waste disposal site 1 shows a higher electrical conductivity than the surroundings. By measuring the depth direction distribution of the rate, the depth of the leak location can be identified.
[0039]
Note that the electrical conductivity measurement sensor 12 shown in FIG. 6A may be fixedly installed in advance in each monitoring tube 5 or a string-like 15 may be suspended and inserted during measurement. In addition, as a means for specifying the leak location in the depth direction, water at each depth may be collected from the mortaring pipe 5 and analyzed for water quality.
[0040]
If the leakage location of the internal retained water is specified in a plane and then further specified in the depth direction, as shown in FIGS. 8 (a) and 8 (b), from the waste disposal site to the leakage location (I). Then, the injection pipe 16 is inserted, and the ground around the leakage location of the impermeable wall is made impermeable by chemical injection, high-pressure jet agitation, etc., and the repair range 17 of the leakage portion can be limited and repaired. In addition, when the depth (h) of the leak location (a) is shallow, it is of course possible to excavate the vicinity of the leak location and repair the leak location of the impermeable wall using a water blocking material or the like.
[0041]
In this way, according to the second embodiment, together with the first embodiment, the leakage location of the water-impervious wall can be accurately specified in a plane and in the depth direction, and the repair is economical and early. It becomes possible to carry out. It should be noted that the first and second embodiments may be implemented with a design change.
[0042]
【The invention's effect】
According to the present invention, leakage of water retained in the management area managed by the impermeable wall composed of a plurality of impermeable material wall members having joints is caused on the outer surface of the management area of the impermeable wall member. Because the monitoring pipes that are provided at predetermined intervals in the horizontal direction and that have openings at predetermined intervals in the vertical direction are monitored by monitoring the water quality in the pipes, the watertightness of the joints is impaired with a simple configuration. Therefore, it is possible to detect water leakage and take quick repair measures. In addition, when there is a leakage of internal water from the management area, it is possible to easily and reliably identify the leak location in the depth direction from the distribution of the water quality of the monitoring pipe in the depth direction, and it is economical to repair the leak location. And it becomes possible to implement reliably.
[Brief description of the drawings]
FIG. 1 is an overall plan view showing a first embodiment of the present invention, in which monitoring tubes are arranged at a predetermined interval.
FIG. 2 is a perspective view in which a monitoring pipe is attached to a steel pipe sheet pile.
FIG. 3 is a plan view of a steel pipe sheet pile double wall revetment.
FIG. 4 is a longitudinal sectional view of a steel pipe sheet pile double wall revetment.
FIG. 5 is a plan view in which monitoring pipes are attached to all joints of a steel pipe sheet pile.
FIG. 6A is a diagram in which an electrical conductivity measurement sensor for measuring the water quality distribution in the depth direction in the monitoring pipe is arranged in the monitoring pipe, and FIG. 6B is a drawing of the water held in the monitoring pipe by a pump. FIG.
FIG. 7 shows an example of the depth direction distribution of the electrical conductivity of water retained in the monitoring pipe, measured after leaving a plurality of electrical conductivity measurement sensors arranged at predetermined intervals in the depth direction for a predetermined time. FIG.
[Fig. 8] (a) is a plan view of the situation where the ground around the leaked part of the impermeable wall is made impermeable by repairing the leaked part from the inside of the waste disposal site by chemical injection, high-pressure jet stirring, etc. The figure shown in (b) is a figure shown with a vertical side.
[Explanation of symbols]
1 Waste disposal site 2 Impermeable wall 2a
3 Steel pipe sheet pile 3a Joint part 4 Opening hole 5 Monitoring pipe 6 Permeable formation (sand layer)
7 Impervious formation (clay layer)
8 Sea surface 10 Waste 11 Filled sand 12 Conductivity measurement sensor 13 Pipe 14 Pump 15 String 16 Injection pipe 17 Repair range

Claims (6)

継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出検知装置であって、前記遮水壁部材の管理区域外側表面に、鉛直方向の所定間隔で開孔を有する、管内の水質を監視するためのモニタリング管を設けて、該モニタリング管を水平方向に任意の間隔で配置し、前記モニタリング管内部の水質を監視することにより前記内部保有水の漏出の検知を可能に構成したことを特徴とする遮水壁で管理された区域からの内部保有水の漏出検知装置。A leak detection device for internal retained water in a management area managed by a water-impervious wall made up of a plurality of impermeable material wall members having joints, which is vertically disposed on the outer surface of the control area of the water-shield wall member By providing a monitoring pipe for monitoring the water quality in the pipe having openings at predetermined intervals in the direction, arranging the monitoring pipe at an arbitrary interval in the horizontal direction, and monitoring the water quality inside the monitoring pipe A device for detecting leakage of internally retained water from an area controlled by a water shielding wall, characterized by enabling detection of leakage of internally retained water. 前記モニタリング管を、全ての或いは複数本おきの前記壁部材の管理区域外側部の継手部近傍に取り付けることを特徴とする請求項1に記載の遮水壁で管理された区域からの内部保有水の漏出検知装置。The internal retention water from the area managed by the impermeable wall according to claim 1, wherein the monitoring pipe is attached in the vicinity of the joint part of the outer side of the management area of all or a plurality of the wall members. Leak detection device. 請求項1または2記載の漏出検知装置を用いて内部保有水の漏出箇所を平面的に特定した後、モニタリング管内部の水質の深度方向分布を調査して深度方向に特定することを特徴とする遮水壁で管理された区域からの内部保有水の漏出検知方法。After identifying the leak location of the internal retained water using the leak detection device according to claim 1 or 2, the depth direction distribution of the water quality inside the monitoring pipe is investigated and specified in the depth direction. A method for detecting leakage of internal retained water from areas controlled by impermeable walls. 前記モニタリング管の内部の水質監視は、当該モニタリング管内に挿入した水質センサーまたは、モニタリング管内で採取した水の水質測定等により行うことを特徴とする請求項3記載の遮水壁で管理された区域からの内部保有水の漏出検知方法。The water quality monitoring inside the monitoring pipe is performed by a water quality sensor inserted in the monitoring pipe or a water quality measurement of water collected in the monitoring pipe, etc. To detect leakage of internal retained water. 継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出補修方法であって、前記遮水壁部材の管理区域外側表面に、鉛直方向の所定間隔で開孔を有するモニタリング管を設け、該モニタリング管を水平方向に所定の間隔で配置し、前記モニタリング管内の水質を監視することにより、前記管理区域からの前記内部保有水の漏出の検知を行い、漏出箇所を平面的に特定した後、前記モニタリング管の内部の水質の深度方向分布を調査して深度方向に特定し、その漏出箇所の近傍の位置に補修対策を施すことを特徴とする遮水壁で管理された区域からの内部保有水の漏出補修方法。A method for repairing leakage of internal retained water in a management area managed by a water-impervious wall composed of a plurality of impermeable material wall members having joints, wherein the vertical surface is disposed on the outer surface of the control area of the water-impervious wall member. Leakage of the internal retained water from the management area by providing monitoring pipes having openings at predetermined intervals in the direction, arranging the monitoring pipes at predetermined intervals in the horizontal direction, and monitoring the water quality in the monitoring pipe After detecting the leak and identifying the leakage location in a plane, the depth direction distribution of the water quality inside the monitoring pipe is investigated and identified in the depth direction, and repair measures are taken at positions near the leakage location. A method for repairing leakage of internally retained water from an area controlled by a characteristic impermeable wall. 前記の補修対策は、注入管を用いた薬液注入、高圧噴射撹拌等による漏出箇所周辺の不透水化、または掘削による止水材充填にて行うことを特徴とする請求項5記載の遮水壁で管理された区域からの内部保有水の漏出補修方法。6. The impermeable wall according to claim 5, wherein the repair measures are performed by injecting a chemical solution using an injection pipe, making water impermeable around the leaked place by high-pressure jet agitation, or filling a water blocking material by excavation. Repair method for leakage of internal water from the area controlled by
JP2002317094A 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method Expired - Fee Related JP3811441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317094A JP3811441B2 (en) 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317094A JP3811441B2 (en) 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method

Publications (2)

Publication Number Publication Date
JP2004150968A JP2004150968A (en) 2004-05-27
JP3811441B2 true JP3811441B2 (en) 2006-08-23

Family

ID=32460569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317094A Expired - Fee Related JP3811441B2 (en) 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method

Country Status (1)

Country Link
JP (1) JP3811441B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347323B2 (en) * 2008-05-07 2013-11-20 株式会社大林組 Impermeable layer damage detection system and impermeable layer damage detection method
CN107246030A (en) * 2017-07-12 2017-10-13 中铁十局集团第五工程有限公司 Construction method based on steel sheet pile device for plugging
KR101894245B1 (en) * 2018-01-24 2018-09-05 한국원자력연구원 Monitering system for radiological surveillance of groundwater and operation method thereof

Also Published As

Publication number Publication date
JP2004150968A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US7172371B2 (en) Method of sealing casings of subsurface materials management system
US6910829B2 (en) In situ retreival of contaminants or other substances using a barrier system and leaching solutions and components, processes and methods relating thereto
JP2011167685A (en) Advanced containment system
US7153061B2 (en) Method of in situ retrieval of contaminants or other substances using a barrier system and leaching solutions
KR101714484B1 (en) Monitoring system for sensing leachate leakage having net frame for waterproofing sheet in offshore waste landfill, and construction method for the same
JP3811441B2 (en) Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method
JP4285593B2 (en) Impermeable revetment structure with leaching detection function of retained water and its repair method
JP4596469B2 (en) Landfill partition revetment
JP3248437B2 (en) Waste disposal site and its construction method
JP3600482B2 (en) Equipment for preventing and purifying liquid leakage to the supporting ground of industrial facilities
JP4316086B2 (en) Method for detecting damage location of impermeable structure at waste disposal site in water area
JP5050673B2 (en) Impermeable wall leak detection method
Cavalli Composite barrier slurry wall
JPS63130818A (en) Cut-off wall construction work
JP5743449B2 (en) Treatment structure with water flow structure in contaminated soil treatment and its construction method
JPH0611994B2 (en) Underground impermeable wall formation method
JPH1015517A (en) Break detecting method and water leakage preventing method for water-shielding sheet in waste disposal site
Sivavec et al. 5. Performance monitoring of a permeable reactive barrier at the Somersworth Landfill Superfund
Schneck Technical standards for the construction of hazardous waste landfills in Germany documented at the hazardous waste landfill site at Raindorf
WO2002062668A2 (en) Subsurface materials management and containment system, components thereof and methods relating thereto

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060526

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees