JP3810903B2 - Inspection method of polycrystalline semiconductor film - Google Patents

Inspection method of polycrystalline semiconductor film Download PDF

Info

Publication number
JP3810903B2
JP3810903B2 JP26067297A JP26067297A JP3810903B2 JP 3810903 B2 JP3810903 B2 JP 3810903B2 JP 26067297 A JP26067297 A JP 26067297A JP 26067297 A JP26067297 A JP 26067297A JP 3810903 B2 JP3810903 B2 JP 3810903B2
Authority
JP
Japan
Prior art keywords
wavelength dependence
particle size
polycrystalline semiconductor
semiconductor film
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26067297A
Other languages
Japanese (ja)
Other versions
JPH11101742A (en
Inventor
康正 後藤
浩 三橋
信雄 今井
尚 藤村
由紀 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26067297A priority Critical patent/JP3810903B2/en
Publication of JPH11101742A publication Critical patent/JPH11101742A/en
Application granted granted Critical
Publication of JP3810903B2 publication Critical patent/JP3810903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多結晶半導体膜の粒径を測定する多結晶半導体膜の検査方法に関する。
【0002】
【従来の技術】
多結晶シリコン(poly−Si)(以下、p−Si)を用いたTFT(Thin Film Transistor)(以下、p−SiTFT)は、非晶質シリコン(以下、a−Si)を用いたTFT(以下、a−SiTFT)よりも移動度が10から100倍程度高い利点を有している。そこで、液晶表示装置(LCD)などについて、p−SiTFTを画素スイッチング素子として用いるだけでなく、周辺駆動回路にも用いて、画素TFTと駆動回路TFTとを同一基板上に同時に形成した駆動回路一体型TFT−LCDの研究開発が盛んに行われている。この際、図6に示すように、p−SiTFTの結晶の粒と移動度とは、粒が大きい程、移動度が高い、という相関があるため、粒の大きさを測定することが、大きな課題となっている。
【0003】
従来、結晶の粒の大きさについては、セコエッチングなどのエッチングにより結晶粒界を選択的に除去した後、走査型電子顕微鏡(FE−SEM)などを用いて粒を測定し、あるいは、基板厚さ方向に沿って切断した断面を透過型電子顕微鏡(TEM)を用いて観察を行っていたが、これらの方法では、粒の観察まで少なくとも2時間以上かかるという問題を有している。また、原子間力顕微鏡(AFM)によっても粒の観察は可能であるが、1点の観察・粒径解析に30分程度の時間がかかるという問題を有している。
【0004】
この点、非破壊・非接触で短時間での測定が可能であり、測定時間が1点当たり5秒程度と短い分光エリプソメータを用いた粒径解析が考えられるが、p−Siの解析のための解析モデルの構築が難しく、すなわち、粒径、移動度などの定量化が困難である問題を有している。特に、エキシマレーザアニール(ELA)法により作製したp−Siは、作成条件によっては、例えば50〔nm〕程度の膜厚オーダの凹凸が表面に出現するため、定量化が困難である問題を有している。
【0005】
例えば、駆動回路一体型TFT−LCDを作成する場合、p−Siの平均粒径は0.25〜0.45〔μm〕付近が適当である。これは、0.25〔μm〕未満の粒径では、移動度がnチャンネル低濃度不純物層薄膜トランジスタ(n−chLDD一TFT)で移動度が60〔cm2 /Vs〕未満となり、12インチクラス以上のLCDの駆動が困難となり、反対に、粒径が0.5〔μm〕以上の大結晶になると、TFTの移動度が高く、電流値がとれすぎるため、TFTが経時的に劣化するためである。そこで、駆動回路一体型TFT−LCDのp−Siは、0.25〜0.45〔μm〕付近の粒径に作製することが望ましいが、この範囲のp−Si膜を高精度かつ短時間で測定することはできなかった。例えば、従来からある技術で、図7に示すように、p−Siをa−Siとc−Si(結晶シリコン)との混合物として現した場合のp−Siの平均粒径とp−Siの組成比率との関係を利用する方法や、図8に示すように、p−Siを、a−Si、p−Siおよびc−Siの混合物として現した場合のp−Siの平均粒径とp−Siの組成比率との関係を利用する方法では、いずれも、膜厚がプラスマイナス5%異なっているサンプルでは再現性がなく、粒径の測定に利用できる精度を実現できない問題を有している。これは、解析時に膜厚・膜質の両方を同時にパラメータとして計算するためである。すなわち、膜厚だけを決めると膜質が実試料のものと異なり、さらに、今求めた膜厚を用いて膜質を計算すると、もう一度膜厚を計算する必要が生じるといった問題を有している。
【0006】
【発明が解決しようとする課題】
上記のように、従来の方法では、分光エリプソメータを用いた粒径解析においては、粒径、移動度などの定量化が困難で、粒径を短時間に高精度で測定することは困難な問題を有している。
【0007】
本発明は、このような点に鑑みなされたもので、多結晶半導体膜の粒径を短時間に高精度で測定できる多結晶半導体膜の検査方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の多結晶半導体膜の検査方法は、所定方法で標準料である多結晶半導体膜を形成し、この標準料の屈折率の波長依存性および減衰数の波長依存性を光学的に測定し算出するとともに、粒径を測定し、前記所定方法で検査対象となる評価料である多結晶半導体膜を形成し、この評価料の屈折率の波長依存性および減衰数の波長依存性を光学的に測定し算出し、標準料の屈折率の波長依存性および減衰数の波長依存性と前記評価料の屈折率の波長依存性および減衰数の波長依存性とを比較して、前記評価料の粒径を算出するものである。そして、この構成では、標準料を形成、測定し、次いで、検査対象となる評価料を形成、測定することにより、光学的な測定結果の定量化が可能になり、非破壊かつ非接触で、短時間に高精度の粒径の測定が可能になる。
【0009】
さらに、多結晶シリコン薄膜をエネルギービームアニール法を用いて形成し、分光エリプソメータを用いて屈折率の波長依存性および減衰数の波長依存性測定することにより、短時間に高精度の粒径の測定が可能になり、例えば、薄膜トランジスタ、液晶表示装置などの品質管理が短時間に高精度で可能になる。
【0010】
また、互いに粒径の異なる複数の標準料を用いることにより、高精度の粒径の測定が可能になる。
【0011】
さらに、平均粒径が約0.3〔μm〕の標準料を用い、あるいは、約0.3〔μm〕と約0.5〔μm〕との標準料を用いることにより、平均結晶粒径が0.25〜0.45〔μm〕の多結晶シリコン薄膜が精度良く選定され、製造効率が向上する。
【0012】
【発明の実施の形態】
以下、本発明の多結晶半導体膜の検査方法の一実施の形態としての多結晶シリコン薄膜の検査方法を図面を参照して説明する。
【0013】
まず、第1の実施の形態を、図1ないし図3のグラフを参照して説明する。
【0014】
この第1の実施の形態の評価対象すなわち測定の対象となる検査試料は、ガラス基板上に、約50〔nm〕のSiNx、約100〔nm〕のSiOx、約55〔nm〕のp−Siを積層した構造のp−Siの検査方法である。また、このp−Siは、ELA法により形成された膜である。
【0015】
まず、この時点で、p−Si膜の平均粒径、表面凹凸が異なる2種類の標準試料を作製する。また、これら標準試料は、検査試料と同じ構造であることが望ましい。そして、本実施の形態では、ガラス基板上に、約50〔nm〕のSiNx、約100〔nm〕のSiOx、約55〔nm〕のa−Siを積層した構造の試料に、XeClエキシマレーザを用いたELA法により形成したp−Siを用いる。この際、例えば、照射エネルギーはそれぞれ約340〔mJ/cm2 〕、370〔mJ/cm2 〕として26回照射し、p−Siの平均粒径をそれぞれ約0.51〔μm〕、約0.08〔μm〕、表面凹凸をそれぞれ約21〔nm〕、約12〔nm〕とする。ここで、高い照射エネルギーで形成したp−Siの方が粒径が小さくなるのは、P−Si/SiOx界面に形成された結晶核が完全溶融してしまうためである。また、これら平均粒径および表面凹凸は、走査型電子顕微鏡などにより確認する。
【0016】
次に、これら標準試料について、分光エリプソメータを用いて偏光特性を測定する。そして、この偏光特性の解析により、それぞれのp−Siのn(屈折率)、k(減衰係数)の波長存性を算出する。その結果、得られた各標準試料のn(屈折率)の波長依存性をn1(λ)、n2(λ)、k(減衰係数)の波長依存性をk1(λ)、k2(λ)という関数で表す。
【0017】
次に、粒径を測定したいp−Si、すなわち、ガラス基板上に約50〔nm〕のSiNx、約100〔nm〕のSiOx、約55〔nm〕のp−Siを積層した検査試料をELA法により製造し、分光エリプソメータを用いて偏光特性を測定する。
【0018】
なお、この測定の際の測定エネルギー範囲は、2.0〜5.0〔eV〕が望ましい。なぜなら、通常、市販されている装置では、1・5〜5.0〔eV〕の範囲が測定できる装置が多いが1.5〜2.0〔eV〕の範囲は、図2のグラフおよび図3のグラフに示すように、P−Siの下地となるSiOx、SiNxの膜厚のばらつきにより影響を受けることが判明したためである。
【0019】
そして、この偏光特性から算出した屈折率の波長依存性、滅衰係数の波長依存性を、それぞれk(λ)、n(λ)という関数で表すことにする。そして、このk(λ)、n(λ)を標準試料のn1(λ)、n2(λ)、k1(λ)、k2(λ)で表し、
k(λ)=a*k1(λ)+b*k2(λ)
n(λ)=a*n1(λ)+b*n2(λ)
a+b=1
を同時に満たすa、bを決定する。
【0020】
図1に、a、すなわち膜厚約0.5〔μm〕のp−Siの光学特性関数の係数の値と粒径の関係を示す。そして、この図1のグラフから、aの値が0.4未満であれば、照射エネルギーが高すぎるために生じる、約0.08〔μm〕の微小結晶領域であることがわかる。そして、TFT用のp−Siとしては、このような小粒径のp−Siは移動度が低いため不適である。このようにして、良品と不良品を短時間に高精度に見分けることができる。
【0021】
なお、p−Siのk(λ)、n(λ)を表現する際に、第3の関数として、a−Siの屈折率の波長依存性および減衰係数の波長依存性を示す関数として、ka-Si(λ)、na-Si(λ)を用いて、
k(λ)=a*k1(λ)+b*k2(λ)+c*ka-Si(λ)
n(λ)=a*n1(λ)+b*n2(λ)+c*na-Si(λ)
a+b+c=1
とする方法も、ELA法により2種類の照射エネルギーで形成したp−Siの関数を使う点で効果は同等である。
【0022】
次に、第2の実施の形態を、図4のグラフを参照して説明する。
【0023】
この第2の実施の形態の評価対象すなわち測定の対象となる検査試料は、ガラス基板上に、約50〔nm〕のSiNx、約100〔nm〕のSiOx、約50〔nm〕のp−Siを積層した構造のp−Siの検査方法である。また、このp−Siは、ELA法により形成された膜である。
【0024】
まず、この時点で、p−Si膜の平均粒径、表面凹凸が異なる2種類の標準試料を作製する。また、これら標準試料は、検査試料と同じ構造であることが望ましい。そして、本実施の形態では、ガラス基板上に、約50〔nm〕のSiNx、約100〔nm〕のSiOx、約50〔nm〕のa−Siを積層した構造の試料に、XeClエキシマレーザを用いたELA法により形成したp−Siを用いる。この際、例えば、照射エネルギーはそれぞれ約280〔mJ/cm2 〕、310〔mJ/cm2 〕として26回照射し、p−Siの平均粒径をそれぞれ約0.19〔μm〕、約0.34〔μm〕、表面凹凸をそれぞれ約29〔nm〕、約52〔nm〕とする。また、これら平均粒径および表面凹凸は、走査型電子顕微鏡などにより確認する。
【0025】
次に、これら標準試料について、分光エリプソメータを用いて偏光特性を測定する。そして、この偏光特性の解析により、それぞれのp−Siのn(屈折率)、k(減衰係数)の波長存性を算出する。その結果、得られた各標準試料のn(屈折率)の波長依存性をn3(λ)、n4(λ)、k(減衰係数)の波長依存性をk3(λ)、k4(λ)という関数で表す。
【0026】
次に、粒径を測定したいp−Si、すなわち、ガラス基板上に約50〔nm〕のSiNx、約100〔nm〕のSiOx、約50〔nm〕のp−Siを積層した検査試料をELA法により製造し、分光エリプソメータを用いて偏光特性を測定する。
【0027】
そして、この偏光特性から算出した屈折率の波長依存性、滅衰係数の波長依存性を、それぞれk(λ)、n(λ)という関数で表すことにする。そして、このk(λ)、n(λ)を標準試料のn3(λ)、n4(λ)、k3(λ)、k4(λ)で表し、
k(λ)=d*k3(λ)+e*k4(λ)
n(λ)=d*n3(λ)+e*n4(λ)
d+e=1
を同時に満たすd、eを決定する。
【0028】
図4に、d、すなわち膜厚約0.3〔μm〕のp−Siの光学特性関数の係数の値と粒径の関係を示す。そして、この図4のグラフから、eの値が0.35未満であれば、平均粒径が0.10〜0.24〔μm〕であることが示される。そして、TFT用のp−Siとしては、このような小粒径のp−Siは移動度が低いため不適である。このようにして、良品と不良品を短時間に高精度に見分けることができる。
【0029】
なお、p−Siのk(λ)、n(λ)を表現する際に、第3の関数として、a−Siの屈折率の波長依存性および減衰係数の波長依存性を示す関数として、ka-Si(λ)、na-Si(λ)を用いて、
k(λ)=d*k1(λ)+e*k2(λ)+f*ka-Si(λ)
n(λ)=d*n1(λ)+d*n2(λ)+f*na-Si(λ)
d+e+f=1
とする方法も、ELA法により2種類の照射エネルギーで形成し、少なくとも膜厚約0.3〔μm〕のp−Siの関数を使う点で効果は同等である。
【0030】
次に、第3の実施の形態を、図5のグラフを参照して説明する。
【0031】
この第3の実施の形態の評価対象すなわち測定の対象となる検査試料は、ガラス基板上に、約50〔nm〕のSiNx、約100〔nm〕のSiOx、約55〔nm〕のp−Siを積層した構造のp−Siの検査方法である。また、このp−Siは、ELA法により形成された膜である。
【0032】
まず、この時点で、p−Si膜の平均粒径、表面凹凸が異なる2種類の標準試料の標準試料およびa−Siの試料を作製する。また、これら標準試料は、検査試料と同じ構造であることが望ましい。そして、本実施の形態では、ガラス基板上に、約50〔nm〕のSiNx、約100〔nm〕のSiOx、約50〔nm〕のa−Siを積層した構造の試料に、XeClエキシマレーザを用いたELA法により形成したp−Siを用いる。この際、例えば、照射エネルギーはそれぞれ約342〔mJ/cm〕、305〔mJ/cm〕として26回照射し、p−Siの平均粒径をそれぞれ約0.52〔μm〕、約0.31〔μm〕、表面凹凸をそれぞれ約22〔nm〕、約53〔nm〕とする。また、これら平均粒径および表面凹凸は、走査型電子顕微鏡などにより確認する。さらに、この実施の形態では、ガラス基板上に、約50〔nm〕のSiNx、約100〔nm〕のSiOx、約55〔nm〕のa−Siを積層した構造の試料を準備する。
【0033】
次に、これら標準試料について、分光エリプソメータを用いて偏光特性を測定する。そして、この偏光特性の解析により、a−Siおよびそれぞれのp−Siのn(屈折率)、k(減衰係数)の波長存性を算出する。その結果、得られた各標準試料のn(屈折率)の波長依存性をna−Si(λ)、n5(λ)、n6(λ)、k(減衰係数)の波長依存性をka−Si(λ)、k5(λ)、k6(λ)という関数で表す。
【0034】
次に、粒径を測定したいp−Si、すなわち、ガラス基板上に約50〔nm〕のSiNx、約100〔nm〕のSiOx、約55〔nm〕のp−Siを積層した検査試料をELA法により製造し、分光エリプソメータを用いて偏光特性を測定する。
【0035】
そして、この偏光特性から算出した屈折率の波長依存性、滅衰係数の波長依存性を、それぞれk(λ)、n(λ)という関数で表すことにする。そして、このk(λ)、n(λ)を標準試料のna-Si(λ)、n5(λ)、n6(λ)、ka-Si(λ)、k5(λ)、k6(λ)という関数で表し、
k(λ)=g*k3(λ)+h*k4(λ)+i*ka-Si(λ)
n(λ)=g*n3(λ)+h*n4(λ)+i*na-Si(λ)
g+h+i=1
を同時に満たすg、h、iを決定する。
【0036】
図5に、h、すなわち膜厚約0.3〔μm〕のp−Siの光学特性関数の係数の値と粒径の関係を示す。そして、この図5のグラフから、hの値が0.3未満であれば、平均粒径が0.25〜0.45〔μm〕であることが示される。そして、このような粒径のp−Siは移動度が適度に高く、TFT用のp−Siとして非常に適している。このようにして、良品と不良品を短時間に高精度に見分けることができる。
【0037】
なお、p−Siのk(λ)、n(λ)を表現する際に、第3の関数として、a−Siの屈折率の波長依存性および減衰係数の波長依存性を示す関数として、ka-Si(λ)、na-Si(λ)を導入したが、この関数を用いなくとも充分な検査が可能である。また、第4の関数、第5の関数を導入し、平均が0.25〜0.45〔μm〕の粒径を判別するという効果を得ることもできる。
【0038】
このように、各実施の形態の多結晶シリコン薄膜の検査方法によれば、分光エリプソメータによる屈折率の波長依存性および減衰数の波長依存性の測定を用い、評価料とは平均粒径・表面凹凸が異なる標準試料の作成、測定の後に、検査対象となる評価料を作成、測定することにより、光学的な測定結果の定量化が可能になり、評価料について、5秒程度の短時間の測定で、非破壊、非接触、高精度で、p−Siの平均粒径を測定し、移動度などを算出して、良品と不良品を短時間に高精度に見分けることができる。そこで、例えば、薄膜トランジスタ、液晶表示装置などの品質管理を短時間に高精度にでき、製造効率を向上できる。
【0039】
また、互いに粒径の異なる複数の標準料を用いることにより、高精度に粒径を測定できる。さらに、平均粒径が約0.3〔μm〕の標準料を用い、あるいは、約0.3〔μm〕と約0.5〔μm〕との標準料を用いることにより、p−SiTFT−LCDで用いられている平均結晶粒径が0.25〜0.45〔μm〕のp−Siを精度良く選定でき、p−Siの製造工程の品質管理に適用することにより、タイムタクトを改善し、製造コストを低減できる。
【0040】
なお、上記の各実施の形態では、標準料について、多結晶シリコンあるいは非晶質シリコンの屈折率の波長依存性および減衰数の波長依存性を比較したが、結晶質シリコンの屈折率の波長依存性および減衰数の波長依存性をあわせて測定することもできる。
【0041】
【発明の効果】
本発明の多結晶半導体膜の検査方法によれば、標準料を形成、測定し、次いで、検査対象となる評価料を形成、測定することにより、光学的な測定結果の定量化が可能になり、非破壊かつ非接触で、短時間に高精度で粒径を測定できる。さらに、多結晶シリコン薄膜をエネルギービームアニール法を用いて形成し、分光エリプソメータを用いて屈折率の波長依存性および減衰数の波長依存性測定することにより、短時間に高精度の粒径の測定が可能になり、例えば、薄膜トランジスタ、液晶表示装置などの品質管理を短時間に高精度にでき、製造効率を向上できる。また、互いに粒径の異なる複数の標準料を用いることにより、高精度に粒径を測定できる。さらに、平均粒径が約0.3〔μm〕の標準料を用い、あるいは、約0.3〔μm〕と約0.5〔μm〕との標準料を用いることにより、平均結晶粒径が0.25〜0.45〔μm〕の多結晶シリコン薄膜を精度良く選定でき、製造効率を向上できる。
【図面の簡単な説明】
【図1】本発明の多結晶半導体膜の検査方法の第1の実施の形態を示す、p−Si(多結晶シリコン)を、0.51,0.08〔μm〕p−Siで表現したときの0.5〔μm〕p−Si成分比率とp−Si平均粒径との関係のグラフである。
【図2】ガラス、SiNx、SiOx、p−Siを積層した構造の屈折率の波長依存性であるk値のSiNx膜厚依存性を示すグラフである。
【図3】ガラス、SiNx、SiOx、p−Siを積層した構造の屈折率の波長依存性であるk値のSiOx膜厚依存性を示すグラフである。
【図4】本発明の多結晶半導体膜の検査方法の第2の実施の形態を示すp−Siを0.34,0.19〔μm〕p−Siで表現したときの0.3〔μm〕p−Si成分比率とp−Si平均粒径との関係のグラフである。
【図5】本発明の多結晶半導体膜の検査方法の第3の実施の形態を示すp−Siを0.34,0.52〔μm〕p−Siおよびa−Siで表現したときの0.3〔μm〕p−Si成分比率とp−Si平均粒径との関係のグラフである。
【図6】p−SiTFTの移動度とp−Siの平均粒径との関係を示すグラフである。
【図7】p−Siをa−Siとc−Siとの混合物として現した場合のp−Siの平均粒径とp−Siの組成比率との関係を示すグラフである。
【図8】p−Siを、a−Si、p−Siおよびc−Siの混合物として現した場合のp−Siの平均粒径とp−Siの組成比率との関係をを示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for inspecting a polycrystalline semiconductor film for measuring the grain size of the polycrystalline semiconductor film.
[0002]
[Prior art]
Polycrystalline silicon (poly-Si) (hereinafter, p-Si) TFT using (Thin Film Transistor) (hereinafter, p-SiTFT) is non AkiraTadashishi silicon (hereinafter, a-Si) was used TFT ( Hereinafter, it has an advantage that the mobility is about 10 to 100 times higher than that of a-Si TFT). Therefore, in a liquid crystal display device (LCD) or the like, not only a p-Si TFT is used as a pixel switching element but also a peripheral drive circuit, and a drive circuit in which a pixel TFT and a drive circuit TFT are simultaneously formed on the same substrate. Research and development of body-type TFT-LCDs are actively conducted. At this time, as shown in FIG. 6, the particle diameter and the mobility of the crystals of p-SiTFT, as the particle size is large, the mobility is high, there is a correlation that, to measure the size of the particle size However, it is a big issue.
[0003]
Conventionally, for the size of the particle diameter of the crystal, after selectively removing the grain boundary by an etching such as Secco etching, by using a scanning electron microscope (FE-SEM) to measure the particle size, or, While the cross section cut along the substrate thickness direction has been performed the observation using a transmission electron microscope (TEM), these methods have a problem that it takes at least 2 hours or more to the observation of the particle size . In addition, although the particle size can be observed with an atomic force microscope (AFM), it has a problem that it takes about 30 minutes for one point of observation and particle size analysis.
[0004]
In this respect, non-destructive and non-contact measurement is possible in a short time, and particle size analysis using a spectroscopic ellipsometer with a measurement time as short as about 5 seconds per point is conceivable, but for p-Si analysis It is difficult to construct an analysis model, that is, it is difficult to quantify the particle size, mobility, and the like. In particular, p-Si produced by the excimer laser annealing (ELA) method has a problem that, depending on the production conditions, irregularities with a film thickness order of, for example, about 50 [nm] appear on the surface, which makes it difficult to quantify. is doing.
[0005]
For example, when a drive circuit integrated TFT-LCD is produced, the average particle size of p-Si is suitably around 0.25 to 0.45 [μm]. This is because when the particle size is less than 0.25 [μm], the mobility is less than 60 [cm 2 / Vs] in an n-channel low-concentration impurity layer thin film transistor (n-chLDD one TFT), and the 12-inch class or more. On the other hand, when a large crystal having a particle size of 0.5 [μm] or more is used, the TFT mobility is high and the current value is too large, so that the TFT deteriorates with time. is there. Therefore, it is desirable that the p-Si of the TFT-LCD integrated with the drive circuit is manufactured to have a particle size in the vicinity of 0.25 to 0.45 [μm]. It was not possible to measure with. For example, with a conventional technique, as shown in FIG. 7, when p-Si is expressed as a mixture of a-Si and c-Si (crystalline silicon), the average particle size of p-Si and p-Si The method using the relationship with the composition ratio, and as shown in FIG. 8, the average particle diameter of p-Si and p when p-Si is expressed as a mixture of a-Si, p-Si and c-Si. -All the methods using the relationship with the composition ratio of Si have the problem that there is no reproducibility in samples with different film thicknesses of plus or minus 5%, and the accuracy that can be used for measuring the particle size cannot be realized. Yes. This is because both the film thickness and film quality are calculated simultaneously as parameters during analysis. That is, if only the film thickness is determined, the film quality is different from that of the actual sample, and further, there is a problem that if the film quality is calculated using the obtained film thickness, it is necessary to calculate the film thickness once again.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional method, in particle size analysis using a spectroscopic ellipsometer, it is difficult to quantify the particle size, mobility, etc., and it is difficult to measure the particle size with high accuracy in a short time. have.
[0007]
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for inspecting a polycrystalline semiconductor film capable of measuring the grain size of the polycrystalline semiconductor film in a short time with high accuracy.
[0008]
[Means for Solving the Problems]
Inspection method of the polycrystalline semiconductor film of the present invention, the optical standard polycrystalline semiconductor film is a specimen was formed, the wavelength dependency of the wavelength dependence and the damping coefficient of the refractive index of the standard specimen in a predetermined way with measured is calculated, the measured particle size, the is an evaluation specimen to be inspected in a predetermined way polycrystalline semiconductor film is formed, the evaluation specimen of wavelength dependence and attenuation coefficient of the refractive index the wavelength dependence optically measured to calculate a standard specimen having a refractive index wavelength dependence and damping coefficient of the wavelength dependence and the evaluation specimen of wavelength dependence and damping coefficient of the wavelength dependence of the refractive index of the compared bets, and calculates the particle size of the evaluation specimen. Then, in this configuration, forming the standard specimen was measured, and then, forming an evaluation specimen to be tested, by measuring, it enables quantification of optical measurement, non-destructive and non-contact Thus, it is possible to measure the particle size with high accuracy in a short time.
[0009]
Furthermore, the polycrystalline silicon thin film was formed by using an energy beam annealing method, by measuring the wavelength dependency and the damping coefficient of the wavelength dependence of the refractive index using a spectroscopic ellipsometer, a high-precision particle size of the short For example, quality control of a thin film transistor, a liquid crystal display device, and the like can be performed with high accuracy in a short time.
[0010]
Also, by using a plurality of different standard specimen particle sizes from each other, it is possible to measure the particle diameter of the high precision.
[0011]
Further, the average particle diameter using a standard specimen of about 0.3 [μm], or by using standard specimen of about 0.3 [μm] and 0.5 [μm], the average crystal grain A polycrystalline silicon thin film having a diameter of 0.25 to 0.45 [μm] is selected with high accuracy, and the manufacturing efficiency is improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a polycrystalline silicon thin film inspection method according to an embodiment of the present invention will be described with reference to the drawings.
[0013]
First, a first embodiment will be described with reference to the graphs of FIGS.
[0014]
An inspection sample to be evaluated, that is, a measurement target in the first embodiment is a SiNx of about 50 [nm], SiOx of about 100 [nm], and p-Si of about 55 [nm] on a glass substrate. This is a method for inspecting p-Si having a structure in which layers are stacked. The p-Si is a film formed by the ELA method.
[0015]
First, at this time, two kinds of standard samples having different average particle diameters and surface irregularities of the p-Si film are prepared. Moreover, it is desirable that these standard samples have the same structure as the inspection sample. In this embodiment, a XeCl excimer laser is applied to a sample having a structure in which about 50 [nm] SiNx, about 100 [nm] SiOx, and about 55 [nm] a-Si are stacked on a glass substrate. The p-Si formed by the ELA method used is used. In this case, for example, the irradiation energy is about 340 [mJ / cm 2 ] and 370 [mJ / cm 2 ] for 26 times, respectively, and the average particle size of p-Si is about 0.51 [μm] and about 0, respectively. 0.08 [μm] and surface irregularities of about 21 [nm] and about 12 [nm], respectively. Here, the grain size of p-Si formed with high irradiation energy is smaller because crystal nuclei formed at the P-Si / SiOx interface are completely melted. Further, these average particle diameter and surface irregularity are confirmed by a scanning electron microscope or the like.
[0016]
Next, the polarization characteristics of these standard samples are measured using a spectroscopic ellipsometer. By analysis of the polarization characteristics, n (refractive index) of each of the p-Si, and calculates the wavelength dependence of k (attenuation coefficient). As a result, the wavelength dependency of n (refractive index) of each standard sample obtained is referred to as n1 (λ), n2 (λ), and the wavelength dependency of k (attenuation coefficient) as k1 (λ) and k2 (λ). Expressed as a function.
[0017]
Next, p-Si whose particle size is to be measured, that is, a test sample in which SiNx of about 50 [nm], SiOx of about 100 [nm], and p-Si of about 55 [nm] are laminated on a glass substrate is ELA. The polarization characteristics are measured using a spectroscopic ellipsometer.
[0018]
In addition, as for the measurement energy range in the case of this measurement, 2.0-5.0 [eV] is desirable. This is because many commercially available devices can measure a range of 1.5 to 5.0 [eV], but the range of 1.5 to 2.0 [eV] is shown in the graph and FIG. This is because, as shown in the graph 3, it has been found that the film is affected by variations in the film thickness of SiOx and SiNx serving as the base of P-Si.
[0019]
The wavelength dependency of the refractive index and the wavelength dependency of the extinction coefficient calculated from the polarization characteristics are expressed by functions k (λ) and n (λ), respectively. The k (λ) and n (λ) are represented by the standard samples n1 (λ), n2 (λ), k1 (λ), and k2 (λ),
k (λ) = a * k1 (λ) + b * k2 (λ)
n (λ) = a * n1 (λ) + b * n2 (λ)
a + b = 1
A and b satisfying are simultaneously determined.
[0020]
FIG. 1 shows the relationship between the particle size of a and the coefficient value of the optical characteristic function of p-Si having a film thickness of about 0.5 [μm]. From the graph of FIG. 1, it can be seen that if the value of a is less than 0.4, it is a microcrystalline region of about 0.08 [μm] that is generated because the irradiation energy is too high. As p-Si for TFT, p-Si having such a small particle diameter is not suitable because of its low mobility. In this way, good products and defective products can be distinguished with high accuracy in a short time.
[0021]
When expressing k (λ) and n (λ) of p-Si, as a third function, k is a function indicating the wavelength dependence of the refractive index of a-Si and the wavelength dependence of the attenuation coefficient. Using a-Si (λ) and n a-Si (λ),
k (λ) = a * k1 (λ) + b * k2 (λ) + c * ka -Si (λ)
n (λ) = a * n1 (λ) + b * n2 (λ) + c * na -Si (λ)
a + b + c = 1
The method is also equivalent in that it uses a p-Si function formed by two types of irradiation energy by the ELA method.
[0022]
Next, a second embodiment will be described with reference to the graph of FIG.
[0023]
The test sample to be evaluated, i.e., the measurement target of the second embodiment, is about 50 [nm] SiNx, about 100 [nm] SiOx, and about 50 [nm] p-Si on a glass substrate. This is a method for inspecting p-Si having a structure in which layers are stacked. The p-Si is a film formed by the ELA method.
[0024]
First, at this time, two kinds of standard samples having different average particle diameters and surface irregularities of the p-Si film are prepared. Moreover, it is desirable that these standard samples have the same structure as the inspection sample. In this embodiment, an XeCl excimer laser is applied to a sample having a structure in which about 50 [nm] SiNx, about 100 [nm] SiOx, and about 50 [nm] a-Si are stacked on a glass substrate. The p-Si formed by the ELA method used is used. In this case, for example, the irradiation energy is about 280 [mJ / cm 2 ] and 310 [mJ / cm 2 ] for 26 times, respectively, and the average particle size of p-Si is about 0.19 [μm] and about 0, respectively. .34 [μm] and surface irregularities are about 29 [nm] and about 52 [nm], respectively. Further, these average particle diameter and surface irregularity are confirmed by a scanning electron microscope or the like.
[0025]
Next, the polarization characteristics of these standard samples are measured using a spectroscopic ellipsometer. By analysis of the polarization characteristics, n (refractive index) of each of the p-Si, and calculates the wavelength dependence of k (attenuation coefficient). As a result, the wavelength dependence of n (refractive index) of each obtained standard sample is referred to as n3 (λ), n4 (λ), and the wavelength dependence of k (attenuation coefficient) is referred to as k3 (λ) and k4 (λ). Expressed as a function.
[0026]
Next, p-Si whose particle size is to be measured, that is, an inspection sample in which about 50 [nm] SiNx, about 100 [nm] SiOx, and about 50 [nm] p-Si are laminated on a glass substrate is ELA. The polarization characteristics are measured using a spectroscopic ellipsometer.
[0027]
The wavelength dependency of the refractive index and the wavelength dependency of the extinction coefficient calculated from the polarization characteristics are expressed by functions k (λ) and n (λ), respectively. These k (λ) and n (λ) are represented by standard samples n3 (λ), n4 (λ), k3 (λ), and k4 (λ),
k (λ) = d * k3 (λ) + e * k4 (λ)
n (λ) = d * n3 (λ) + e * n4 (λ)
d + e = 1
D and e satisfying
[0028]
FIG. 4 shows the relationship between d and the value of the coefficient of the optical characteristic function of p-Si having a film thickness of about 0.3 [μm] and the particle diameter. Then, the graph of FIG. 4 indicates that if the value of e is less than 0.35, the average particle size is 0.10 to 0.24 [μm]. As p-Si for TFT, p-Si having such a small particle diameter is not suitable because of its low mobility. In this way, good products and defective products can be distinguished with high accuracy in a short time.
[0029]
When expressing k (λ) and n (λ) of p-Si, as a third function, k is a function indicating the wavelength dependence of the refractive index of a-Si and the wavelength dependence of the attenuation coefficient. Using a-Si (λ) and n a-Si (λ),
k (λ) = d * k1 (λ) + e * k2 (λ) + f * ka -Si (λ)
n (λ) = d * n1 (λ) + d * n2 (λ) + f * n a-Si (λ)
d + e + f = 1
The method is also equivalent in that it is formed by two types of irradiation energy by the ELA method and uses a p-Si function having a film thickness of about 0.3 [μm].
[0030]
Next, a third embodiment will be described with reference to the graph of FIG.
[0031]
The test sample to be evaluated, i.e., the measurement target of the third embodiment, is a SiNx of about 50 [nm], a SiOx of about 100 [nm], and a p-Si of about 55 [nm] on a glass substrate. This is a method for inspecting p-Si having a structure in which layers are stacked. The p-Si is a film formed by the ELA method.
[0032]
First, at this point, the average particle size of the p-Si film, the surface irregularities to produce two different samples of the standard specimen contact and a-Si standard samples. Moreover, it is desirable that these standard samples have the same structure as the inspection sample. In this embodiment, an XeCl excimer laser is applied to a sample having a structure in which about 50 [nm] SiNx, about 100 [nm] SiOx, and about 50 [nm] a-Si are stacked on a glass substrate. The p-Si formed by the ELA method used is used. In this case, for example, the irradiation energy is about 342 [mJ / cm 2 ] and 305 [mJ / cm 2 ] for 26 times, respectively, and the average particle size of p-Si is about 0.52 [μm] and about 0, respectively. .31 [μm] and surface irregularities are about 22 [nm] and about 53 [nm], respectively. Further, these average particle diameter and surface irregularity are confirmed by a scanning electron microscope or the like. Furthermore, in this embodiment, a sample having a structure in which SiNx of about 50 [nm], SiOx of about 100 [nm], and a-Si of about 55 [nm] is laminated on a glass substrate is prepared.
[0033]
Next, the polarization characteristics of these standard samples are measured using a spectroscopic ellipsometer. By analysis of the polarization characteristics, n (refractive index) of a-Si and the respective p-Si, and calculates the wavelength dependence of k (attenuation coefficient). As a result, n of each standard sample obtained wavelength dependency n a-Si of the (refractive index) (λ), n5 (λ ), n6 (λ), k the wavelength dependence of the (attenuation coefficient) k a -Si (λ), k5 (λ), and k6 (λ).
[0034]
Next, p-Si whose particle size is to be measured, that is, a test sample in which SiNx of about 50 [nm], SiOx of about 100 [nm], and p-Si of about 55 [nm] are laminated on a glass substrate is ELA. The polarization characteristics are measured using a spectroscopic ellipsometer.
[0035]
The wavelength dependency of the refractive index and the wavelength dependency of the extinction coefficient calculated from the polarization characteristics are expressed by functions k (λ) and n (λ), respectively. Then, k (λ) and n (λ) are used as standard samples n a-Si (λ), n5 (λ), n6 (λ), k a-Si (λ), k5 (λ), k6 (λ )
k (λ) = g * k3 (λ) + h * k4 (λ) + i * ka -Si (λ)
n (λ) = g * n3 (λ) + h * n4 (λ) + i * n a-Si (λ)
g + h + i = 1
G, h, and i that satisfy simultaneously are determined.
[0036]
FIG. 5 shows the relationship between the particle size of h, that is, the coefficient value of the optical characteristic function of p-Si having a film thickness of about 0.3 [μm]. The graph of FIG. 5 shows that if the value of h is less than 0.3, the average particle size is 0.25 to 0.45 [μm]. Further, p-Si having such a particle size has a moderately high mobility and is very suitable as p-Si for TFT. In this way, good products and defective products can be distinguished with high accuracy in a short time.
[0037]
When expressing k (λ) and n (λ) of p-Si, as a third function, k is a function indicating the wavelength dependence of the refractive index of a-Si and the wavelength dependence of the attenuation coefficient. Although a-Si (λ) and na -Si (λ) have been introduced, sufficient inspection is possible without using this function. Further, by introducing the fourth function and the fifth function, it is possible to obtain the effect of discriminating the particle diameter having an average of 0.25 to 0.45 [μm].
[0038]
Thus, according to the inspection method of the polycrystalline silicon thin film according to the embodiments, using the measurement of the wavelength dependence of the wavelength dependence and the damping coefficient of the refractive index by spectroscopic ellipsometer, the average particle size evaluation specimen creating and surface irregularities of different standard samples, after measurement, creating an evaluation specimen to be tested, by measuring, it enables quantification of optical measurement, evaluation specimen, approximately 5 seconds By measuring the average particle size of p-Si with non-destructive, non-contact, high-accuracy and calculating mobility etc., it is possible to distinguish between good and defective products in a short time with high accuracy. it can. Therefore, for example, quality control of a thin film transistor, a liquid crystal display device, and the like can be performed with high accuracy in a short time, and manufacturing efficiency can be improved.
[0039]
Also, by using a plurality of different standard specimen particle sizes from each other can be measured particle size with high accuracy. Moreover, using a standard specimen having an average particle size of about 0.3 [μm], or by using about 0.3 [μm] and a standard specimen of approximately 0.5 [μm], p-SiTFT -The p-Si with an average crystal grain size of 0.25 to 0.45 [μm] used in LCD can be selected with high accuracy, and the time tact can be reduced by applying it to the quality control of the manufacturing process of p-Si. Improve and reduce manufacturing costs.
[0040]
In the above embodiments, the standard specimen, polycrystalline silicon, or has been compared the wavelength dependence of the wavelength dependence and the damping coefficient of the refractive index of amorphous silicon, the refractive index of the crystalline silicon It can be measured together the wavelength dependence of the wavelength dependence and the attenuation coefficient.
[0041]
【The invention's effect】
According to the inspection method of the polycrystalline semiconductor film of the present invention, forming the standard specimen was measured, and then, forming an evaluation specimen to be tested, by measuring, enables quantification of the optical measurement results Therefore, the particle size can be measured with high accuracy in a short time without breaking and non-contacting. Furthermore, the polycrystalline silicon thin film was formed by using an energy beam annealing method, by measuring the wavelength dependency and the damping coefficient of the wavelength dependence of the refractive index using a spectroscopic ellipsometer, a high-precision particle size of the short For example, quality control of a thin film transistor, a liquid crystal display device, and the like can be performed with high accuracy in a short time, and manufacturing efficiency can be improved. Also, by using a plurality of different standard specimen particle sizes from each other can be measured particle size with high accuracy. Further, the average particle diameter using a standard specimen of about 0.3 [μm], or by using standard specimen of about 0.3 [μm] and 0.5 [μm], the average crystal grain A polycrystalline silicon thin film having a diameter of 0.25 to 0.45 [μm] can be selected with high accuracy, and manufacturing efficiency can be improved.
[Brief description of the drawings]
FIG. 1 shows p-Si (polycrystalline silicon) in a first embodiment of a method for inspecting a polycrystalline semiconductor film according to the present invention expressed as 0.51, 0.08 [μm] p-Si. It is a graph of the relationship between a 0.5 [micrometer] p-Si component ratio and p-Si average particle diameter.
FIG. 2 is a graph showing the SiNx film thickness dependence of the k value, which is the wavelength dependence of the refractive index of a structure in which glass, SiNx, SiOx, and p-Si are laminated.
FIG. 3 is a graph showing the dependence of the k value on the SiOx film thickness, which is the wavelength dependence of the refractive index of a structure in which glass, SiNx, SiOx, and p-Si are laminated.
FIG. 4 shows 0.3 [μm] when p-Si representing a second embodiment of the method for inspecting a polycrystalline semiconductor film of the present invention is expressed by 0.34, 0.19 [μm] p-Si. ] A graph showing the relationship between the p-Si component ratio and the p-Si average particle diameter.
FIG. 5 shows 0 when p-Si representing the third embodiment of the method for inspecting a polycrystalline semiconductor film of the present invention is expressed by 0.34, 0.52 [μm] p-Si and a-Si. .3 [μm] p-Si component ratio and p-Si average particle size.
FIG. 6 is a graph showing the relationship between the mobility of p-Si TFTs and the average particle diameter of p-Si.
FIG. 7 is a graph showing the relationship between the average particle diameter of p-Si and the composition ratio of p-Si when p-Si is expressed as a mixture of a-Si and c-Si.
FIG. 8 is a graph showing the relationship between the average particle diameter of p-Si and the composition ratio of p-Si when p-Si is expressed as a mixture of a-Si, p-Si and c-Si. .

Claims (5)

所定方法で標準料である多結晶半導体膜を形成する工程と、
この標準料の屈折率の波長依存性および減衰数の波長依存性を光学的に測定し算出するとともに、粒径を測定する工程と、
前記所定方法で検査対象となる評価料である多結晶半導体膜を形成する工程と、
この評価料の屈折率の波長依存性および減衰数の波長依存性を光学的に測定し算出する工程と、
前記標準料の屈折率の波長依存性および減衰数の波長依存性と前記評価料の屈折率の波長依存性および減衰数の波長依存性とを比較して、前記評価料の粒径を算出する工程と
を備えたことを特徴とする多結晶半導体膜の検査方法。
Forming a polycrystalline semiconductor film, which is a standard specimen in a predetermined way,
The wavelength dependence of the attenuation coefficient and the wavelength dependence of the refractive index of the standard specimen as well as measures calculated optically, measuring a particle size,
Forming said an evaluation specimen to be inspected in a predetermined way polycrystalline semiconductor film,
A step of the evaluation specimen of refractive index wavelength dependence and damping coefficient of the wavelength dependency of the optically measured calculated,
By comparing the standard specimen in the refractive index of the wavelength dependence and the damping coefficient of the wavelength dependence and the evaluation specimen of refractive index wavelength dependence of wavelength dependence and attenuation coefficient of the evaluation specimen A method for inspecting a polycrystalline semiconductor film, comprising: a step of calculating a grain size.
多結晶半導体膜は、多結晶シリコン薄膜であり、
この多結晶シリコン薄膜の形成には、エネルギービームアニール法を用い、
屈折率の波長依存性および減衰数の波長依存性の測定には、分光エリプソメータを用いる
ことを特徴とする請求項1記載の多結晶半導体膜の検査方法。
The polycrystalline semiconductor film is a polycrystalline silicon thin film,
For the formation of this polycrystalline silicon thin film, an energy beam annealing method is used,
For the measurement of the wavelength dependence of the wavelength dependence and the damping coefficient of the refractive index, the inspection method of the polycrystalline semiconductor film according to claim 1, characterized by using a spectroscopic ellipsometer.
互いに粒径の異なる複数の標準料を用いる
ことを特徴とする請求項1または2記載の多結晶半導体膜の検査方法。
Inspection method of the polycrystalline semiconductor film of claim 1, wherein the use of different standard specimen particle sizes from each other.
平均粒径が約0.3〔μm〕の標準料を用いる
ことを特徴とする請求項1ないし3いずれか記載の多結晶半導体膜の検査方法。
Inspection method of the polycrystalline semiconductor film according to any one of claims 1 to 3 mean particle size is characterized by using a standard specimen of about 0.3 [μm].
平均粒径が約0.3〔μm〕の標準料および平均粒径が約0.5〔μm〕の標準料を用いる
ことを特徴とする請求項1ないし4いずれか記載の多結晶半導体膜の検査方法。
Claims 1, characterized by using a standard specimen of the standard specimen and the average particle size of about 0.5 with an average particle size of about 0.3 [μm] [μm] 4 polycrystalline semiconductor according to any one Membrane inspection method.
JP26067297A 1997-09-25 1997-09-25 Inspection method of polycrystalline semiconductor film Expired - Fee Related JP3810903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26067297A JP3810903B2 (en) 1997-09-25 1997-09-25 Inspection method of polycrystalline semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26067297A JP3810903B2 (en) 1997-09-25 1997-09-25 Inspection method of polycrystalline semiconductor film

Publications (2)

Publication Number Publication Date
JPH11101742A JPH11101742A (en) 1999-04-13
JP3810903B2 true JP3810903B2 (en) 2006-08-16

Family

ID=17351175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26067297A Expired - Fee Related JP3810903B2 (en) 1997-09-25 1997-09-25 Inspection method of polycrystalline semiconductor film

Country Status (1)

Country Link
JP (1) JP3810903B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522263B2 (en) 2005-12-27 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and method

Also Published As

Publication number Publication date
JPH11101742A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US8976369B2 (en) Method for evaluating thin-film-formed wafer
JP4135347B2 (en) Method for producing polysilicon film
US7838309B1 (en) Measurement and control of strained devices
CN104011499B (en) Film thickness distribution assay method
CN113167744B (en) Scattering measurement-based method and system for strain measurement in semiconductor structures
KR100308244B1 (en) Method for testing poly-semicon ductor film and apparatus thereof
TW577135B (en) Die size control for polysilicon film and the inspection method thereof
US6803240B1 (en) Method of measuring crystal defects in thin Si/SiGe bilayers
JP3810903B2 (en) Inspection method of polycrystalline semiconductor film
JP3037922B2 (en) Method for evaluating silicon-containing layer and method for controlling process of forming silicide layer
Belyansky et al. Strain characterization: techniques and applications.
DE102006062036B4 (en) Evaluation of mechanical stresses in microstructure devices in the process line
RU2531081C1 (en) Method of measurement for control of hydrogen in solid-state material
JPH0318744A (en) Method for measuring crystal strain of semiconductor
KR20080002483A (en) Mehtod for detecting defect of soi wafer
Ebersbach et al. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry
Kuo et al. A Low Cost Optical Inspection System for Rapid Measurement of Surface Roughness of Polycrystalline Silicone Fabricated by Frontside and Backside Excimer Laser Crystallization.
JPS61272636A (en) Measuring method for si crystalline property
Benatmane et al. Phase stepping microscopy for rapid control of laser crystallization of Si for flat panel display applications
Kuo Rapid determination of surface roughness of polycrystalline silicon following frontside and backside excimer laser irradiation
Hovel Electrical and optical characterisation of SIMOX substrates
JPH09264801A (en) Method for measuring stress/strain
JPH04111337A (en) Method for measuring concentration distribution in impurity layer formed on surface of semiconductor
Hattori Challenges of Smaller Particle Detection on Both Bulk‐Silicon and SOI Wafers
Boher et al. Characterization of laser-annealed polysilicon by spectroscopic ellipsometry and comparison to other techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees