JP3810749B2 - Shape measuring device - Google Patents

Shape measuring device Download PDF

Info

Publication number
JP3810749B2
JP3810749B2 JP2003068687A JP2003068687A JP3810749B2 JP 3810749 B2 JP3810749 B2 JP 3810749B2 JP 2003068687 A JP2003068687 A JP 2003068687A JP 2003068687 A JP2003068687 A JP 2003068687A JP 3810749 B2 JP3810749 B2 JP 3810749B2
Authority
JP
Japan
Prior art keywords
light beam
measured
position sensor
mirror
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003068687A
Other languages
Japanese (ja)
Other versions
JP2004279132A (en
Inventor
亮 篠▲ざき▼
哲也 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CORE SYSTEM CORPORATION
Original Assignee
CORE SYSTEM CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CORE SYSTEM CORPORATION filed Critical CORE SYSTEM CORPORATION
Priority to JP2003068687A priority Critical patent/JP3810749B2/en
Publication of JP2004279132A publication Critical patent/JP2004279132A/en
Application granted granted Critical
Publication of JP3810749B2 publication Critical patent/JP3810749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被測定面の形状を測定する形状測定装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
比較的鏡面に近く、且つ、起伏の少ない面形状を測定する方法として、被測定面の傾斜角度を測定し、得られた傾斜角度を積分することにより面形状を得る方法が広く用いられている。
【0003】
この方法を用いた従来の形状測定装置としては、例えば特開平8−261734号公報に開示されているようなものがあり、この従来の形状測定装置は、平行光束を変位させる手段とアフォーカル系をなす小口径のレンズと大口径のレンズとにより光束を被測定面上で走査する走査光学系を構成し、光束の走査方向の傾斜角度を測定するものである。
【0004】
ところが、正確な傾斜角度を測定するには、上記の小口径のレンズと大口径のレンズとに光源の波長に応じた数種の光学補正を施したり、このレンズを無色にしたりする必要があり、このような複数枚の特注レンズを用いて構成した走査光学系は、複雑且つ高価となってしまい形状測定装置が高価となる原因となっていたのが現状である。
【0005】
また,単に断面形状を得る方法として、触針式あるいは光触針式が広く利用されているが、この場合には測定に時間がかかるという欠点がある。
【0006】
本発明は、上述のような現状に鑑み、光源から放射される光束を光束変向手段により実時間で変向し、この光束変向手段により変向した光束が、一若しくは複数の平面ミラーで反射して被測定面と対向状態に設けた凹面ミラーを介して前記被測定面に入射すると共に、光束変向手段により変向角度を変化させることで前記被測定面上を走査し得るように走査光学系を構成し、前記光束変向手段と位置センサとは夫々前記平面ミラー若しくは被測定面を介して互いに凹面ミラーの共役点に設けることで、走査光学系に高価なレンズを用いることなく、レンズを用いた場合と同様に高速に被測定面の面形状を測定できるコスト安にして極めて実用性に秀れた形状測定装置を提供するものである。
【0007】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0008】
光源1から放射される光束を走査光学系を介して被測定面9に入射させ、この被測定面9により反射された前記光束を位置センサ6で確知して傾斜分布を測定し、得られた傾斜分布を演算装置2で積分することにより被測定面9の形状を求める形状測定装置であって、光源1から放射される光束を光束変向手段3により実時間で変向し、この光束変向手段3により変向した光束が、一若しくは複数の平面ミラー5で反射して前記被測定面9と対向状態に設けた凹面ミラー4を介して前記被測定面9に入射すると共に、光束変向手段3により変向角度を変化させることで前記被測定面9上を走査し得るように前記走査光学系を構成し、前記光束変向手段3と位置センサ6とは夫々前記平面ミラー5若しくは被測定面9を介して互いに凹面ミラー4の共役点に設けたことを特徴とする形状測定装置に係るものである。
【0009】
また、光源1から放射される光束を走査光学系を介して被測定面9に入射させ、この被測定面9により反射された前記光束を位置センサ6で確知して傾斜分布を測定し、得られた傾斜分布を演算装置2で積分することにより被測定面9の形状を求める形状測定装置であって、光源1から放射される光束を光束変向手段3により実時間で変向し、この光束変向手段3により変向した光束が、一若しくは複数の平面ミラー5で反射して前記被測定面9と対向状態に設けた凹面ミラー4を介して前記被測定面9に入射すると共に、光束変向手段3により変向角度を変化させることで前記被測定面9上を走査し得るように前記走査光学系を構成し、前記光束変向手段3を前記平面ミラー5を介して凹面ミラー4の一方の共役点に設け、この凹面ミラー4の他方の共役点を一方の共役点とするように設けられたレンズ8の他方の共役点に前記位置センサ6を前記被測定面9を介して設けたことを特徴とする形状測定装置に係るものである。
【0010】
また、前記凹面ミラー4を凹球面ミラーとし、この凹球面ミラーの曲率中心に前記光束変向手段3を配設し得るように、前記凹面ミラー4と一若しくは複数の平面ミラー5及び被測定面9とを配設したことを特徴とする請求項1,2のいずれか1項に記載の形状測定装置に係るものである。
【0011】
また、被測定面9で反射した光束を光束変向手段3で反射することで光源1に向かう光束を変向させ、その光束を位置センサ6に入射させるように構成したことを特徴とする請求項1〜3のいずれか1項に記載の形状測定装置に係るものである。
【0012】
【発明の実施の形態】
光源から放射される光束は、光束変向手段3により変向されて平面ミラー5で反射され、被測定面9と対向状態に設けた凹面ミラー4に入射し、この凹面ミラー4で反射されてこの凹面ミラー4と対向する被測定面9に入射する。
【0013】
この被測定面9で反射された光束を位置センサ6で確知して前記被測定面9の傾斜分布を求める。
【0014】
具体的には、前記光束変向手段3と位置センサ6とは夫々前記平面ミラー5若しくは被測定面9を介して互いに凹面ミラー4の共役点に設けているから、一方の共役点にある光束変向手段3の変向角度を変化させ、光束を被測定面9上で走査しても前記被測定面9が平坦であれば、この被測定面9で反射された光束は他方の共役点に収束する。
【0015】
即ち、前記被測定面9に平面ミラー5を設置した場合に前記位置センサ6に入射する光束のスポット位置を基準点とし、被測定面9により反射された光束のスポット位置と、前記基準点との差を前記光束を被測定面9上で走査しながら測定することで、前記被測定面9の傾斜分布を求めることができ、この傾斜分布を演算装置2で積分することにより被測定面9の形状を求めることができる。
【0016】
従って、安価な凹面ミラー4と平面ミラー5とを組み合わせた走査光学系を用いて、高価なレンズを用いて構成した走査光学系と同様にして前記被測定面9の形状を測定できることになる。
【0017】
また、例えば、前記凹面ミラー4のいずれかの共役点と、一方の共役点とが重なるように設けられたレンズ8の他方の共役点に前記位置センサ6を設けた場合には、前記凹面ミラー4の共役点に前記位置センサ6を配置できない場合であっても、レンズ8を利用して上述と同様に被測定面9の傾斜分布を測定できることになり、前記位置センサ6の取り付け位置を変更できることになり、測定感度を調節する目的で、このレンズを利用することもできる。
【0018】
また、例えば、前記凹面ミラー4を凹球面ミラーとし、この凹球面ミラーの曲率中心に光束変向手段3を配設できるように、前記凹面ミラー4と一若しくは複数の平面ミラー5及び被測定面9とを配設した場合には、前記一若しくは複数の平面ミラー5又は被測定面9から前記光束変向手段3に入射した光束の反射方向は、光束変向手段3の変向角度にかかわらず一定となる。
【0019】
即ち、一若しくは複数の平面ミラー5又は被測定面9から光束変向手段3に入射した光束の反射方向の直線上は、すべての点において凹面ミラー4の共役距離となるので、位置センサ6をその直線上に必要な測定感度に応じて配置できることになる。
【0020】
また、例えば、被測定面9で反射した光束を光束変向手段3で反射することで、光源1に向かう光束を変向させ、その光束を位置センサ6に入射させるように構成した場合には、一若しくは複数の平面ミラー5又は被測定面9からの光束が光束変向手段3で反射して光源1から放射された光束に接近して上述のレンズ8を用いても位置センサ6を配置できないような場合であっても、前記位置センサ6に測定に必要な光束だけを入射させることができることになる。
【0021】
従って、本発明は、走査光学系に高価なレンズを用いることなく、レンズを用いた場合と同様に高速に被測定面の面形状を測定できるコスト安にして極めて実用性に秀れた形状測定装置となる。
【0022】
【実施例】
図1,2,6は本発明の第一実施例、図3〜5は本発明の第二実施例を図示したものであり、以下に説明する。
【0023】
第一実施例は、光源1から放射される光束を走査光学系を介して被測定面9に入射させ、この被測定面9により反射された前記光束を位置センサ6で確知して傾斜分布を測定し、得られた傾斜分布を演算装置2で積分することにより被測定面9の形状を求める形状測定装置であって、光源1から放射される光束を光束変向手段3により実時間で変向し、この光束変向手段3により変向した光束が、一若しくは複数の平面ミラー5で反射して前記被測定面9と対向状態に設けた凹面ミラー4を介して前記被測定面9に入射すると共に、光束変向手段3により変向角度を変化させることで前記被測定面9上を走査し得るように前記走査光学系を構成し、前記光束変向手段3と位置センサ6とは夫々前記平面ミラー5若しくは被測定面9を介して互いに凹面ミラー4の共役点に設けたものである。
【0024】
光源1は、所定の光束を放射する光源であり、気体または半導体レーザ等の単色光源若しくはLED等の白色光源と、光束を被測定面9上で測定の目的に応じた径にするためのフォーカスレンズとを組み合わせたものを採用している。
【0025】
光束変向手段3は、光源1より放射された光束を実時間で変向させる手段であり、光束を被測定面9上でほぼ一定速度で走査させるために一定の変向角速度で光源より放射された光束を変向させるものである。
【0026】
具体的には、モータの回転軸に取り付けられた平面ミラー,ハーフミラー,ポリゴンミラーや,ガルバノスキャナ等が好適であり、第一実施例においてはハーフミラーを採用している。
【0027】
平面ミラー5は、光束変向手段3で反射した光束を凹面ミラー4に入射させるべく、この光束を変向させたり、凹面ミラー4で反射した光束を位置センサ6に入射させるべく、この光束を変向させるものである。
【0028】
凹面ミラー4は、一若しくは複数の平面ミラー5で反射した光束を被測定面9に入射させるべくこの光束を変向させたり、被測定面9で反射した光束を光束変向手段に入射させるべくこの光束を変向させるものである。
【0029】
この凹面ミラー4には、凹球面ミラーや楕円体凹面ミラーが好適であり、本実施例においては凹球面ミラーを採用している。
【0030】
位置センサ6は、凹面ミラー4はCCD素子,PSD,フォトダイオードアレイが好適であり、第一実施例においてはCCD素子を採用しているが、市販の光位置検出センサを採用しても良い。
【0031】
演算手段2は、位置センサ6で得られた信号に対し所定の演算を行う手段であり、具体的には以下のような処理をするものである。
【0032】
被測定面9上における光束の走査方向をx軸に取り、x軸方向の被測定面9の高さをz=z(x)とすると、
【数1】

Figure 0003810749
である。ここでθ(x)は、被測定面9上の光束走査方向の座標xにおける被測定面9の傾斜である。第一実施例において傾斜分布はθ(x)を指す。
【0033】
もし、被測定面9が起伏の少ない滑らかな面であれば、θ≪1とできるので、このとき、
【数2】
Figure 0003810749
である。従って、θ(x)の積分
【数3】
Figure 0003810749
を実行すれば、光束走査方向の面形状を得ることができる。
【0034】
傾斜分布θ(x)は位置センサ6に入射する光束のスポット位置によって得る。
【0035】
位置センサ6は、被測定面9が完全な平坦ならば、もう一方の共役距離に配置された光束変向手段3が実時間で光束の方向を変化させても、位置センサ6に入射する光束のスポット位置は変化しない。
【0036】
被測定面が傾斜分布θ(x)を持てば、被測定面9に入射する光束は、座標xで平坦面における反射方向から2θ(x)異なる方向へ反射する。
【0037】
よって、被測定面9と位置センサ6の距離をL、位置センサ6の受光面における入射光束スポットの受光面中心からの位置をΔ(x)とすると、θ≪1のとき、Δ(x)=2θ(x)Lの関係がある。従って、位置センサ6によって得られたΔ(x)から、傾斜分布θ(x)を知ることができ、結局、
【数4】
Figure 0003810749
を数値的に実行することにより、被測定面9の形状が得られる。
【0038】
第一実施例を更に具体的に図面に基づいて説明する。
【0039】
図1の光学系は、光源1と、光束変向手段3と、凹面ミラー4と、光束分離手段7と、位置センサ6とから成るものであり、凹面ミラー4は凹球面ミラーとし、光束変向手段3の光束変向中心Sが凹球面ミラーの曲率中心に配置されるとし、そのため、光源1より放射された光束は光束変向手段3の光束変向中心Sに入射する。
【0040】
このとき、光束変向中心Sで反射した光束は、光束変向手段3の光束変向角度にかかわらず、凹面ミラー4のミラー面Mに垂直に入射し、その光束は入射光束の方向へ正確に反射し、再び光束変向中心Sで反射し光源1の光束出射口へ向かう。
【0041】
光源1と光束変向手段3との間に、ハーフミラー等で構成される光束分離手段7を挿入し、光束変向中心Sから光源1へ向かう光束を分離し、位置センサ6に入射させたとき、光束変向手段3の光束変向角度にかかわらず、位置センサ6の受光面上のスポットは変位しないはずである。
【0042】
第一実施例は、図1の光学系の光束変向手段3と凹面ミラー4との中間に、平面ミラー5と被測定面9を挿入し、折りたたんだ構成(図2参照)をとる。具体的には、前記凹面ミラー4を凹球面ミラーとし、この凹球面ミラーの曲率中心に光束変向手段3を配設し得るように、前記凹面ミラー4と一若しくは複数の平面ミラー5及び被測定面9とを配設し、前記被測定面9を有する対象物を載置する測定ステージ10を設け、前記演算手段2を行う演算制御装置11を位置センサ6と連動させるように構成した構成である。尚、図中符号12は表示装置である。
【0043】
また、凹面ミラー4と平面ミラー5及び被測定面9の配置は、光路S1−R−MとM−Q−S2の長さが共に凹面ミラー4の曲率半径に等しくなるように行われる。このとき、凹面ミラー4は無収差となる。
【0044】
このとき、被測定面9の傾斜分布は、位置センサ6の受光面上の光束スポット位置の変化となって現れる。
【0045】
光源1より放射された光束は、光束変向手段3上の点S1に入射する。点S1で反射した光束は、平面ミラー5上の点Rで反射し、凹面ミラー4上の点Mに入射する。続いて、点Mで反射した光束は、被測定面9上の点Qで反射し、光束変向手段3上の点S2で反射し、位置センサ6に入射する。
【0046】
測定は、光束変向手段3の光束変向角を実時間で連続的に変化させることにより、光束を被測定面9上で走査させ行われる。1回の光束走査で、光束走査範囲の1つの断面形状を得る。
【0047】
この光束走査範囲は、平面ミラー5の光束走査方向の長さと、凹面ミラー4の光束走査方向の長さで決まる。これは、光束変向角が大きいと平面ミラー5若しくは凹面ミラー4から光束がはみ出てしまうからである。
【0048】
被測定面9が平坦のとき、光束変向手段3の光束変向角にかかわらず、光束変向手段3上の点S2の反射光束方向と、光源1の出射光束の方向を平行にできる。
【0049】
従って、位置センサ6は、点S2の反射光束方向ならばどこに配置しても良く、被測定面9が平坦のとき、受光面上のある点Pに光束のスポットがあるとすると、そのスポットは点Pより変位しない。
【0050】
被測定面9がある傾斜分布を持っており、被測定面9上の点Qで傾斜がθだとすると、位置センサ6の受光面上の光束スポット位置が点PからΔ=Ltan(2θ)だけ変位した点P’に移動する。ここでLは光路Q−S2−Pの長さである。
【0051】
光路長Lは、光束変向手段3の光束変向角により変化する。仮に、光束変向手段3上の点S2から被測定面9に下ろした垂線と被測定面9の交わる点までの距離をlとし、その垂線の方向で光束変向手段3の光束変向角φがφ=0となるように選ぶと(図6参照)、光路S2−Pの長さをl5とすれば、L=lcosφ+l5である。この補正は、演算制御装置11で行われるが、被測定面9上の光束走査範囲が、光束変向手段3と被測定面9間の光路Q−S2の長さに比べ小さければφ≪1でcosφ≒1とできるので、このとき光路長Lは一定であるとして良い。また、θ≪1ならば、位置センサ6の受光面上の光束スポット位置変位Δは、Δ=2θLで与えられる。この式より、測定感度は光路長Lに依存することがわかる。
【0052】
先に説明したとおり、位置センサ6は、点S2の反射光束方向ならばどこに配置しても良いので、光路長Lは必要な感度に応じて自由に決められる。
【0053】
位置センサ6により測定した変位は、演算制御装置11により数値積分され、被測定面9の断面形状が得られる。この数値積分開始の指令は、光束変向手段3より演算制御装置11に与えられ、光束変向手段3が所定の角度だけ回転すると数値積分が終了し、1つの断面形状が得られる。
【0054】
1つの断面形状を得るのにかかる時間は、光束変向手段3の回転数を1000rpmとし、被測定面9と光束変向手段3の距離を200mm、測定範囲を20mmとすると、約0.3msecと非常に高速である。
【0055】
この測定時間は光束変向手段3と位置センサ6と演算制御装置11の能力により、短くすることが可能である。1つの断面形状が得られると、演算制御装置11が測定ステージ10を光束走査方向と垂直の方向に移動させる。
【0056】
これを繰り返すことにより、被測定面9の形状が得られる。測定結果は表示装置12により可視化される。
【0057】
また、位置センサ6を2次元の位置センサとすれば、光束走査方向と垂直方向の被測定面9の面倒れ角を得られるので、演算制御装置11により測定ステージ10を制御し、被測定面9を所定の位置に定めることができる。
【0058】
第二実施例について説明すると図3と図4は、光源1から放射される光束を走査光学系を介して被測定面9に入射させ、この被測定面9により反射された前記光束を位置センサ6で確知して傾斜分布を測定し、得られた傾斜分布を演算装置2で積分することにより被測定面9の形状を求める形状測定装置であって、光源1から放射される光束を光束変向手段3により実時間で変向し、この光束変向手段3により変向した光束を、一若しくは複数の平面ミラー5で反射して前記被測定面9と対向状態に設けた凹面ミラー4を介して前記被測定面9に入射すると共に、光束変向手段3により変向角度を変化させることで被測定面9上を走査し得るように前記走査光学系を構成し、前記光束変向手段3を前記平面ミラー5を介して凹面ミラー4の一方の共役点に設け、前記凹面ミラー4の他方の共役点を一方の共役点とするように設けられたレンズ8の他方の共役点に前記位置センサ6を被測定面9を設けると共に、この被測定面9で反射した光束を光束変向手段3で反射することで、光源1に向かう光束を変向させ、その光束を位置センサ6に入射させるように構成したものである。尚、図4は図3の側面図である。
【0059】
被測定面9が大きいとき、第一実施例(図2の構成)では平面ミラー5が障害となり、被測定面9上の任意の個所を測定できない。この障害を取り除くために平面ミラー5を複数の平面ミラー5で構成する方法があるが、第二実施例は平面ミラー5と被測定面9の位置を図2の位置からずらし、光束変向手段3からの距離を異ならせる方法を用いたものである。
【0060】
即ち、光束変向手段3と位置センサ6は、それぞれ平面ミラー5と被測定面9を介して凹面ミラー4の共役距離に配置すればよいが(第一実施例)、図3と図4では位置センサ6を凹面ミラー4の共役点に配置できないときの構成を示しており、図3と図4の位置センサ6は、レンズ8の一方の共役距離に配置され、凹面ミラー4の一方の共役距離が光束分離手段7を介してレンズ8の他方の共役点となっている。
【0061】
光源1より放射された光束は、光束変向手段3上の点S1に入射する。点S1で反射した光束は、平面ミラー5上の点Rで反射し、凹面ミラー4上の点Mに入射する。続いて、点Mで反射した光束は、被測定面9上の点Qで反射し、光束変向手段3上の点S2で反射し、光束分離手段7上の点Bで方向を変えられ、レンズ8を経て位置センサ6に入射する。
【0062】
ここで仮に、凹面ミラー4の共役点が光束変向手段3上の点S1及びS2となるように光学系を構成したとすると、光路S1−R−MとM−Q−S2の長さは図2の場合と異なり等しくないが、その長さは凹面ミラー4の共役距離となる。
【0063】
また、レンズ8の中心点をZ、位置センサ6の受光面とレンズ8の光軸の交わる点をPとし、平坦な被測定面9を測定したとき位置センサ6の受光面上の点Pに光束が入射するように構成したとき、光路S2−B−Zの長さl1と光路Z−Pの長さl2はレンズ8の共役距離であり、レンズ8の倍率mはm=l2/l1である。
【0064】
上記の光学系で、被測定面9上の点Qの傾斜がθのとき、光路Q−S2の長さをLとして、凹面ミラー4の共役点S2における光束の変位は2θLである。
【0065】
従って、位置センサ6の受光面上における光束スポットの変位は、レンズ8の効果により、Δ=2mθLとなる。
【0066】
光路S1−R−Mの長さl3とM−Q−S2の長さl4が等しくなく、且つ凹面ミラー4が凹球面ミラーのとき、収差のためにΔに対して最低次で(d/r)2φ3の誤差を生ずる。ここでは、dはd=l3−l4,rは球凹面ミラーの曲率半径,φは光束変向手段3の光束変向角である(図6参照)。
【0067】
この誤差は、オプティカルフラット等の基準器であらかじめ測定し取り除くか、凹面ミラー4を楕円体凹面ミラーとすれば収差を生じない。
【0068】
その余は第一実施例と同様である。
【0069】
また、図5は、図3及び図4とは異なり、位置センサ6を被測定面9を介して凹面ミラー4の一方の共役距離に配置した第二実施例の別例である。このときの光束変向手段3は、ハーフミラーと回転するモータ,若しくはガルバノスキャナモータを組み合わせて利用する。被測定面9の面形状を得る方法は前述と同様である。
【0070】
【発明の効果】
本発明は上述のように構成したから、走査光学系に高価なレンズを用いることなく、レンズを用いた場合と同様に高速に被測定面の面形状を測定できる極めて実用性に秀れた形状測定装置となる。
【0071】
また、請求項2,3に記載の発明においては、位置センサの取り付け位置をより柔軟に変更することができる一層実用性に秀れたものとなる。
【0072】
また、請求項4に記載の発明においては、測定に必要な光束だけを位置センサに入射させることができるより一層実用性に秀れたものとなる。
【図面の簡単な説明】
【図1】第一実施例の概略説明図である。
【図2】第一実施例の説明斜視図である。
【図3】第二実施例の説明斜視図である。
【図4】第二実施例の説明側面図である。
【図5】第二実施例の別例の説明側面図である。
【図6】第一実施例の概略説明図である。
【符号の説明】
1 光源
2 演算装置
3 光束変向手段
4 凹面ミラー
5 平面ミラー
6 位置センサ
8 レンズ
9 被測定面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shape measuring apparatus for measuring the shape of a surface to be measured.
[0002]
[Prior art and problems to be solved by the invention]
As a method for measuring a surface shape that is relatively close to a mirror surface and has few undulations, a method is widely used in which the surface shape is obtained by measuring the inclination angle of the surface to be measured and integrating the obtained inclination angle. .
[0003]
A conventional shape measuring apparatus using this method is disclosed in, for example, Japanese Patent Laid-Open No. 8-261734. This conventional shape measuring apparatus includes a means for displacing a parallel light beam and an afocal system. A small-diameter lens and a large-diameter lens that form a scanning optical system that scans the light beam on the surface to be measured and measures the tilt angle of the light beam in the scanning direction.
[0004]
However, in order to accurately measure the tilt angle, it is necessary to apply several types of optical correction according to the wavelength of the light source to the above-mentioned small-diameter lens and large-diameter lens, or to make this lens colorless. The present situation is that the scanning optical system configured by using such a plurality of custom lenses is complicated and expensive, which causes the shape measuring apparatus to be expensive.
[0005]
In addition, a stylus type or an optical stylus type is widely used as a method for simply obtaining a cross-sectional shape, but in this case, there is a drawback that it takes time for measurement.
[0006]
In view of the present situation as described above, the present invention changes the light beam emitted from the light source in real time by the light beam turning means, and the light beam changed by the light beam turning means is one or more plane mirrors. The light is incident on the surface to be measured through a concave mirror that is reflected and provided opposite to the surface to be measured, and the surface to be measured can be scanned by changing the turning angle by the light beam turning means. A scanning optical system is configured, and the light beam redirecting means and the position sensor are provided at the conjugate point of the concave mirror with respect to each other via the plane mirror or the surface to be measured without using an expensive lens in the scanning optical system. Thus, the present invention provides a shape measuring apparatus that is excellent in practicality at a low cost, capable of measuring the surface shape of the surface to be measured at high speed as in the case of using a lens.
[0007]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0008]
The light beam emitted from the light source 1 is incident on the surface to be measured 9 through the scanning optical system, and the light beam reflected by the surface to be measured 9 is recognized by the position sensor 6 to measure the inclination distribution. A shape measuring device that obtains the shape of the surface to be measured 9 by integrating the slope distribution with the arithmetic device 2, and the light beam emitted from the light source 1 is redirected in real time by the light beam diverting means 3, and The light beam redirected by the directing means 3 is reflected by one or a plurality of plane mirrors 5 and is incident on the measured surface 9 via the concave mirror 4 provided in a state of facing the measured surface 9. The scanning optical system is configured such that the surface to be measured 9 can be scanned by changing the direction of deflection by the direction unit 3, and the beam direction unit 3 and the position sensor 6 are respectively the plane mirror 5 or Concave mirrors with each other via the surface to be measured 9 By providing the conjugate point in which according to the shape measuring apparatus according to claim.
[0009]
Further, the light beam emitted from the light source 1 is incident on the surface to be measured 9 through the scanning optical system, and the light beam reflected by the surface to be measured 9 is recognized by the position sensor 6 to measure the inclination distribution. A shape measuring device that obtains the shape of the surface 9 to be measured by integrating the obtained slope distribution by the arithmetic device 2, and changes the light beam emitted from the light source 1 in real time by the light beam diverting means 3. The light beam redirected by the light beam redirecting means 3 is reflected by one or a plurality of plane mirrors 5 and enters the measured surface 9 via the concave mirror 4 provided in a state of facing the measured surface 9. The scanning optical system is configured so that the measurement target surface 9 can be scanned by changing the turning angle by the light beam turning means 3, and the light beam turning means 3 is connected to the concave mirror via the plane mirror 5. This concave mirror is provided at one conjugate point of 4 According to the shape measuring apparatus, the position sensor 6 is provided via the surface to be measured 9 at the other conjugate point of the lens 8 provided so that the other conjugate point is the one conjugate point. Is.
[0010]
The concave mirror 4 is a concave spherical mirror, and the concave mirror 4 and one or a plurality of plane mirrors 5 and the surface to be measured are arranged so that the light beam redirecting means 3 can be disposed at the center of curvature of the concave spherical mirror. 9. The shape measuring device according to claim 1, wherein the shape measuring device is provided.
[0011]
Further, the light beam reflected by the surface to be measured 9 is reflected by the light beam redirecting means 3 so that the light beam directed to the light source 1 is redirected, and the light beam is incident on the position sensor 6. It concerns on the shape measuring apparatus of any one of claim | item 1-3.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The light beam emitted from the light source is redirected by the light beam redirecting means 3, reflected by the plane mirror 5, incident on the concave mirror 4 provided opposite to the measured surface 9, and reflected by the concave mirror 4. The light enters the surface 9 to be measured facing the concave mirror 4.
[0013]
The light beam reflected by the surface to be measured 9 is ascertained by the position sensor 6 and the inclination distribution of the surface to be measured 9 is obtained.
[0014]
Specifically, since the light beam redirecting means 3 and the position sensor 6 are provided at the conjugate point of the concave mirror 4 with respect to each other via the plane mirror 5 or the measured surface 9, the light beam at one conjugate point. If the measured surface 9 is flat even if the deflection angle of the deflecting means 3 is changed and the light beam is scanned on the measured surface 9, the reflected light beam from the measured surface 9 is the other conjugate point. Converge to.
[0015]
That is, when the plane mirror 5 is installed on the measured surface 9, the spot position of the light beam incident on the position sensor 6 is used as a reference point, the spot position of the light beam reflected by the measured surface 9, and the reference point Is measured while scanning the light flux on the surface 9 to be measured, and the inclination distribution of the surface 9 to be measured can be obtained. Can be obtained.
[0016]
Therefore, the shape of the surface to be measured 9 can be measured using a scanning optical system in which an inexpensive concave mirror 4 and a plane mirror 5 are combined in the same manner as a scanning optical system configured using an expensive lens.
[0017]
For example, when the position sensor 6 is provided at the other conjugate point of the lens 8 provided so that one of the conjugate points of the concave mirror 4 and one conjugate point overlap, the concave mirror Even when the position sensor 6 cannot be arranged at the conjugate point 4, the inclination distribution of the measured surface 9 can be measured using the lens 8 in the same manner as described above, and the mounting position of the position sensor 6 is changed. This lens can be used for the purpose of adjusting the measurement sensitivity.
[0018]
Further, for example, the concave mirror 4 is a concave spherical mirror, and the concave mirror 4 and one or a plurality of plane mirrors 5 and the surface to be measured are arranged so that the light beam redirecting means 3 can be disposed at the center of curvature of the concave spherical mirror. 9 is arranged, the reflection direction of the light beam incident on the light beam diverting means 3 from the one or plural plane mirrors 5 or the measured surface 9 depends on the diversion angle of the light beam diverting means 3. It becomes constant.
[0019]
That is, since the straight line in the reflection direction of the light beam incident on the light beam redirecting means 3 from one or a plurality of plane mirrors 5 or the measured surface 9 is a conjugate distance of the concave mirror 4 at all points, the position sensor 6 is It can be arranged on the straight line according to the required measurement sensitivity.
[0020]
Further, for example, when the light beam reflected by the surface to be measured 9 is reflected by the light beam redirecting unit 3, the light beam directed to the light source 1 is redirected and the light beam is incident on the position sensor 6. The position sensor 6 is arranged even if the above-described lens 8 is used by the light beam from the light source 1 reflected by the light beam redirecting means 3 reflected from the light beam 1 or the plurality of plane mirrors 5 or the measured surface 9. Even in such a case, only the light beam necessary for the measurement can be incident on the position sensor 6.
[0021]
Therefore, the present invention can measure the surface shape of the surface to be measured at high speed without using an expensive lens in the scanning optical system, and can perform shape measurement with excellent practicality at a low cost. It becomes a device.
[0022]
【Example】
1, 2 and 6 illustrate the first embodiment of the present invention, and FIGS. 3 to 5 illustrate the second embodiment of the present invention, which will be described below.
[0023]
In the first embodiment, a light beam emitted from the light source 1 is made incident on the surface to be measured 9 through a scanning optical system, and the light beam reflected by the surface to be measured 9 is recognized by the position sensor 6 to obtain an inclination distribution. A shape measuring device that measures the shape of the surface 9 to be measured by integrating the obtained gradient distribution by the arithmetic device 2, and changes the luminous flux emitted from the light source 1 in real time by the luminous flux redirecting means 3. The light beam redirected by the light beam redirecting means 3 is reflected by one or a plurality of plane mirrors 5 and is reflected on the surface to be measured 9 via the concave mirror 4 provided to face the surface to be measured 9. The scanning optical system is configured so that the surface to be measured 9 can be scanned by being incident and changing the turning angle by the light beam turning means 3. The light beam turning means 3 and the position sensor 6 are configured as follows. The plane mirror 5 or the surface 9 to be measured is connected to each other through the plane mirror 5 and the surface 9 to be measured, respectively. But on the conjugate point of the concave mirror 4.
[0024]
The light source 1 is a light source that emits a predetermined light beam, a monochromatic light source such as a gas or a semiconductor laser, or a white light source such as an LED, and a focus for making the light beam have a diameter corresponding to the purpose of measurement on the measurement surface 9. A combination with a lens is used.
[0025]
The light beam diverting means 3 is a means for changing the light beam emitted from the light source 1 in real time, and radiates from the light source at a constant turning angular velocity in order to scan the light beam on the measured surface 9 at a substantially constant speed. The direction of the reflected light flux is changed.
[0026]
Specifically, a plane mirror, a half mirror, a polygon mirror, a galvano scanner, or the like attached to the rotating shaft of the motor is suitable. In the first embodiment, a half mirror is adopted.
[0027]
The plane mirror 5 redirects the light beam reflected by the light beam diverting means 3 to the concave mirror 4, or changes the light beam reflected by the concave mirror 4 and causes the light beam reflected by the concave mirror 4 to enter the position sensor 6. It is to change direction.
[0028]
The concave mirror 4 redirects the light beam reflected by one or a plurality of plane mirrors 5 to be incident on the surface 9 to be measured, or causes the light beam reflected by the surface 9 to be measured to enter the light beam redirecting means. This light beam is diverted.
[0029]
The concave mirror 4 is preferably a concave spherical mirror or an ellipsoidal concave mirror, and in this embodiment, a concave spherical mirror is adopted.
[0030]
In the position sensor 6, the concave mirror 4 is preferably a CCD element, PSD, or photodiode array. In the first embodiment, a CCD element is employed, but a commercially available optical position detection sensor may be employed.
[0031]
The calculation means 2 is means for performing a predetermined calculation on the signal obtained by the position sensor 6, and specifically performs the following processing.
[0032]
If the scanning direction of the light beam on the measured surface 9 is taken as the x-axis, and the height of the measured surface 9 in the x-axis direction is z = z (x),
[Expression 1]
Figure 0003810749
It is. Here, θ (x) is the inclination of the measured surface 9 at the coordinate x in the light beam scanning direction on the measured surface 9. In the first embodiment, the gradient distribution indicates θ (x).
[0033]
If the measured surface 9 is a smooth surface with few undulations, θ << 1 can be obtained.
[Expression 2]
Figure 0003810749
It is. Therefore, the integral of θ (x)
Figure 0003810749
If the above is executed, the surface shape in the light beam scanning direction can be obtained.
[0034]
The inclination distribution θ (x) is obtained by the spot position of the light beam incident on the position sensor 6.
[0035]
If the surface 9 to be measured is perfectly flat, the position sensor 6 is incident on the position sensor 6 even if the light beam redirecting means 3 arranged at the other conjugate distance changes the direction of the light beam in real time. The spot position does not change.
[0036]
If the measured surface has an inclination distribution θ (x), the light beam incident on the measured surface 9 is reflected at a coordinate x in a direction 2θ (x) different from the reflection direction on the flat surface.
[0037]
Therefore, if the distance between the measured surface 9 and the position sensor 6 is L, and the position of the incident light beam spot on the light receiving surface of the position sensor 6 from the center of the light receiving surface is Δ (x), Δ (x) when θ << 1. = 2θ (x) L. Therefore, the inclination distribution θ (x) can be known from Δ (x) obtained by the position sensor 6, and eventually,
[Expression 4]
Figure 0003810749
By executing numerically, the shape of the surface 9 to be measured is obtained.
[0038]
The first embodiment will be described more specifically based on the drawings.
[0039]
The optical system of FIG. 1 comprises a light source 1, a light beam redirecting means 3, a concave mirror 4, a light beam separating means 7, and a position sensor 6. The concave mirror 4 is a concave spherical mirror, and changes the light flux. It is assumed that the light beam turning center S of the directing means 3 is arranged at the center of curvature of the concave spherical mirror, so that the light beam emitted from the light source 1 is incident on the light flux turning center S of the light beam turning means 3.
[0040]
At this time, the light beam reflected by the light beam turning center S is incident perpendicularly to the mirror surface M of the concave mirror 4 regardless of the light beam turning angle of the light beam turning means 3, and the light beam is accurately directed in the direction of the incident light beam. , Reflected again at the light beam turning center S, and directed toward the light beam exit of the light source 1.
[0041]
A light beam separating means 7 composed of a half mirror or the like is inserted between the light source 1 and the light beam diverting means 3 to separate the light beam from the light beam diverting center S toward the light source 1 and enter the position sensor 6. At this time, the spot on the light receiving surface of the position sensor 6 should not be displaced regardless of the light beam turning angle of the light beam turning means 3.
[0042]
In the first embodiment, a flat mirror 5 and a measured surface 9 are inserted between the light beam turning means 3 and the concave mirror 4 of the optical system in FIG. 1 and folded (see FIG. 2). Specifically, the concave mirror 4 is a concave spherical mirror, and the concave mirror 4 and one or a plurality of plane mirrors 5 and the object to be covered are arranged so that the light beam redirecting means 3 can be arranged at the center of curvature of the concave spherical mirror. The measurement surface 9 is provided, the measurement stage 10 on which the object having the measurement surface 9 is placed is provided, and the calculation control device 11 that performs the calculation means 2 is configured to be interlocked with the position sensor 6. It is. In the figure, reference numeral 12 denotes a display device.
[0043]
The concave mirror 4, the flat mirror 5, and the measured surface 9 are arranged so that the lengths of the optical paths S 1 -RM and MQ S 2 are both equal to the radius of curvature of the concave mirror 4. . At this time, the concave mirror 4 has no aberration.
[0044]
At this time, the inclination distribution of the measured surface 9 appears as a change in the light beam spot position on the light receiving surface of the position sensor 6.
[0045]
The light beam emitted from the light source 1 is incident on the point S 1 on the light beam redirecting means 3. The light beam reflected at the point S 1 is reflected at the point R on the plane mirror 5 and enters the point M on the concave mirror 4. Subsequently, the light beam reflected at the point M is reflected at the point Q on the measured surface 9, is reflected at the point S 2 on the light beam redirecting means 3, and enters the position sensor 6.
[0046]
The measurement is performed by scanning the light beam on the surface to be measured 9 by continuously changing the light beam turning angle of the light beam turning means 3 in real time. One cross-sectional shape of the light beam scanning range is obtained by one light beam scanning.
[0047]
This beam scanning range is determined by the length of the plane mirror 5 in the beam scanning direction and the length of the concave mirror 4 in the beam scanning direction. This is because the light beam protrudes from the flat mirror 5 or the concave mirror 4 when the light beam turning angle is large.
[0048]
When the surface 9 to be measured is flat, the direction of the reflected light beam at the point S 2 on the light beam redirecting means 3 and the direction of the light beam emitted from the light source 1 can be made parallel regardless of the light beam turning angle of the light beam redirecting means 3. .
[0049]
Therefore, the position sensor 6 may be disposed anywhere as long as the reflected light beam direction is at the point S 2. If the measured surface 9 is flat, and a spot of the light beam is located at a certain point P on the light receiving surface, the spot sensor Is not displaced from point P.
[0050]
If the measured surface 9 has a certain inclination distribution and the inclination is θ at the point Q on the measured surface 9, the light beam spot position on the light receiving surface of the position sensor 6 is displaced from the point P by Δ = L tan (2θ). Move to the point P ′. Here, L is the length of the optical path Q-S 2 -P.
[0051]
The optical path length L changes depending on the light beam turning angle of the light beam turning means 3. Suppose that the distance from the point S 2 on the light beam diverting means 3 to the point where the perpendicular line dropped on the measured surface 9 and the measured surface 9 intersect is l, and the light beam diverting direction of the light beam diverting means 3 in the direction of the perpendicular line When the angle φ is selected to be φ = 0 (see FIG. 6), if the length of the optical path S 2 -P is l 5 , L = l cos φ + l 5 . This correction is carried out by the arithmetic control unit 11, the light beam scanning range on the surface to be measured 9 is smaller than the light beam deflecting means 3 in the length of the optical path Q-S 2 between the surface to be measured 9 Fai« 1 can be set to cosφ≈1, and at this time, the optical path length L may be constant. If θ << 1, the light beam spot position displacement Δ on the light receiving surface of the position sensor 6 is given by Δ = 2θL. From this equation, it can be seen that the measurement sensitivity depends on the optical path length L.
[0052]
As described above, the position sensor 6, so may be located anywhere if the reflected light beam direction of the point S 2, the optical path length L is freely determined depending on the required sensitivity.
[0053]
The displacement measured by the position sensor 6 is numerically integrated by the arithmetic and control unit 11 to obtain the cross-sectional shape of the measured surface 9. This numerical integration start command is given to the arithmetic and control unit 11 from the light beam redirecting means 3, and when the light beam redirecting means 3 rotates by a predetermined angle, the numerical integration is completed and one cross-sectional shape is obtained.
[0054]
The time required to obtain one cross-sectional shape is about 0.3 msec when the rotational speed of the light beam redirecting means 3 is 1000 rpm, the distance between the measured surface 9 and the light beam redirecting means 3 is 200 mm, and the measurement range is 20 mm. And very fast.
[0055]
This measurement time can be shortened by the ability of the light beam diverting means 3, the position sensor 6, and the arithmetic and control unit 11. When one cross-sectional shape is obtained, the arithmetic and control unit 11 moves the measurement stage 10 in a direction perpendicular to the light beam scanning direction.
[0056]
By repeating this, the shape of the surface 9 to be measured is obtained. The measurement result is visualized by the display device 12.
[0057]
If the position sensor 6 is a two-dimensional position sensor, the surface tilt angle of the measured surface 9 in the direction perpendicular to the light beam scanning direction can be obtained. 9 can be set at a predetermined position.
[0058]
The second embodiment will be described with reference to FIGS. 3 and 4. In FIG. 3 and FIG. 4, a light beam emitted from the light source 1 is incident on the surface to be measured 9 through the scanning optical system, and the light beam reflected by this surface 9 to be measured is a position sensor. 6 is a shape measuring device for obtaining the shape of the surface 9 to be measured by measuring the inclination distribution with the calculation device 2 and integrating the obtained inclination distribution by the arithmetic unit 2. A concave mirror 4 which is redirected in real time by the directing means 3 and is reflected by one or a plurality of plane mirrors 5 so as to face the surface to be measured 9 is provided. The scanning optical system is configured so that the surface to be measured 9 can be scanned by being incident on the surface to be measured 9 and changing the turning angle by the light beam diverting means 3, and the light beam diverting means. 3 of the concave mirror 4 through the plane mirror 5. The position sensor 6 is provided on the other conjugate point of the lens 8 provided so that the other conjugate point of the concave mirror 4 is set as one conjugate point. The light beam reflected by the measurement surface 9 is reflected by the light beam redirecting means 3 so that the light beam directed to the light source 1 is redirected and the light beam is incident on the position sensor 6. FIG. 4 is a side view of FIG.
[0059]
When the surface 9 to be measured is large, the plane mirror 5 becomes an obstacle in the first embodiment (configuration of FIG. 2), and any part on the surface 9 to be measured cannot be measured. In order to remove this obstacle, there is a method in which the plane mirror 5 is composed of a plurality of plane mirrors 5, but in the second embodiment, the positions of the plane mirror 5 and the measured surface 9 are shifted from the positions shown in FIG. The method of making the distance from 3 different is used.
[0060]
That is, the beam redirecting means 3 and the position sensor 6 may be arranged at the conjugate distance of the concave mirror 4 via the plane mirror 5 and the measured surface 9 (first embodiment), but in FIGS. 3 shows a configuration when the position sensor 6 cannot be arranged at the conjugate point of the concave mirror 4, and the position sensor 6 of FIGS. 3 and 4 is arranged at one conjugate distance of the lens 8 and one conjugate of the concave mirror 4. The distance is the other conjugate point of the lens 8 via the light beam separating means 7.
[0061]
The light beam emitted from the light source 1 is incident on the point S 1 on the light beam redirecting means 3. The light beam reflected at the point S 1 is reflected at the point R on the plane mirror 5 and enters the point M on the concave mirror 4. Subsequently, the light beam reflected at the point M is reflected at the point Q on the measured surface 9, reflected at the point S 2 on the light beam diverting means 3, and the direction can be changed at the point B on the light beam separating means 7. Then, the light enters the position sensor 6 through the lens 8.
[0062]
Here, assuming that the optical system is configured such that the conjugate point of the concave mirror 4 is the points S 1 and S 2 on the light beam redirecting means 3, the optical paths S 1 -R-M and M-Q S 2 are used. Unlike the case of FIG. 2, the length is not equal, but the length is the conjugate distance of the concave mirror 4.
[0063]
The center point of the lens 8 is Z, the point where the light receiving surface of the position sensor 6 and the optical axis of the lens 8 intersect is P, and the point P on the light receiving surface of the position sensor 6 is measured when the flat measured surface 9 is measured. when the light beam is configured to be incident, the length l 2 of the optical path S length of 2 -B-Z l 1 and the optical path Z-P is a conjugated length of the lens 8, the magnification m of the lens 8 m = l 2 / l 1
[0064]
In the above optical system, when the inclination of the point Q on the measured surface 9 is θ, the length of the optical path Q-S 2 is L, and the displacement of the light beam at the conjugate point S 2 of the concave mirror 4 is 2θL.
[0065]
Therefore, the displacement of the light beam spot on the light receiving surface of the position sensor 6 becomes Δ = 2mθL due to the effect of the lens 8.
[0066]
Unequal optical path S 1 -R-M of length l 3 and M-Q-S 2 of length l 4, and when the concave mirror 4 is spherical concave mirror, with the lowest order with respect to Δ for aberrations An error of (d / r) 2 φ 3 is generated. Here, d is d = l 3 −l 4 , r is the radius of curvature of the spherical concave mirror, and φ is the beam turning angle of the beam turning means 3 (see FIG. 6).
[0067]
If this error is measured and removed in advance with a reference device such as an optical flat, or the concave mirror 4 is an ellipsoidal concave mirror, no aberration will occur.
[0068]
The rest is the same as in the first embodiment.
[0069]
FIG. 5 is different from FIG. 3 and FIG. 4 in another example of the second embodiment in which the position sensor 6 is arranged at one conjugate distance of the concave mirror 4 via the surface to be measured 9. The light beam redirecting means 3 at this time uses a combination of a half mirror and a rotating motor or a galvano scanner motor. The method for obtaining the surface shape of the surface 9 to be measured is the same as described above.
[0070]
【The invention's effect】
Since the present invention is configured as described above, it is possible to measure the surface shape of the surface to be measured at a high speed without using an expensive lens in the scanning optical system, as in the case of using a lens. It becomes a measuring device.
[0071]
Further, in the inventions according to the second and third aspects, the position sensor mounting position can be changed more flexibly and more practically.
[0072]
Further, in the invention described in claim 4, the present invention is more practical than the case where only the light beam necessary for the measurement can be incident on the position sensor.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a first embodiment.
FIG. 2 is an explanatory perspective view of the first embodiment.
FIG. 3 is an explanatory perspective view of a second embodiment.
FIG. 4 is an explanatory side view of a second embodiment.
FIG. 5 is an explanatory side view of another example of the second embodiment.
FIG. 6 is a schematic explanatory diagram of the first embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source 2 Arithmetic device 3 Light beam diverting means 4 Concave mirror 5 Flat mirror 6 Position sensor 8 Lens 9 Surface to be measured

Claims (4)

光源から放射される光束を走査光学系を介して被測定面に入射させ、この被測定面により反射された前記光束を位置センサで確知して傾斜分布を測定し、得られた傾斜分布を演算装置で積分することにより被測定面の形状を求める形状測定装置であって、光源から放射される光束を光束変向手段により実時間で変向し、この光束変向手段により変向した光束が、一若しくは複数の平面ミラーで反射して前記被測定面と対向状態に設けた凹面ミラーを介して前記被測定面に入射すると共に、光束変向手段により変向角度を変化させることで前記被測定面上を走査し得るように前記走査光学系を構成し、前記光束変向手段と位置センサとは夫々前記平面ミラー若しくは被測定面を介して互いに凹面ミラーの共役点に設けたことを特徴とする形状測定装置。A light beam emitted from a light source is incident on a surface to be measured through a scanning optical system, the light beam reflected by the surface to be measured is detected by a position sensor, an inclination distribution is measured, and the obtained inclination distribution is calculated. A shape measuring device that obtains the shape of a surface to be measured by integrating with a device, wherein a light beam emitted from a light source is redirected in real time by a light beam redirecting means, and a light beam redirected by the light beam redirecting means is The light is incident on the surface to be measured through a concave mirror that is reflected by one or a plurality of plane mirrors and is opposed to the surface to be measured, and the direction of change is changed by a light beam turning means. The scanning optical system is configured to be able to scan on the measurement surface, and the light beam redirecting means and the position sensor are provided at conjugate points of the concave mirror with respect to each other via the plane mirror or the surface to be measured, respectively. Shape measurement Apparatus. 光源から放射される光束を走査光学系を介して被測定面に入射させ、この被測定面により反射された前記光束を位置センサで確知して傾斜分布を測定し、得られた傾斜分布を演算装置で積分することにより被測定面の形状を求める形状測定装置であって、光源から放射される光束を光束変向手段により実時間で変向し、この光束変向手段により変向した光束が、一若しくは複数の平面ミラーで反射して前記被測定面と対向状態に設けた凹面ミラーを介して前記被測定面に入射すると共に、光束変向手段により変向角度を変化させることで前記被測定面上を走査し得るように前記走査光学系を構成し、前記光束変向手段を前記平面ミラーを介して凹面ミラーの一方の共役点に設け、この凹面ミラーの他方の共役点を一方の共役点とするように設けられたレンズの他方の共役点に前記位置センサを前記被測定面を介して設けたことを特徴とする形状測定装置。A light beam emitted from a light source is incident on a surface to be measured through a scanning optical system, the light beam reflected by the surface to be measured is detected by a position sensor, an inclination distribution is measured, and the obtained inclination distribution is calculated. A shape measuring device that obtains the shape of a surface to be measured by integrating with a device, wherein a light beam emitted from a light source is redirected in real time by a light beam redirecting means, and a light beam redirected by the light beam redirecting means is The light is incident on the surface to be measured through a concave mirror that is reflected by one or a plurality of plane mirrors and is opposed to the surface to be measured, and the direction of change is changed by a light beam turning means. The scanning optical system is configured so as to be able to scan on the measurement surface, the light beam redirecting means is provided at one conjugate point of the concave mirror via the plane mirror, and the other conjugate point of the concave mirror is set to one of the concave mirrors. Set to be a conjugate point Shape measuring apparatus, characterized in that the position sensor is provided through the measurement surface to the other conjugate point was the lens. 前記凹面ミラーを凹球面ミラーとし、この凹球面ミラーの曲率中心に前記光束変向手段を配設し得るように、前記凹面ミラーと一若しくは複数の平面ミラー及び被測定面とを配設したことを特徴とする請求項1,2のいずれか1項に記載の形状測定装置。The concave mirror is a concave spherical mirror, and the concave mirror, one or a plurality of plane mirrors and a surface to be measured are arranged so that the light beam turning means can be arranged at the center of curvature of the concave spherical mirror. The shape measuring device according to any one of claims 1 and 2. 被測定面で反射した光束を光束変向手段で反射することで光源に向かう光束を変向させ、その光束を位置センサに入射させるように構成したことを特徴とする請求項1〜3のいずれか1項に記載の形状測定装置。4. The light beam reflected from the surface to be measured is reflected by the light beam diverting means so that the light beam directed toward the light source is redirected, and the light beam is incident on the position sensor. The shape measuring apparatus according to claim 1.
JP2003068687A 2003-03-13 2003-03-13 Shape measuring device Expired - Fee Related JP3810749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068687A JP3810749B2 (en) 2003-03-13 2003-03-13 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068687A JP3810749B2 (en) 2003-03-13 2003-03-13 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2004279132A JP2004279132A (en) 2004-10-07
JP3810749B2 true JP3810749B2 (en) 2006-08-16

Family

ID=33285950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068687A Expired - Fee Related JP3810749B2 (en) 2003-03-13 2003-03-13 Shape measuring device

Country Status (1)

Country Link
JP (1) JP3810749B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696249B2 (en) * 2007-02-13 2011-06-08 国立大学法人 新潟大学 Shape measuring method and apparatus
WO2021215026A1 (en) * 2020-04-23 2021-10-28 株式会社コアシステム Shape-measuring device

Also Published As

Publication number Publication date
JP2004279132A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US6825454B2 (en) Automatic focusing device for an optical appliance
JP5016245B2 (en) Measurement system for determining the six degrees of freedom of an object
US6288382B1 (en) Micro-scanning multislit confocal image acquisition apparatus
US7508529B2 (en) Multi-range non-contact probe
JP2949600B2 (en) Imaging device
EP3187822B1 (en) Surface shape measuring device
JPH045508A (en) Method and device for detecting shape of body
JPH11218686A (en) Optical image recording device and method utilising the device
EP0627610A1 (en) Two-stage detection noncontact positioning apparatus
US5033845A (en) Multi-direction distance measuring method and apparatus
JP3810749B2 (en) Shape measuring device
JPH05119277A (en) Image focusing device for object body
JP2002296018A (en) Three-dimensional shape measuring instrument
JP4696249B2 (en) Shape measuring method and apparatus
WO2021215026A1 (en) Shape-measuring device
US6856388B2 (en) Optical sensor for measuring the distance and/or inclination of a surface
US7212294B2 (en) Method for determination of the level of two or more measurement points, and an arrangement for this purpose
JP2021175967A (en) Shape measuring device
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JPS581120A (en) Telecentric beam generator and measurement of dimensions and position of object
JP2021110698A (en) Optical three-dimensional shape measurement device
JP5251218B2 (en) Measuring apparatus and measuring method
JP2003161610A (en) Optical measurement device
JPH08261734A (en) Shape measuring apparatus
JP2003322587A (en) Surface shape measuring instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees