JP2004150968A - Device and method for detecting leakage of internally held water from area controlled by impervious wall, and leakage repair method - Google Patents

Device and method for detecting leakage of internally held water from area controlled by impervious wall, and leakage repair method Download PDF

Info

Publication number
JP2004150968A
JP2004150968A JP2002317094A JP2002317094A JP2004150968A JP 2004150968 A JP2004150968 A JP 2004150968A JP 2002317094 A JP2002317094 A JP 2002317094A JP 2002317094 A JP2002317094 A JP 2002317094A JP 2004150968 A JP2004150968 A JP 2004150968A
Authority
JP
Japan
Prior art keywords
water
leakage
monitoring
wall
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002317094A
Other languages
Japanese (ja)
Other versions
JP3811441B2 (en
Inventor
Toshihiko Yoshizumi
俊彦 吉住
Masahiro Hagiwara
政弘 萩原
Takashi Ohira
尚 大平
Shigehiko Yamana
成彦 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002317094A priority Critical patent/JP3811441B2/en
Publication of JP2004150968A publication Critical patent/JP2004150968A/en
Application granted granted Critical
Publication of JP3811441B2 publication Critical patent/JP3811441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Processing Of Solid Wastes (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suggest a method for economically and surely detecting leakage of internally held water from an area controlled with an impervious wall, and specifying and repairing a leaking part, if a leakage occurs. <P>SOLUTION: This leakage detector detects leakage of the internally held water in the controlled area 1 controlled with the impervious wall 2 composed of two or more wall members (outer wall 2a, inner wall 2b) out of impermeable material having coupling sections. In the external surface on the side opposite to the controlled area 1 of the inner wall 2b, monitoring pipes 5 which have apertures at predetermined vertical intervals, and are used for monitoring the quality of water in each pipe, are arranged at arbitrary horizontal intervals. Leakage of the internally held water is detected by monitoring the quality of water inside each monitoring pipe 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、遮水壁により外部の地下水と遮断される廃棄物処分場等の管理区域における有害物質を含む内部保有水の漏出を検知する装置と方法および、漏出を検知した場合の漏出補修方法に関するものである。
【0002】
【従来の技術】
産業廃棄物あるいは一般廃棄物を埋め立てる陸上処分場や海面処分場、また河川、湖沼等の公共用水域や地下水汚染を引起すの恐れのある汚染土壌箇所では、汚染された内部保有水の外部への漏出を防止することが、環境上極めて重要である。
【0003】
例えば、臨海地域に廃棄物処分場として海面埋め立て処分場を造成する場合は、予定された海面埋め立て地に境界線に沿って護岸(遮水壁)を構築して外海と遮断した埋め立て処分場を造り、この処分場内に廃棄物を投棄してきた。この護岸形式としては、鋼管矢板護岸、鋼製箱形矢板護岸、鋼矢板セル式護岸、二重鋼矢板護岸等が知られている。
【0004】
これらを用いた海面埋め立て護岸では、護岸(遮水壁)が内部保有水の漏出の可能性のある継手を有する複数の壁部材から構成されるため、有害物質を含む内部保有水の漏出の有無をいかに検知するか、また漏出を検知した場合にはその部位をいかに特定し、補修の措置を講ずるかが重要となる。
【0005】
従来から廃棄物処分場の護岸(遮水壁)からの漏出を検知する方法および漏水の対処方法については多数提案されている。例えば、特開平7−42130号公報(特許文献1)に開示されているものは、二重壁からなる遮水壁内に水位計を設けて水位を監視しておき、常に遮水壁内の水位を処分場内の水位より高くして漏水を防止するものである。
【0006】
また、特開2001−288739号公報(特許文献2)では、海面処分場において鋼管矢板、鋼製箱形矢板等から構成される遮水壁の鉛直方向に設けられているモルタル、アスファルト混合物等の止水材を充填した継手部分を透過する内部保有水等を管理するモニタリング用井戸を鋼管矢板、鋼製箱形矢板等の継手部に設置し、その内部の水位、水質、濃度を管理することで、内部保有水の浸出を検知・管理し、所定の管理値を超えた場合、止水材を強制充填し浸透路を遮断するものである。
【0007】
【特許文献1】
特開平7−42130号公報
【特許文献2】
特開2001−288739号公報
【0008】
【発明が解決しようとする課題】
特開平10−165916号公報に開示されている漏出を検知する管理方法では、二重壁内部が護岸全長に渡って連続しており、底部、内壁、外壁のどこが欠損または欠陥箇所かを特定するのが難しい。また、同時に二重壁両方に数箇所の欠損または欠陥箇所が発生した場合は、特定するのがより難しく、補修も遅くなり、外海へ内部保有水が浸出する欠点がある。
【0009】
また、この二重壁内部の水位を処分場より高くして、内部保有水の流出を防止することが提案されているが、二重壁内全体の水位を処分場内より高くするには、二重壁内の平面積が非常に広く、水(無害な海水や水)を注入するには大変大がかりな設備と時間を要し、常に一定の高水位を維持するための費用も高くなる。
【0010】
さらに、前記の方法は、二重壁に欠損または欠陥箇所が発生した場所の特定に時間を要すると共に、二重壁内部を高水位に保持するためには大量の水を注入する必要があり、その注入された水は、二重壁内部に滞留する処分場からの内部保有水と混合し、新たな内部保有水となると共に、処分場内に流入させた水も新たな内部保有水となり、これらをポンプで汲み上げ、汚水処理施設で処理する量が膨大な量となるため、それに要する費用も高くなる欠点がある。
【0011】
一方、特開2001−288739号公報に開示される管理方法では、鋼管矢板、鋼製箱型矢板等の鋼部材の継手を含む中空部又は、継手の内部にモニタリング用井戸を配置し、このモニタリング用井戸の水位、水質、濃度を監視することが提案されているが、遮水性を確実に確保すべき、継手の中に透水性を有するモニタリング用井戸を配置することから、継手部の遮水性能を低下させる課題があった。
【0012】
また、前記いずれの管理方法においても、漏出が検知された場合、内部保有水の漏出部位の深度方向の特定ができず、補修範囲を壁体近傍の深さ方向全体としなければならないため補修に費用が嵩む欠点を有する。
【0013】
本発明は、前記の問題点を解決し、経済的に、かつ確実に遮水壁で管理された区域からの内部保有水の漏出を検知し、漏出があった場合に該漏出を速やかに補修する方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る内部保有水の漏出検知装置と方法および遮水壁の補修方法は次のように構成する。
【0015】
第1の発明の漏出検知装置は、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された区域(管理区域)の内部保有水の漏出検知装置であって、前記遮水壁部材の管理区域の外側表面に、鉛直方向の所定間隔で開孔を有する、管内の水質を監視するためのモニタリング管を設けて、該モニタリング管を水平方向に任意の間隔で配置し、前記モニタリング管の内部の水質を監視することにより前記内部保有水の漏出の検知を可能に構成したことを特徴とする。
【0016】
第2の発明の漏水検知装置は、第1の発明において、前記モニタリング管を、全ての或いは複数本おきの前記壁部材の管理区域外側部の継手部近傍に取り付けることを特徴とする。
【0017】
第3の発明の漏水検知方法は、第1または第2の漏出検知装置を用いて内部保有水の漏出箇所を平面的に特定した後、モニタリング管内部の水の水質の深度方向分布を調査して深度方向に特定することを特徴とする。
【0018】
第4の発明の漏出検知方法は、第3の発明における前記モニタリング管の内部の水質監視を、当該モニタリング管内に挿入した水質センサーまたは、モニタリング管内で採取した水の水質測定等により行うことを特徴とする。
【0019】
第5の発明の漏出補修方法は、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出補修方法であって、前記遮水壁部材の管理区域外側表面に、鉛直方向の所定間隔で開孔を有するモニタリング管を設け、該モニタリング管を水平方向に所定の間隔で配置し、前記モニタリング管内の水質を監視することにより、前記管理区域からの前記内部保有水の漏出の検知を行い、漏出箇所を平面的に特定した後、前記モニタリング管内部の水質の深度方向分布を調査して深度方向に特定し、その漏出箇所の近傍の位置に補修対策を施すことを特徴とする。
【0020】
第6の発明の漏出補修方法は、第5発明の補修対策を、注入管を用いた薬液注入、高圧噴射撹拌等による漏出箇所周辺の不透水化、または掘削による止水材充填にて行うことを特徴とする。
【0021】
【作用】
本発明は、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出を、前記遮水壁部材の管理区域の外側表面に設けた、鉛直方向の所定間隔で開孔を有するモニタリング管で、かつ、水平方向に所定の間隔で配置した前記モニタリング管内の水質を監視することにより行なう。したがって、モニタリング管は、管理区域からみて遮水壁の外側で、かつ周囲が透水性を有する土の部分に配置される。このことから、遮水壁の継手部の遮水性能を損なうことはなく、内部保有水の検知が可能である。
【0022】
また、管理区域からの内部保有水の漏出がある場合に、モニタリング管の内部の水の水質を深度方向に調査することにより、水質の深度方向の分布から、漏出箇所を深度方向にも特定でき、漏出箇所の補修を経済的、かつ確実に実施することが可能となる。
【0023】
管理区域からの漏出によって変化するモニタリング管内の水質は、以下のものがあげられる。色、透明度、臭気、比重、電気伝導率(あるいは塩化物イオン濃度)、水素イオン濃度(PH)、有害成分(カドミウム、全シアン、有機燐、鉛、六価クロム、砒素、アルキル銀、PCB、ジクロロメタン、四塩化炭素、トリクロロエチレン、ベンゼン等)含有等がある。これらの水質変化のうち、いずれのものを調査対象とするかは、管理区域内の管理物質により選択すればよい。
【0024】
【発明の実施の形態】
[第1実施形態]
以下、本発明の第1実施形態を図1〜5を参照して説明する。
【0025】
図1は、海面廃棄物処分場(管理区域)1での遮水壁として、一般的に用いられているものと同様の遮水壁、つまり外壁2aと内壁2bとからなり、両壁の間に中詰土砂11を充填した鋼管矢板二重護岸(遮水壁2)において、廃棄物処分場1に位置する内壁2bの矢板列の鋼管矢板3の外表面(つまり、廃棄物処分場1の外側)に、鉛直方向に所定の間隔で開孔4(図2)を施されたパイプ状のモニタリング管5が設置され、このモニタリング管5内の水質を監視することにより、鋼管矢板3の継手部3aから漏出した廃棄物処分場の内部保有水の管理を行なう図を示す。
【0026】
モニタリング管5には、図2に示すように、周囲の地下水が浸入するように、所定の間隔で開孔4が施されている。なお、土砂がモニタリング管5内に侵入しないように、鋼管矢板3の打設に先立ち、この開孔4には樹脂フィルターや金網が取付けられている。モニタリング管5の断面形状は図示の山形に限らず、半円、コ字形、円形、矩形など任意の断面形状で構わない。
【0027】
図3は、海面の廃棄物処分場1で一般的に用いられている鋼管矢板二重護岸(遮水壁2)の平面図を示す。図4は、廃棄物処分場1の護岸の縦断面図である。なお、遮水壁2は、二重の鋼管矢板列を設置する構造に限定されるものではなく、内壁2bの鋼管矢板3だけの単列の遮水壁を設置する構造であってもよい。
【0028】
図4に示すように、左方の外海側と右方の廃棄物処分場側との間に二重の遮水壁として外壁(外海側)2aと内壁(処分場側)2bの各鋼管矢板列が海底下の透水性地層(砂層)6を貫通して難透水性地層や不透水性地層(粘土層)7に至る深さまで打設されている。これにより、廃棄物処分場の内部保有水が海面8側へ漏出するのを防止する構造となっている。なお、廃棄物処分場の内部保有水の鉛直方向の漏出を防止するため、廃棄物処分場の底面、つまり、廃棄物10と透水性地層6との境界部位に遮水シートが施される場合もある(図示せず)。また、鋼管矢板3を用いる代わりに、鋼矢板、ボックス形鋼矢板などが用いられる場合もある。
【0029】
前記のとおり難透水性地層や不透水性地層7の上には透水性地層6が存在し、透水性地層6の上側で、かつ内壁2bと外壁2aの間に中詰土砂11が充填されている。また、各鋼管矢板3同士の継手部3aを構成する継手部材にはスリット付きの鋼製パイプ部材や、T字形継手部材が用いられ、パイプ継手部材やT字形継手部材は鉛直方向に延びて各鋼管矢板3に溶接されている。継手部3aの連結時には、パイプ継手部材同士或いは、パイプ継手部材とT字形継手部材が互いに組み合わせられて連結される。そして、パイプ継手部材の内部には空間が確保され、その内部空間にモルタル、アスファルト混合物等の止水材が充填され、継手部が水密的に構成されている。
【0030】
内壁2bと外壁2aを構成する各鋼管矢板列が海底下の難透水性地層や不透水性地層7に至る深さに打設されている遮水壁2では、廃棄物処分場1から内部保有水の漏出が生ずる場合、漏出経路は鋼管矢板3の継手部3aに限定される。そのため、鋼管矢板3の継手部3aから漏出した廃棄物処分場1の内部保有水の管理は、図1、図2に示すように、廃棄物処分場1側に位置する内壁2bの矢板列を構成する各鋼管矢板3の外表面(中詰土砂11側)に、所定の間隔で鉛直方向に開孔4を施されたパイプ状のモニタリング管5を設置し、このモニタリング管5内の水質を監視することにより行なうことができる。モニタリング管5内の水質監視の手段は、あらかじめ管内に水質センサーを配置しておくか、または管内の水を採水して定期的に水質分析することとする。
【0031】
また、廃棄物処分場からの内部保有水の漏出が確認された場合、遮水壁に所定の間隔で取り付けた複数のモニタリング管5内部の水質を測定すれば、鋼管矢板3等の壁部材から構成される遮水壁2での内部保有水の漏出経路である継手部3aからの漏出箇所の位置を平面的に特定できる。これにより、内部保有水の漏出補修等の対応策も早期に可能となる。図1に示すように、間隔Lをあけてモニタリング管5を配置した場合、各モニタリング管5毎に、それぞれを中心とする鋼管矢板列方向の両側が検知ゾーン▲1▼、▲2▼、▲3▼となる。また、図5に示すように、全ての鋼管矢板3の継手部3aの近傍にモニタリング管5を配置しておけば、より的確に漏出箇所を平面的に特定でき、漏出補修の範囲もより的確に絞り込むことができ、内部保有水漏出の補修を早期かつ経済的に実施可能となる。
【0032】
[第2実施形態]
本発明の第2実施形態を図6(a)〜図8を参照して説明する。
【0033】
廃棄物処分場1からの内部保有水の中詰土砂11側への漏出が確認された場合、第1実施形態の方法で漏出箇所を平面的に特定した後、さらに深度方向の漏出位置を特定すると補修箇所を特定できる。図6(a)は、モニタリング管5内の深度方向の水質分布を測定するために、所定間隔毎に電気伝導率測定のためのセンサー12を配置したものである。
【0034】
このセンサー12を用いて深度方向の漏出箇所を特定するには、以下の手順を用いて行う。
【0035】
廃棄物処分場1の汚染された内部保有水が漏出した箇所付近のモニタリング管5の内部水は、比重の重い成分が下方に沈降した分布状態となっており、そのままの状態で水質を測定しても、漏出箇所を深度方向に特定するのは難しい。そのため、まず、図6(b)に示すように、モニタリング管5内にパイプ13を挿入し、内部水をポンプ14により吸引して除去した後、真水で置換して清浄な状態とする。
【0036】
次に、モニタリング管5内に、図6(a)に示したように電気伝導率測定用の複数のセンサー12を挿入設置し、モニタリング管5内の電気伝導率を測定する。
【0037】
図7は、この深度方向に所定の間隔で配置された複数の電気伝導率測定用のセンサー12で測定されたモニタリング管5の内部保有水の電気伝導率の深度方向分布の例を示し、米印で示す深度方向の漏水箇所(イ)のところで、電気伝導率は横向き山形の曲線を描くように変化し、それにより深度方向の漏水箇所(イ)を特定できる。
【0038】
廃棄物処分場1の汚染された内部保有水が漏出する遮水壁付近の地下水は、電気伝導率が周囲に比べて高い値を示すが、上記の手順でモニタリング管5の内部水の電気伝導率の深度方向分布を測定することによって、漏出箇所の深度を特定することができる。
【0039】
なお、図6(a)に示す電気伝導率測定センサー12は、あらかじめ各モニタリング管5に固定設置しておくか、または、ひも状15にしたものを測定時に吊り下げ挿入してもよい。また、深度方向の漏出箇所を特定する手段として、モリタリング管5から深度毎の水を採水して水質分析するようにしてもよい。
【0040】
内部保有水の漏出箇所を、平面的に特定し、その後さらに深度方向に特定すれば、図8(a)、(b)に示すように、廃棄物処分場内側から漏出箇所(イ)に向かって注入管16を挿し込み、薬液注入、高圧噴射攪拌等により、遮水壁の漏出箇所周辺の地盤を不透水化させ、漏出部の補修範囲17を限定して補修することができる。なお、漏出箇所(イ)の深度(h)が浅い場合には、もちろん漏出箇所付近を掘削し、止水材等を用いて遮水壁の漏出箇所を補修するといった方法をとることもできる。
【0041】
このようにして第2実施形態によると、第1実施形態とあわせ、遮水壁の漏出箇所を、平面的かつ深度方向に的確に限定して特定することができ、その補修を経済的かつ早期に実施することが可能となる。なお、第1、第2実施形態を設計変更して実施することは構わない。
【0042】
【発明の効果】
本発明によると、継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出を、前記遮水壁部材の管理区域の外側表面に水平方向に所定の間隔で設けた、鉛直方向の所定間隔で開孔を有するモニタリング管により、その管内の水質を監視することで行うので、簡潔な構成で、かつ継手部の水密性を損なうことなく漏水を検知できて迅速な補修対策を施すことが可能となる。さらに、管理区域からの内部保有水の漏出がある場合に、モニタリング管の水質の深度方向の分布から、漏出箇所を深度方向にも容易かつ確実に特定できると共に、漏出箇所の補修を経済的、かつ確実に実施することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示し、モニタリング管を所定の間隔で配置した全体平面説明図である。
【図2】モニタリング管を鋼管矢板に取り付けた斜視図である。
【図3】鋼管矢板二重壁護岸の平面図である。
【図4】鋼管矢板二重壁護岸の縦断面図である。
【図5】鋼管矢板の全ての継手にモニタリング管を取り付けた平面図である。
【図6】(a)は、モニタリング管内に、モニタリング管内の深度方向の水質分布測定用の電気伝導率測定センサーを配置した図、(b)は、モニタリング管の内部保有水をポンプで吸引する図である。
【図7】深度方向に所定の間隔で配置された複数の電気伝導率測定用のセンサーを所定時間放置した後に測定される、モニタリング管の内部保有水の電気伝導率の深度方向分布の例を示す図である。
【図8】(a)は、廃棄物処分場内側から、薬液注入、高圧噴射攪拌等により、遮水壁の漏出箇所周辺の地盤を不透水化させ、漏出箇所の補修を行なう状態を平面的に示す図、(b)は、縦断側面で示す図である。
【符号の説明】
1 廃棄物処分場
2 遮水壁2a
3 鋼管矢板
3a 継手部
4 開孔
5 モニタリング管
6 透水性地層(砂層)
7 不透水性地層(粘土層)
8 海面
10 廃棄物
11 中詰土砂
12 電気伝導率測定センサー
13 パイプ
14 ポンプ
15 ひも
16 注入管
17 補修範囲
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device and a method for detecting leakage of internally held water containing harmful substances in a management area such as a waste disposal site that is shielded from external groundwater by a seepage barrier, and a leakage repair method when a leak is detected. It is about.
[0002]
[Prior art]
Dispose of contaminated internal water in landfills and sea landfills that landfill industrial or general waste, and in public water bodies such as rivers and lakes, and in contaminated soil areas that may cause groundwater contamination. It is extremely important for the environment to prevent leakage.
[0003]
For example, in the case of constructing a sea reclamation site as a waste disposal site in the seaside area, a revetment (water barrier) will be constructed along the border line at the planned sea reclamation site, and the landfill that has been cut off from the open sea. Made and dumped waste in this landfill. As the revetment types, a steel pipe sheet pile revetment, a steel box type sheet pile revetment, a steel sheet pile revetment, a double steel sheet pile revetment, and the like are known.
[0004]
In the sea reclamation revetment using these, the revetment (water barrier) is composed of multiple wall members with joints that may leak the internal retained water, so there is no leakage of the internal retained water containing harmful substances. It is important how to detect the leak, and if a leak is detected, how to identify the site and take repair measures.
[0005]
Conventionally, many methods have been proposed for detecting leakage from a seawall (water barrier) of a waste disposal site and for dealing with water leakage. For example, Japanese Unexamined Patent Publication No. 7-42130 (Patent Document 1) discloses that a water level gauge is provided in a double-walled impermeable wall to monitor the water level, and the water level in the impermeable wall is constantly monitored. The water level is set higher than the water level in the disposal site to prevent water leakage.
[0006]
Also, in Japanese Patent Application Laid-Open No. 2001-288739 (Patent Document 2), a mortar, an asphalt mixture, or the like, which is provided in a vertical direction of a water impervious wall composed of a steel pipe sheet pile, a steel box sheet pile, or the like at a sea surface disposal site. To install monitoring wells in the joints, such as steel pipe sheet piles and steel box sheet piles, to control the water retained inside that penetrates the joints filled with the waterproof material, and to control the water level, water quality and concentration inside the joints. Then, the leaching of the water held in the inside is detected and managed, and when the leaching exceeds a predetermined management value, the waterproofing material is forcibly filled to block the permeation path.
[0007]
[Patent Document 1]
JP-A-7-42130 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-288739
[Problems to be solved by the invention]
In the management method for detecting leakage disclosed in Japanese Patent Application Laid-Open No. 10-165916, the inside of the double wall is continuous over the entire length of the revetment, and it is specified which of the bottom, inner wall, and outer wall is defective or defective. Difficult. In addition, when several defects or defects occur at the same time on both double walls, it is more difficult to specify the defect and the repair time is slow, and the internal water leaks into the open sea.
[0009]
In addition, it has been proposed that the water level inside the double wall be higher than that of the disposal site to prevent the outflow of water retained inside. The plane area inside the heavy wall is very large, and injecting water (harmless seawater or water) requires very large facilities and time, and the cost for maintaining a constant high water level is also high.
[0010]
Furthermore, the above method requires time to specify the location where the defect or defect has occurred in the double wall, and it is necessary to inject a large amount of water in order to maintain the inside of the double wall at a high water level, The injected water mixes with the internal water from the disposal site that stays inside the double wall and becomes new internal water, and the water that flows into the repository becomes new internal water. There is a drawback that the amount of water pumped up by the pump and treated in the sewage treatment facility is enormous, and the cost required for the treatment is high.
[0011]
On the other hand, in the management method disclosed in Japanese Patent Application Laid-Open No. 2001-288739, a monitoring well is arranged in a hollow portion including a joint of a steel member such as a steel pipe sheet pile or a steel box sheet pile, or inside the joint, and the monitoring is performed. It is proposed to monitor the water level, water quality, and concentration of the wells. There was a problem of deteriorating performance.
[0012]
Further, in any of the above management methods, when leakage is detected, it is not possible to specify the depth direction of the leaking portion of the internally held water, and the repair range has to be the entire depth direction near the wall, so the repair is required. It has the disadvantage of being expensive.
[0013]
The present invention solves the above-mentioned problems, economically and reliably detects leakage of internally held water from an area controlled by a water impervious wall, and promptly repairs the leakage when there is leakage. It is intended to provide a method for doing so.
[0014]
[Means for Solving the Problems]
Means for Solving the Problems In order to achieve the above object, an apparatus and a method for detecting leakage of water contained in the present invention and a method for repairing a water impermeable wall according to the present invention are configured as follows.
[0015]
A leak detection device according to a first aspect of the present invention is a leak detection device for water retained inside an area (managed area) managed by a water impermeable wall including a plurality of wall members made of a water-impermeable material having a joint, On the outer surface of the control area of the impermeable wall member, a monitoring pipe for monitoring water quality in the pipe having openings at predetermined vertical intervals is provided, and the monitoring pipes are arranged at arbitrary intervals in the horizontal direction. In addition, it is characterized in that the leakage of the water contained inside can be detected by monitoring the water quality inside the monitoring pipe.
[0016]
According to a second aspect of the present invention, in the first aspect of the present invention, the monitoring pipes are attached to all or a plurality of the wall members in the vicinity of a joint on the outside of the management area.
[0017]
The water leakage detection method according to a third aspect of the present invention uses a first or second leakage detection device to specify a leakage location of the internally held water in a planar manner, and then investigates a depth direction distribution of water quality in the monitoring pipe. In the depth direction.
[0018]
A leak detection method according to a fourth invention is characterized in that the monitoring of the water quality inside the monitoring pipe according to the third invention is performed by a water quality sensor inserted into the monitoring pipe or a water quality measurement of water collected in the monitoring pipe. And
[0019]
A leakage repair method according to a fifth aspect of the present invention is a method for repairing leakage of water retained inside a controlled area controlled by a water-impervious wall composed of a plurality of wall members made of a water-impermeable material having a joint, By providing monitoring pipes having openings at predetermined intervals in the vertical direction on the outer surface of the management area of the wall member, disposing the monitoring pipes at predetermined intervals in the horizontal direction, and monitoring the water quality in the monitoring pipe, After detecting the leakage of the internally held water from the management area and specifying the leak location in a plane, the depth distribution of the water quality inside the monitoring pipe is investigated and identified in the depth direction, and the vicinity of the leak location is determined. It is characterized by taking repair measures at the position.
[0020]
The leakage repair method according to the sixth aspect of the present invention is to perform the repair measure of the fifth aspect of the present invention by injecting a chemical solution using an injection pipe, impervious the area around the leaked portion by high-pressure jet stirring, or filling a waterproof material by excavation. It is characterized by.
[0021]
[Action]
The present invention provides a leakage of water retained inside a management area controlled by a water impermeable wall composed of a plurality of water impervious material wall members having joints on an outer surface of the water impervious wall member management area. The monitoring is performed by monitoring water quality in a monitoring pipe having openings at predetermined intervals in the vertical direction and arranged at predetermined intervals in the horizontal direction. Therefore, the monitoring pipe is disposed outside the impermeable wall as viewed from the management area and in a portion of the soil having a water-permeable surrounding. From this, it is possible to detect the water retained inside without impairing the water blocking performance of the joint portion of the water blocking wall.
[0022]
In addition, when there is leakage of water retained inside from the management area, by investigating the water quality inside the monitoring pipe in the depth direction, the location of the leak can be identified in the depth direction from the water quality distribution in the depth direction. Thus, it is possible to repair the leaked portion economically and reliably.
[0023]
The water quality in the monitoring pipe that changes due to leakage from the management area is as follows. Color, transparency, odor, specific gravity, electrical conductivity (or chloride ion concentration), hydrogen ion concentration (PH), harmful components (cadmium, total cyanide, organic phosphorus, lead, hexavalent chromium, arsenic, alkyl silver, PCB, Dichloromethane, carbon tetrachloride, trichloroethylene, benzene, etc.). Which of these water quality changes is to be investigated may be selected depending on the controlled substance in the controlled area.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
[0025]
FIG. 1 shows a water impervious wall in a marine waste disposal site (managed area) 1 which is similar to a commonly used impermeable wall, that is, an outer wall 2a and an inner wall 2b. The outer surface of the steel sheet piles 3 in the sheet pile row on the inner wall 2b located at the waste disposal site 1 (ie, the waste disposal site 1) On the outside), a pipe-shaped monitoring pipe 5 having openings 4 (FIG. 2) provided at predetermined intervals in the vertical direction is installed, and by monitoring the water quality in the monitoring pipe 5, the joint of the steel pipe sheet pile 3 is connected. The figure which manages the water retained inside the waste disposal site leaked from the part 3a is shown.
[0026]
As shown in FIG. 2, the monitoring pipe 5 is provided with openings 4 at predetermined intervals so that surrounding groundwater can enter. Before the steel sheet pile 3 is cast, a resin filter or a wire mesh is attached to the opening 4 so that earth and sand do not enter the monitoring pipe 5. The cross-sectional shape of the monitoring tube 5 is not limited to the illustrated mountain shape, and may be any cross-sectional shape such as a semicircle, a U-shape, a circle, and a rectangle.
[0027]
FIG. 3 is a plan view of a steel pipe sheet pile double revetment (water barrier 2) generally used in a waste disposal site 1 on the sea surface. FIG. 4 is a longitudinal sectional view of the revetment of the waste disposal site 1. The impermeable wall 2 is not limited to a structure in which a double row of steel pipe sheet piles is installed, but may be a structure in which a single row of impermeable walls only of the steel pipe sheet piles 3 on the inner wall 2b is installed.
[0028]
As shown in FIG. 4, each steel pipe sheet pile of the outer wall (open sea side) 2a and the inner wall (disposal site side) 2b as a double impermeable wall between the left open sea side and the right waste disposal site side. The rows are formed to penetrate a water-permeable formation (sand layer) 6 under the sea floor to a depth that reaches a poorly permeable formation or an impermeable formation (clay layer) 7. This structure prevents water retained inside the waste disposal site from leaking to the sea surface 8 side. In addition, in order to prevent the water in the waste disposal site from leaking in the vertical direction, a waterproof sheet is applied to the bottom surface of the waste disposal site, that is, the boundary portion between the waste 10 and the permeable formation 6. There is also (not shown). Further, instead of using the steel pipe sheet pile 3, a steel sheet pile, a box-shaped steel sheet pile or the like may be used.
[0029]
As described above, the permeable formation 6 exists on the poorly permeable formation and the impermeable formation 7, and the filling soil 11 is filled above the permeable formation 6 and between the inner wall 2 b and the outer wall 2 a. I have. Further, a steel pipe member with a slit or a T-shaped joint member is used as a joint member constituting the joint portion 3a between the steel pipe sheet piles 3, and the pipe joint member or the T-shaped joint member extends in the vertical direction and It is welded to the steel sheet pile 3. When connecting the joints 3a, the pipe joint members are connected to each other, or the pipe joint member and the T-shaped joint member are connected to each other. Then, a space is secured inside the pipe joint member, and a water-blocking material such as mortar, asphalt mixture, or the like is filled in the internal space, and the joint portion is configured to be watertight.
[0030]
The water impervious wall 2 in which each row of steel pipe sheet piles constituting the inner wall 2b and the outer wall 2a is cast to a depth of a water-impermeable stratum or a water-impermeable stratum 7 below the seabed, is internally retained from the waste disposal site 1. When water leakage occurs, the leakage path is limited to the joint 3a of the steel sheet pile 3. Therefore, the management of the water retained inside the waste disposal site 1 leaked from the joint portion 3a of the steel pipe sheet pile 3 is performed by changing the sheet pile row of the inner wall 2b located on the waste disposal site 1 side as shown in FIGS. A pipe-shaped monitoring pipe 5 having openings 4 in the vertical direction at predetermined intervals is installed on the outer surface (filled sand 11 side) of each steel pipe sheet pile 3 to constitute, and water quality in the monitoring pipe 5 is measured. This can be done by monitoring. As a means for monitoring the water quality in the monitoring pipe 5, a water quality sensor is disposed in the pipe in advance, or water in the pipe is sampled and the water quality is periodically analyzed.
[0031]
In addition, when the leakage of the internal water from the waste disposal site is confirmed, the water quality inside the plurality of monitoring pipes 5 attached to the impermeable wall at predetermined intervals can be measured from the wall member such as the steel sheet pile 3. The position of the leaked part from the joint portion 3a, which is the leak path of the internally held water in the impermeable wall 2, can be specified in a planar manner. As a result, countermeasures such as repairing leakage of water retained inside can be made possible at an early stage. As shown in FIG. 1, when the monitoring pipes 5 are arranged at intervals L, the detection zones (1), (2), and (2) are located on both sides in the steel sheet pile row direction centered on each monitoring pipe 5. It becomes 3 ▼. Further, as shown in FIG. 5, if the monitoring pipes 5 are arranged in the vicinity of the joints 3a of all the steel sheet piles 3, the leak locations can be more accurately specified in a planar manner, and the range of leak repair can be more accurately determined. It is possible to quickly and economically repair internal water leakage.
[0032]
[Second embodiment]
A second embodiment of the present invention will be described with reference to FIGS.
[0033]
When leakage of the internally held water from the waste disposal site 1 to the filling soil 11 is confirmed, the leakage location is specified two-dimensionally by the method of the first embodiment, and then the leakage position in the depth direction is further specified. Then, the repaired part can be specified. FIG. 6A shows a configuration in which sensors 12 for measuring electric conductivity are arranged at predetermined intervals in order to measure the water quality distribution in the depth direction in the monitoring pipe 5.
[0034]
The following procedure is used to specify a leak location in the depth direction using the sensor 12.
[0035]
The internal water of the monitoring pipe 5 near the location where the contaminated internal water of the waste disposal site 1 leaked has a distribution state in which components having a high specific gravity have settled downward, and the water quality is measured as it is. However, it is difficult to identify the leak location in the depth direction. Therefore, as shown in FIG. 6 (b), first, the pipe 13 is inserted into the monitoring pipe 5, the internal water is removed by suction by the pump 14, and then replaced with fresh water to obtain a clean state.
[0036]
Next, a plurality of sensors 12 for measuring electric conductivity are inserted and installed in the monitoring tube 5 as shown in FIG. 6A, and the electric conductivity in the monitoring tube 5 is measured.
[0037]
FIG. 7 shows an example of the depth direction distribution of the electric conductivity of the water held inside the monitoring pipe 5 measured by the plurality of electric conductivity measuring sensors 12 arranged at predetermined intervals in the depth direction. At the water leakage point (a) in the depth direction indicated by the mark, the electric conductivity changes so as to draw a horizontal mountain-shaped curve, whereby the water leakage point (a) in the depth direction can be specified.
[0038]
The groundwater near the impermeable wall where the contaminated internal water of the waste disposal site 1 leaks shows a higher electric conductivity than the surroundings. By measuring the depth distribution of the rate, the depth of the leak location can be specified.
[0039]
The electric conductivity measurement sensor 12 shown in FIG. 6A may be fixedly installed in each monitoring tube 5 in advance, or a string-shaped one may be suspended and inserted at the time of measurement. In addition, as a means for specifying a leakage point in the depth direction, water at each depth may be sampled from the mortaring pipe 5 to analyze the water quality.
[0040]
If the leakage point of the internal water is specified in a plane and then further in the depth direction, as shown in FIGS. 8 (a) and 8 (b), the leakage point (a) is directed from the inside of the waste disposal site. Then, the ground around the leaked portion of the impermeable wall is made impermeable by chemical solution injection, high-pressure jet stirring, or the like, so that the repaired area 17 of the leaked portion can be limited and repaired. In the case where the depth (h) of the leak location (a) is shallow, a method of excavating the vicinity of the leak location and repairing the leak location of the impermeable wall using a waterproof material or the like can be adopted.
[0041]
In this way, according to the second embodiment, in combination with the first embodiment, it is possible to specify the leaking portion of the impermeable wall in a plane and precisely in the depth direction, and to repair it economically and early. Can be implemented. It should be noted that the first and second embodiments may be changed in design and executed.
[0042]
【The invention's effect】
According to the present invention, leakage of water retained inside the control area controlled by the impermeable wall composed of a plurality of impermeable material wall members having joints is applied to the outer surface of the control area of the impermeable wall member. Since monitoring is performed by monitoring the water quality in the pipe by using a monitoring pipe provided at predetermined intervals in the horizontal direction and having holes at predetermined intervals in the vertical direction, the structure is simple and the watertightness of the joint portion is impaired. It is possible to detect water leakage without any trouble and take quick repair measures. Furthermore, when there is leakage of water from the management area, the leakage point can be easily and reliably identified in the depth direction based on the distribution of the water quality of the monitoring pipe in the depth direction, and repair of the leakage point is economical. And it can be implemented reliably.
[Brief description of the drawings]
FIG. 1 is an overall plan explanatory view showing a first embodiment of the present invention, in which monitoring tubes are arranged at predetermined intervals.
FIG. 2 is a perspective view in which a monitoring pipe is attached to a steel pipe sheet pile.
FIG. 3 is a plan view of a steel pipe sheet pile double wall revetment.
FIG. 4 is a longitudinal sectional view of a steel pipe sheet pile double wall revetment.
FIG. 5 is a plan view in which monitoring pipes are attached to all joints of a steel pipe sheet pile.
6A is a diagram in which an electric conductivity measurement sensor for measuring water quality distribution in a depth direction in the monitoring pipe is arranged in the monitoring pipe, and FIG. 6B is a drawing in which water retained in the monitoring pipe is sucked by a pump. FIG.
FIG. 7 shows an example of a depth direction distribution of the electric conductivity of water held inside a monitoring pipe measured after leaving a plurality of sensors for electric conductivity measurement arranged at predetermined intervals in the depth direction for a predetermined time. FIG.
FIG. 8 (a) is a plan view showing a state in which the ground around the leakage point of the impermeable wall is impervious and the leakage point is repaired from the inside of the waste disposal site by injection of a chemical solution, high-pressure jet stirring, or the like. (B) is a diagram shown by a vertical side surface.
[Explanation of symbols]
1 waste disposal site 2 impermeable wall 2a
3 Steel pipe sheet pile 3a Joint 4 Opening 5 Monitoring pipe 6 Permeable layer (sand layer)
7 Impervious stratum (clay layer)
8 Sea surface 10 Waste 11 Filled sand 12 Electric conductivity measurement sensor 13 Pipe 14 Pump 15 String 16 Injection pipe 17 Repair area

Claims (6)

継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出検知装置であって、前記遮水壁部材の管理区域外側表面に、鉛直方向の所定間隔で開孔を有する、管内の水質を監視するためのモニタリング管を設けて、該モニタリング管を水平方向に任意の間隔で配置し、前記モニタリング管内部の水質を監視することにより前記内部保有水の漏出の検知を可能に構成したことを特徴とする遮水壁で管理された区域からの内部保有水の漏出検知装置。A leak detection device for water retained in a management area controlled by a water impermeable wall composed of a plurality of water impervious material wall members having joints, wherein the water impervious wall member has a vertical surface on the outer surface of the management area. By providing a monitoring pipe for monitoring the water quality in the pipe having openings at predetermined intervals in the direction, arranging the monitoring pipe at an arbitrary interval in the horizontal direction, and monitoring the water quality inside the monitoring pipe, An apparatus for detecting leakage of internally held water from an area controlled by a water impervious wall, which is configured to detect leakage of internally held water. 前記モニタリング管を、全ての或いは複数本おきの前記壁部材の管理区域外側部の継手部近傍に取り付けることを特徴とする請求項1に記載の遮水壁で管理された区域からの内部保有水の漏出検知装置。The water retained in the area controlled by the impermeable wall according to claim 1, wherein the monitoring pipes are mounted near joints on the outside of the control area of all or a plurality of the wall members. Leak detection device. 請求項1または2記載の漏出検知装置を用いて内部保有水の漏出箇所を平面的に特定した後、モニタリング管内部の水質の深度方向分布を調査して深度方向に特定することを特徴とする遮水壁で管理された区域からの内部保有水の漏出検知方法。The leakage detection device according to claim 1 or 2 is used to specify the leakage location of the water contained in the plane two-dimensionally, and then investigates the distribution of the water quality in the monitoring pipe in the depth direction and specifies the depth direction. A method for detecting leakage of water retained inside from areas controlled by impermeable walls. 前記モニタリング管の内部の水質監視は、当該モニタリング管内に挿入した水質センサーまたは、モニタリング管内で採取した水の水質測定等により行うことを特徴とする請求項3記載の遮水壁で管理された区域からの内部保有水の漏出検知方法。4. The area controlled by the impermeable wall according to claim 3, wherein the monitoring of the water quality inside the monitoring pipe is performed by a water quality sensor inserted in the monitoring pipe or a water quality measurement of water collected in the monitoring pipe. For detecting internal water leakage from water. 継手を有する複数の不透水性材料の壁部材から構成される遮水壁で管理された管理区域の内部保有水の漏出補修方法であって、前記遮水壁部材の管理区域外側表面に、鉛直方向の所定間隔で開孔を有するモニタリング管を設け、該モニタリング管を水平方向に所定の間隔で配置し、前記モニタリング管内の水質を監視することにより、前記管理区域からの前記内部保有水の漏出の検知を行い、漏出箇所を平面的に特定した後、前記モニタリング管の内部の水質の深度方向分布を調査して深度方向に特定し、その漏出箇所の近傍の位置に補修対策を施すことを特徴とする遮水壁で管理された区域からの内部保有水の漏出補修方法。A method for repairing leakage of water retained inside a control area controlled by a water impermeable wall composed of a plurality of wall members made of a water impervious material having joints, wherein Providing monitoring pipes having openings at predetermined intervals in the direction, arranging the monitoring pipes at predetermined intervals in the horizontal direction, and monitoring the water quality in the monitoring pipes, whereby leakage of the internal retained water from the control area is performed. After detecting the leakage point and specifying the leakage point in a plane, the distribution in the depth direction of the water quality inside the monitoring pipe is investigated and specified in the depth direction, and a repair measure is taken at a position near the leakage point. A method for repairing leakage of water retained inside from areas controlled by impermeable walls. 前記の補修対策は、注入管を用いた薬液注入、高圧噴射撹拌等による漏出箇所周辺の不透水化、または掘削による止水材充填にて行うことを特徴とする請求項5記載の遮水壁で管理された区域からの内部保有水の漏出補修方法。6. The impermeable wall according to claim 5, wherein the repairing measures are performed by injecting a chemical solution using an injection pipe, impermeability around a leaked portion by high-pressure injection stirring, or filling with a waterproof material by excavation. To repair internal water leaks from areas controlled by
JP2002317094A 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method Expired - Fee Related JP3811441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317094A JP3811441B2 (en) 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317094A JP3811441B2 (en) 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method

Publications (2)

Publication Number Publication Date
JP2004150968A true JP2004150968A (en) 2004-05-27
JP3811441B2 JP3811441B2 (en) 2006-08-23

Family

ID=32460569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317094A Expired - Fee Related JP3811441B2 (en) 2002-10-31 2002-10-31 Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method

Country Status (1)

Country Link
JP (1) JP3811441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268968A (en) * 2008-05-07 2009-11-19 Ohbayashi Corp System and method for detecting damage of water barrier layer
CN107246030A (en) * 2017-07-12 2017-10-13 中铁十局集团第五工程有限公司 Construction method based on steel sheet pile device for plugging
JP2019128348A (en) * 2018-01-24 2019-08-01 韓国原子力研究院Korea Atomic Energy Research Institute Monitoring system for radioactive contamination of groundwater and operation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268968A (en) * 2008-05-07 2009-11-19 Ohbayashi Corp System and method for detecting damage of water barrier layer
CN107246030A (en) * 2017-07-12 2017-10-13 中铁十局集团第五工程有限公司 Construction method based on steel sheet pile device for plugging
JP2019128348A (en) * 2018-01-24 2019-08-01 韓国原子力研究院Korea Atomic Energy Research Institute Monitoring system for radioactive contamination of groundwater and operation method thereof
US10928525B2 (en) 2018-01-24 2021-02-23 Korea Atomic Energy Research Institute Integrated monitoring system for radiological surveillance of groundwater and operation method thereof

Also Published As

Publication number Publication date
JP3811441B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US7172371B2 (en) Method of sealing casings of subsurface materials management system
US6910829B2 (en) In situ retreival of contaminants or other substances using a barrier system and leaching solutions and components, processes and methods relating thereto
JP2011167685A (en) Advanced containment system
US7153061B2 (en) Method of in situ retrieval of contaminants or other substances using a barrier system and leaching solutions
KR101714484B1 (en) Monitoring system for sensing leachate leakage having net frame for waterproofing sheet in offshore waste landfill, and construction method for the same
JP3811441B2 (en) Leakage detection device and method for internally retained water from areas controlled by impermeable walls, and leak repair method
JP4285593B2 (en) Impermeable revetment structure with leaching detection function of retained water and its repair method
JP2943647B2 (en) Management method of contaminated water leaking from partition walls
JP4002344B2 (en) Waste disposal facility
JP3600482B2 (en) Equipment for preventing and purifying liquid leakage to the supporting ground of industrial facilities
JP4316086B2 (en) Method for detecting damage location of impermeable structure at waste disposal site in water area
JP3248437B2 (en) Waste disposal site and its construction method
JP5050673B2 (en) Impermeable wall leak detection method
JP2826720B2 (en) Method for detecting breakage of waterproof sheet at waste disposal site
JP2006043492A (en) Polluted water leakage prevention method in waste disposal facility
WO2002062668A2 (en) Subsurface materials management and containment system, components thereof and methods relating thereto
JPS63130818A (en) Cut-off wall construction work
JPH1015517A (en) Break detecting method and water leakage preventing method for water-shielding sheet in waste disposal site
JPH09239338A (en) Waste disposal method
JP2012030138A (en) Treating structure having water-passing structure in contaminated soil treatment, and method for constructing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060526

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees