JP3810606B2 - Induction heating coil - Google Patents

Induction heating coil Download PDF

Info

Publication number
JP3810606B2
JP3810606B2 JP2000024672A JP2000024672A JP3810606B2 JP 3810606 B2 JP3810606 B2 JP 3810606B2 JP 2000024672 A JP2000024672 A JP 2000024672A JP 2000024672 A JP2000024672 A JP 2000024672A JP 3810606 B2 JP3810606 B2 JP 3810606B2
Authority
JP
Japan
Prior art keywords
conductor
heating
heated
arc
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000024672A
Other languages
Japanese (ja)
Other versions
JP2001210461A (en
Inventor
嘉昌 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2000024672A priority Critical patent/JP3810606B2/en
Publication of JP2001210461A publication Critical patent/JP2001210461A/en
Application granted granted Critical
Publication of JP3810606B2 publication Critical patent/JP3810606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、被加熱物(ワーク)を誘導加熱する誘導加熱コイルに関し、特にクランクシャフトを誘導加熱するのに好適な誘導加熱コイルに関する。
【0002】
【従来の技術】
従来から、誘導加熱を利用して鋼部品などの被加熱物の表面層を硬化させる高周波焼入れが様々な産業分野で広く利用されている。この高周波焼入れでは、被加熱物を加熱する際に、高周波電源に接続されて交流電流が流れる誘導加熱コイルが使用される。このような誘導加熱コイルを使用して焼入温度まで加熱され、その直後に急冷されて硬化される被加熱物の一つとしてクランクシャフトが知られている。
【0003】
クランクシャフトでは、周知のように、ジャーナル部とピン部の摺動面は耐摩耗性の向上を目的として焼入れされて硬化される。また、クランクシャフトの強度を向上させるために、上記の摺動面やフィレット部を含めた円周部が焼入されて硬化される。これら摺動面や円周部を高周波焼入れするに際しては、従来から、半開放型(馬蹄形)と呼ばれる誘導加熱コイルが使用されることが多い。
【0004】
このような誘導加熱コイルの一つとして、互いに並行で半円弧状の2本の導体を有するものが知られている。(特開平7−242933号参照)。この誘導加熱コイルを使用する際は、互いに並行で半円弧状の2本の導体を、フィレット部を含む摺動面に接近させてピン部(ジャーナル部)を誘導加熱する。
【0005】
ところが、クランクシャフトにはフィレット部の間隔が狭いものがある。このような狭いフィレット部には、誘導加熱コイルの2本の導体を挿入しにくい。導体を細くすると狭いフィレット部に挿入してフィレット部を含む摺動面に接近させられるが、細い導体には十分な量の交流電流が流れないので、フィレット部を含む摺動面を均等に十分に加熱できない。
【0006】
また、フィレット部を含む摺動面に接近する導体を1本にした誘導加熱コイルも知られている(特開平3−183724号参照)。この誘導加熱コイルでは、狭いフィレット部であってもそこを均等に加熱するために、フィレット部を含む摺動面に接近する1本の導体の中央部にクランク(直角に折れ曲がった部分)が形成されており、このクランクを境にして1本の導体が互いにずれたようになっている。
【0007】
この誘導加熱コイルを用いてフィレット部を含む摺動面を焼入温度まで加熱するに当たっては、1本の導体のずれた一方は摺動面の一方の側に接近させると共に1本の導体のずれた他方は摺動面の他方の側に接近させておき、この状態でクランクシャフトを回転させる。これによりフィレット部を含む摺動面を均等に加熱でき、均等な硬化パターンを得られることとなる。
【0008】
【発明が解決しようとする課題】
ところで、誘導加熱コイルの導体の内部には、通常、この導体を冷却する冷却液が流れる液路が形成されている。液路には、導体が高温にならないように多量の冷却液が流される。特に、被加熱物に接近する導体は高温になり易いので、この導体の内部には十分な量の冷却液が流される必要がある。
【0009】
しかし、上記のクランクが形成された導体においては、クランクの部分で液路がほぼ直角に折れ曲がってしまうので冷却液がスムーズに流れにくく、導体を十分に冷却できないという問題がある。
【0010】
また、フィレット部を含む摺動面に接近する導体は、この導体に接続された他の導体(特開平3−183724号では「給電コイル」と呼んでいる。)を介して高周波電源に接続されている。従って、「給電コイル」にも交流電流が流れることとなり、被加熱物(ここではクランクシャフト)のうちこの給電コイルに近い位置に位置する部分が高温に加熱される。この高温に加熱される部分が、硬化される必要の無い部分の場合、高温に加熱されることに起因してこの部分が変形することがある。この変形によって被加熱物の全体も変形することとなる。
【0011】
本発明は、上記事情に鑑み、被加熱物の表面を均等に加熱すると共に導体の内部に多量の冷却液をスムーズに流せてこの導体を十分に冷却できる誘導加熱コイルを提供することを第1の目的とする。また、本発明は、上記事情に鑑み、被加熱物の不要な部分を高温に加熱せずに被加熱物の変形を抑える誘導加熱コイルを提供することを第2の目的とする。
【0012】
【課題を解決するための手段】
上記第1の目的を達成するための本発明の第1の誘導加熱コイルは、
(1)被加熱物に形成された円弧状の表面に接近してこの表面を誘導加熱する、この表面に倣って円弧状に延びる1本の加熱用導体と、
(2)所定の高周波電源に接続されて上記加熱用導体に交流電力を供給する接続用導体とを備え、
(3)上記加熱用導体は、その円弧方向に直交する断面の形状がこの加熱用導体の上記円弧方向中央部を境界にして対称に形成されたものであることを特徴とするものである。
【0013】
また、上記第2の目的を達成するための本発明の第2の誘導加熱コイルは、
(4)被加熱物に形成された円弧状の表面に接近してこの表面を誘導加熱する、この表面に倣って円弧状に延びる1本の加熱用導体と、
(5)この1本の加熱用導体の両端部それぞれに接続された、この1本の加熱用導体に交流電力を供給するための複数本の交流電力供給用導体と、
(6)この複数本の交流電力供給用導体に接続されると共に所定の高周波電源に接続される接続用導体とを備え、
(7)上記加熱用導体は、その円弧方向に直交する断面の形状がこの加熱用導体の上記円弧方向中央部を境界にして対称に形成されたものであることを特徴とするものである。
【0014】
ここで、
(8)上記複数本の交流電力供給用導体は、同じ長さで同じ断面積を有する2本以上の導体からなるものであってもよい。
【0015】
また、
(9)上記加熱用導体に代えて、その円弧方向に直交する断面の形状がこの円弧方向のうち中央部以外の部分を境界にして対称に形成された加熱用導体を用いてもよい。
【0016】
ここでいう「対称」とは、後述する図1などに示すように、上記の円弧方向に平行な直線であって、かつこの円弧方向に直交する方向の中央を通る直線に関して線対称になっていることをいう。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の誘導加熱コイルを説明する。
【0018】
図1から図3までを参照して、本発明の誘導加熱コイルの第1実施形態を説明する。
【0019】
図1は、第1実施形態の誘導加熱コイルを示す斜視図であり、コアが取り外された状態を示す。図2は、図1の誘導加熱コイルを用いてクランクシャフトのピン部を加熱している状態を模式的に示す断面図であり、図3は、図2に示す状態からピン部が約90°回転して加熱されている状態を模式的に示す断面図である。
【0020】
誘導加熱コイル10は、クランクシャフト70のピン部72の表面(摺動面)74に接近する1本の加熱用導体20を有する。ピン部72は円柱状であり、その表面74は円弧状になっている(湾曲している)。加熱用導体20は、図1に示すように、ピン部72の表面に倣って半円弧状に延びている(湾曲している)。加熱用導体20は、円弧方向の中央部に形成された直方体状の中央部22と、この中央部22を挟んでその両側それぞれに形成された4分の1の円弧の形状をした導体部24,26とを有する。中央部22と導体部24,26は、一体的に形成されたものである。また、導体部24と導体部26は、中央部22に関して対称になっている。即ち、導体部24と導体部26は、その円弧方向に直交する断面の形状がこれら導体部24,26円弧方向中央部を境界にして対称に形成されている。従って、加熱用導体20の横断面を観察した場合、その形状は、湾曲の途中から変更されていることとなる。なお、誘導加熱コイル10は、通常、銅製もしくは銅合金製であるが、他の良導電性材料で作製してもよい。
【0021】
導体部24の周方向断面は概ね台形形状をしており、導体部24の被加熱物対向面(内周面)は、導体部24の片側横断面が導体部幅方向に向かって突出した突出部24bを有し、他片側は、突出部24bとは反対の方向に向かって傾斜(基部24を薄くする方向)することで、被加熱物対向面から離間する構造となっている。
【0022】
即ち、導体部24は、台形形状の基部24aと、この基部24aのうちピン部72の表面74に最も近い端部から円弧の外側に向かって突出した突出部24bとを有している。基部24aの外周面(円弧の外周面)24cは平面状の円弧になっている。一方、基部24aの内周面(円弧の内周面)は、突出部24bとは反対の方向(外周面24cに接近する方向)に向かって下る傾斜面24dと、外周面24cにほぼ平行な平面24eとからなる。
【0023】
また、導体部24の内部には、この導体部24を冷却する冷却液が流れる円弧状の液路24fが形成されている。このような液路24fは、後述するように中央部22と導体部26にも形成されており、これらの液路は折れ曲がらずにほぼ真っ直ぐに連続して形成されている。このため、これらの液路には大量の冷却液がスムーズに流れ、これにより、加熱用導体20が十分に冷却されることとなる。この結果、加熱用導体20の耐久性が向上して誘導加熱コイル10の寿命が延びる。
【0024】
導体部26にも、導体部24と同様に、基部26a、突出部26b、外周面26c、傾斜面26d、平面26e、及び液路26fが形成されている。ただし、基部26aの形状は中央部22に関して基部24aとは対称の形状である。また、突出部26bは突出部24bとは反対の側に突出している。さらに、傾斜面26dは傾斜面24dとは反対の方向に傾斜している。この結果、上述したように、導体部26は中央部22に関して導体部24と対称になっている。なお、ここでは、円弧状の加熱用導体20を2等分する位置に中央部22を形成したが、3等分以上するように複数の中央部22を形成してもよい。また、加熱用導体20を2対1や3対1などに分割するような位置に中央部22を形成してもよい。どの位置に中央部22を幾つ形成するかは、被加熱物の形状や加熱対象面に応じて決定する。
【0025】
導体部24の一端部(中央部22とは反対の側の端部)には、図1に示すように、直方体状の導体28が接続されている。この導体28は加熱用導体20の円弧の外側に向かって突出している。また、同様に、導体部26の一端部(中央部22とは反対の側の端部)にも、直方体状の導体30が接続されている。この導体30も、加熱用導体20の円弧の外側に向かって突出している。
【0026】
導体28のうち導体部24に接続されている端部とは反対側の端部には、加熱用導体20に交流電力(交流電流)を供給する交流電力供給用導体40が接続されている。交流電力供給用導体40は、互いに並行な2本の導体部42,44からなっている。これら2本の導体部42,44は、4分の1の円弧の形状をした導体部24の外側にこの導体部24から離れてほぼ4分の1の円弧の形状をしている。2本の導体部42,44は同心であって、これらは導体部24ともほぼ同心になっている。また、2本の導体部42,44の横断面の形状は同じである。なお、2本の導体部42,44の内部には、図2や図3に示すように、液路24fにつながった液路42a,44aが形成されている。また、ここでは、2本の導体部42,44にしたが、3本以上の導体部にしてもよい。
【0027】
上記と同様に、導体30のうち導体部26に接続されている端部とは反対側の端部には、加熱用導体20に交流電力を供給する交流電力供給用導体50が接続されている。交流電力供給用導体50は、互いに並行な2本の導体部52,54からなっている。これら2本の導体部52,54は、4分の1の円弧の形状をした導体部26の外側にこの導体部26から離れてほぼ4分の1の円弧の形状をしている。2本の導体部52,54は同心であって、これらは導体部26ともほぼ同心になっている。また、2本の導体部52,54の横断面の形状は同じである。なお、2本の導体部52,54の内部には、図2や図3に示すように、液路26fにつながった液路52a,54aが形成されている。
【0028】
上記した2本の導体部42,44のうち、導体28に接続された端部とは反対の側の端部はそれぞれ、高周波電源80に接続された接続用導体60に接続されている。接続用導体60には、冷却液を加熱用導体20に供給するための供給管62が接続されている。この供給管62に形成された液路62aは分岐しており、2本の導体部42,44に形成された液路42a,44aにつながっている。上記した2本の導体部52,54のうち、導体30に接続された端部とは反対の側の端部はそれぞれ、高周波電源80に接続された接続用導体64に接続されている。接続用導体64には、冷却液を加熱用導体20に供給するための供給管66が接続されている。この供給管66に形成された液路66aは分岐しており、2本の導体部52,54それぞれに形成された液路52a,54aにつながっている。
【0029】
高周波電源80から接続用導体60に供給された交流電流は、2本の導体部42,44でその値が半分ずつに分けられる。従って、2本の導体部42,44にはそれぞれ、接続用導体60に供給された交流電流の値の半分の値の交流電流しか流れない。このため、各導体部42,44にそれぞれ流れる交流電流によって生成される交番磁束の密度は低い。この結果、各導体部42,44それぞれの近傍の部材や部品には密度の低い渦電流しか誘導されず、これらの部材や部品は高温には加熱されない。従って、各導体部42,44がその近傍の部品や部材を加熱することに起因する変形は起こりにくく、誘導加熱コイル10全体の変形も抑えられることとなる。
【0030】
各導体部42,44それぞれに流れる交流電流は導体28でひとつにまとめられ、そのまま加熱用導体20に流れる。この結果、加熱用導体20に流れる交流電流によって生成される交番磁束の密度は高く、図2のピン部72の表面74及びその角部(R部)は所望の温度に加熱される。この場合、表面74及びその角部を焼入温度に加熱して急冷すると、図2や図3に示すように均等な厚さの焼入パターン(焼入硬化層)76が得られる。この焼入硬化層76はどの部分においても均等な厚さとなり、従来のように中央部が深くて両端部が浅い硬化層にはならない。なお、加熱用導体20を流れた交流電流は導体30を通過して導体部52,54で分流し、接続用導体64を経由して交流電源80に戻る。
【0031】
また、クランクシャフト70は回転しているので、図2と図3に示すように、突出部24b,26bが表面74の両角部を交互に加熱することとなる。これにより、表面74の両角部が均等に誘導加熱されて、どの角部でもほぼ同じ深さの焼入パターン76が形成される。なお、上記した例では、交流電力供給用導体40,50をそれぞれ2本に分割したが、3本以上の複数本に分割してもよい。また、加熱用導体20のうちピン部72の表面74に向き合う面と突出部24bの先端面以外の面には、コア(磁性体)82が貼り付けられている。このようにコア82を貼り付けることにより、ピン部72の表面74以外の部分を貫通する交番磁束を弱めている。
【0032】
図4と図5を参照して本発明の誘導加熱コイルの第2実施形態を説明する。
【0033】
図4は、第2実施形態の誘導加熱コイルを示す斜視図であり、コアが取り外された状態を示す。図5は、図4の誘導加熱コイルを用いてクランクシャフトのピン部を加熱している状態を模式的に示す断面図である。これらの図では、図1から図3に示す構成要素と同一の構成要素には同一の符号が付されている。
【0034】
第2実施形態の誘導加熱コイル100は第1実施形態の誘導加熱コイル10に似ている。しかし、誘導加熱コイル100の加熱用導体120の形状が誘導加熱コイル10の加熱用導体20の形状とはやや相違する。この相違点は、第1実施形態の加熱用導体20には突出部26bが形成されているが、このような突出部26bは第2実施形態の加熱用導体120には形成されていない点である。加熱用導体120に突出部26bを形成していない理由は、誘導加熱コイル100ではピン部72の表面74の角部を誘導加熱しないためである。このため、誘導加熱コイル100を用いてピン部72の表面74を焼入温度に加熱して急冷すると、図5に示すような硬化パターン(焼入硬化層)78が得られる。この焼入硬化層78はどの部分においても均等な厚さとなり、従来のように中央部が深くて両端部が浅い硬化層にはならない。
【0035】
上記したように加熱用導体120は、円弧状の中央部に形成された直方体状の中央部122と、この中央部122を挟んでその両側それぞれに形成された4分の1の円弧の形状をした導体部124,126とを有する。中央部122と導体部124,126は、一体的に形成されたものである。また、導体部124と導体部126は、中央部122に関して対称になっている。即ち、導体部124と導体部126は、その円弧方向に直交する断面の形状がこれら導体部124,126円弧方向中央部を境界にして対称に形成されている。従って、加熱用導体120の横断面を観察した場合、その形状は、湾曲の途中から変更されていることとなる。なお、誘導加熱コイル100は、通常、銅製もしくは銅合金製であるが、他の良導電性材料で作製してもよい。
【0036】
導体部124は、台形に近い5角形である。導体部124の外周面(円弧の外周面)124aは平面状の円弧になっている。一方、導体部124の内周面(円弧の内周面)は、外周面124aにほぼ並行な平面124bと、外周面124aに接近する方向に向かって下る傾斜面124cとからなる。
【0037】
また、導体部124の内部には、この導体部124を冷却する冷却液が流れる円弧状の液路124dが形成されている。このような液路124dは、中央部122と導体部126にも形成されており、これらの液路は折れ曲がらずにほぼ真っ直ぐに連続して形成されている。このため、これらの液路には大量の冷却液がスムーズに流れ、これにより、加熱用導体120が十分に冷却されることとなる。この結果、加熱用導体120の耐久性が向上して誘導加熱コイル100の寿命が延びる。
【0038】
導体部126にも、導体部124と同様に、外周面126a、平面126b、傾斜面126c、及び液路126dが形成されている。ただし、導体部126の形状は中央部122に関して導体部124とは対称の形状である。また、平面126bは、中央部122を挟んで平面124bとは反対の側に位置している。さらに、傾斜面126cは傾斜面124cとは反対の方向に傾斜している。この結果、上述したように、導体部126は中央部122に関して導体部124と対称になっている。なお、ここでは、円弧状の加熱用導体120を2等分する位置に中央部122を形成したが、3等分以上するように複数の中央部122を形成してもよい。また、加熱用導体120を2対1や3対1などに分割するような位置に中央部122を形成してもよい。どの位置に中央部122を幾つ形成するかは、被加熱物の形状や加熱対象面に応じて決定する。
【0039】
誘導加熱コイル100では、上述したように誘導加熱コイル10に形成されている突出部24b,26bが無い点を除けば、誘導加熱コイル10と同じ構造であるので、この作用や効果も誘導加熱コイル10のものと同様である。
【0040】
【発明の効果】
以上説明したように本発明の第1の誘導加熱コイルでは加熱用導体は1本であるので、クランクシャフトの円弧状の表面に狭いフィレット部が形成されていても、狭いフィレット部に加熱用導体を差し込めてその表面等を均等に誘導加熱できる。また、加熱用導体の円弧方向の形状がこの円弧方向中央部を境界にして対称に形成されているので、クランクシャフトのフィレット部を含む摺動面とその角部(R部)を誘導加熱する場合は、加熱用導体の円弧方向中央部を境にして一方の部分に、2つの角部のうちの一つに接近する突起を形成しておき、この一方の部分とは反対の部分に、2つの角部の他の一つに接近する突起を形成しておく。これにより、2つの角部を均等に誘導加熱できる。また、加熱用導体は円弧状に延びており、この加熱用導体にはクランクが形成されていないので折れ曲がった部分が無い。このため、加熱用導体の内部では、冷却液が流れる液路を折り曲げずにほぼ真っ直ぐに形成できる。このような折れ曲がりの無い液路には、折れ曲がりの有るものとは異なり、大量の冷却液がスムーズに流れるので加熱用導体を十分に冷却できる。この結果、加熱用導体の耐久性が向上して誘導加熱コイルの寿命を長くできる。
【0041】
また、本発明の第2の誘導加熱コイルでは加熱用導体は1本であるので、クランクシャフトの円弧状の表面に狭いフィレット部が形成されていても、狭いフィレット部に加熱用導体を差し込めてその表面等を誘導加熱できる。また、加熱用導体は円弧状に延びており、この加熱用導体にはクランクが形成されていないので折れ曲がった部分が無い。このため、加熱用導体の内部では、冷却液が流れる液路を折り曲げずにほぼ真っ直ぐに形成できる。このような折れ曲がりの無い液路には、折れ曲がりの有るものとは異なり、大量の冷却液がスムーズに流れるので加熱用導体を十分に冷却できる。この結果、加熱用導体の耐久性が向上して誘導加熱コイルの寿命を長くできる。また、1本の加熱用導体に交流電力を供給するために複数本の交流電力供給用導体がこの加熱用導体に接続されているので、各交流電力供給用導体を流れる交流電流の値は、1本の加熱用導体を流れる交流電流の値よりも低い。このため、各交流電力供給用導体を流れる交流電流によっては、被加熱物のうち各交流電力供給用導体の近傍に位置する部分は高温に誘導加熱されない。この結果、加熱用導体が接近した部分だけが所定温度に誘導加熱され、交流電力供給用導体が接近した部分を高温に誘導加熱せずに済む。即ち、誘導加熱する必要の無い部分を高温に加熱せずに済むので、加熱後における被加熱物の歪みや変形を低減できることとなる。
【0042】
ここで、上記複数本の交流電力供給用導体は、同じ長さで同じ断面積を有する2本以上の導体からなるものである場合は、加熱用導体に流れる交流電流の値の半分以下の値をもつ交流電流が2本以上の交流電力供給用導体それぞれに流れる。このため、各交流電力供給用導体に流れる交流電流に起因して生じる渦電流の値は小さい。従って、被加熱物のうち交流電力供給用導体の近傍に位置する部分は高温に誘導加熱されない。この結果、加熱後における被加熱物の歪みや変形をいっそう低減できることとなる。
【0043】
また、上記加熱用導体に代えて、その円弧方向に直交する断面の形状がこの円弧方向のうち中央部以外の部分を境界にして対称に形成された加熱用導体を用いる場合は、加熱用導体の横断面形状が円弧の途中から変更されたものとなるので、被加熱物のフィレット部のうちのどの部分を誘導加熱するかに応じてこの横断面形状を変更しておくことにより、誘導加熱したい部分を均等に誘導加熱できる。例えば、フィレット部の底の両側の角部を誘導加熱する場合は、加熱用導体の湾曲した部分のほぼ中央を境にして一方の部分に、2つの角部のうちの一つに接近する突起を形成しておき、この一方の部分とは反対の部分に、2つの角部の他の一つに接近する突起を形成しておく。これにより、2つの角部を均等に誘導加熱できる。
【図面の簡単な説明】
【図1】第1実施形態の誘導加熱コイルを示す斜視図であり、コアが取り外された状態を示す。
【図2】図1の誘導加熱コイルを用いてクランクシャフトのピン部を加熱している状態を模式的に示す断面図である。
【図3】図2に示す状態からピン部が約90°回転して加熱されている状態を模式的に示す断面図である。
【図4】第2実施形態の誘導加熱コイルを示す斜視図であり、コアが取り外された状態を示す。
【図5】図4の誘導加熱コイルを用いてクランクシャフトのピン部を加熱している状態を模式的に示す断面図である。
【符号の説明】
10,100 誘導加熱コイル
20,120 加熱用導体
22,122 中央部
24,26,124,126 導体部
24f,26f,124d,126d 液路
40,50 交流電力供給用導体
60,64 接続用導体
70 クランクシャフト
72 クランクシャフトのピン部
74 ピン部の表面
80 高周波電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating coil that induction-heats an object to be heated (work), and more particularly to an induction heating coil that is suitable for induction heating of a crankshaft.
[0002]
[Prior art]
Conventionally, induction hardening that uses induction heating to harden the surface layer of an object to be heated, such as a steel part, has been widely used in various industrial fields. In this induction hardening, an induction heating coil that is connected to a high frequency power source and through which an alternating current flows is used when heating an object to be heated. A crankshaft is known as one of the objects to be heated that is heated to a quenching temperature using such an induction heating coil and is immediately cooled and hardened immediately thereafter.
[0003]
In the crankshaft, as is well known, the sliding surfaces of the journal portion and the pin portion are quenched and hardened for the purpose of improving wear resistance. Further, in order to improve the strength of the crankshaft, the circumferential portion including the sliding surface and the fillet portion is quenched and hardened. When induction-quenching these sliding surfaces and circumferential portions, an induction heating coil called a half-open type (horse-shoe type) has been conventionally used in many cases.
[0004]
As one of such induction heating coils, one having two semicircular conductors parallel to each other is known. (See JP-A-7-242933). When this induction heating coil is used, the pin part (journal part) is inductively heated by bringing two semicircular arc-shaped conductors in parallel with each other close to the sliding surface including the fillet part.
[0005]
However, some crankshafts have a narrow space between fillets. It is difficult to insert the two conductors of the induction heating coil into such a narrow fillet portion. If the conductor is thinned, it can be inserted into the narrow fillet and brought close to the sliding surface including the fillet. However, since a sufficient amount of alternating current does not flow in the thin conductor, the sliding surface including the fillet is sufficient evenly. Cannot be heated.
[0006]
An induction heating coil having a single conductor approaching the sliding surface including the fillet portion is also known (see Japanese Patent Laid-Open No. 3-183724). In this induction heating coil, in order to heat even a narrow fillet part evenly, a crank (a part bent at a right angle) is formed in the central part of one conductor approaching the sliding surface including the fillet part. Therefore, one conductor is shifted from each other with this crank as a boundary.
[0007]
When the sliding surface including the fillet portion is heated to the quenching temperature by using this induction heating coil, one of the one conductors is shifted closer to one side of the sliding surface and one conductor is shifted. The other is kept close to the other side of the sliding surface, and the crankshaft is rotated in this state. Thereby, the sliding surface including a fillet part can be heated uniformly, and an equal hardening pattern will be obtained.
[0008]
[Problems to be solved by the invention]
By the way, a liquid path through which a coolant for cooling the conductor normally flows is formed inside the conductor of the induction heating coil. A large amount of coolant flows through the liquid path so that the conductor does not reach a high temperature. In particular, since a conductor approaching an object to be heated is likely to become high temperature, a sufficient amount of cooling liquid needs to flow inside the conductor.
[0009]
However, in the conductor in which the above crank is formed, the liquid path is bent at a substantially right angle at the crank portion, so that there is a problem that the coolant does not flow smoothly and the conductor cannot be cooled sufficiently.
[0010]
The conductor approaching the sliding surface including the fillet portion is connected to a high-frequency power source via another conductor connected to this conductor (referred to as “feed coil” in Japanese Patent Laid-Open No. Hei 3-183724). ing. Therefore, an alternating current also flows through the “feeding coil”, and a portion of the object to be heated (here, the crankshaft) located near the feeding coil is heated to a high temperature. When the part heated to this high temperature is a part that does not need to be hardened, this part may be deformed due to being heated to a high temperature. This deformation also deforms the entire object to be heated.
[0011]
In view of the above circumstances, it is a first object of the present invention to provide an induction heating coil that can heat a surface of an object to be heated evenly and can smoothly flow a large amount of coolant through the conductor to sufficiently cool the conductor. The purpose. In addition, in view of the above circumstances, a second object of the present invention is to provide an induction heating coil that suppresses deformation of an object to be heated without heating an unnecessary portion of the object to be heated to a high temperature.
[0012]
[Means for Solving the Problems]
In order to achieve the first object, the first induction heating coil of the present invention comprises:
(1) A heating conductor that approaches an arcuate surface formed on an object to be heated and induction-heats the surface, and extends in an arcuate shape following the surface;
(2) a connection conductor that is connected to a predetermined high-frequency power source and supplies AC power to the heating conductor;
(3) The heating conductor is characterized in that the shape of the cross section perpendicular to the arc direction is formed symmetrically with the central portion of the arc direction of the heating conductor as a boundary.
[0013]
Moreover, the second induction heating coil of the present invention for achieving the second object is as follows:
(4) one heating conductor that approaches an arcuate surface formed on the object to be heated and induction-heats the surface, and extends in an arcuate shape following the surface;
(5) A plurality of AC power supply conductors connected to both ends of the one heating conductor for supplying AC power to the one heating conductor;
(6) a connection conductor connected to the plurality of AC power supply conductors and connected to a predetermined high-frequency power source;
(7) The heating conductor is characterized in that the shape of the cross section perpendicular to the arc direction is formed symmetrically with the central portion of the arc direction of the heating conductor as a boundary.
[0014]
here,
(8) The plurality of AC power supply conductors may be composed of two or more conductors having the same length and the same cross-sectional area.
[0015]
Also,
(9) Instead of the heating conductor, a heating conductor may be used in which the shape of the cross section perpendicular to the arc direction is symmetrical with respect to a portion other than the central portion in the arc direction.
[0016]
As used herein, “symmetry” refers to a straight line that is parallel to the arc direction and that is line symmetric with respect to a straight line that passes through the center of the direction perpendicular to the arc direction, as shown in FIG. It means being.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The induction heating coil of the present invention will be described below with reference to the drawings.
[0018]
A first embodiment of the induction heating coil of the present invention will be described with reference to FIGS. 1 to 3.
[0019]
FIG. 1 is a perspective view showing the induction heating coil according to the first embodiment, and shows a state where a core is removed. 2 is a cross-sectional view schematically showing a state where the pin portion of the crankshaft is heated using the induction heating coil of FIG. 1, and FIG. 3 shows that the pin portion is about 90 ° from the state shown in FIG. It is sectional drawing which shows typically the state currently rotated and heated.
[0020]
The induction heating coil 10 has one heating conductor 20 that approaches the surface (sliding surface) 74 of the pin portion 72 of the crankshaft 70. The pin portion 72 has a cylindrical shape, and the surface 74 thereof has an arc shape (curved). As shown in FIG. 1, the heating conductor 20 extends in a semicircular arc shape (curves) following the surface of the pin portion 72. The heating conductor 20 includes a rectangular parallelepiped center portion 22 formed at the center portion in the arc direction, and a conductor portion 24 having a quarter arc shape formed on both sides of the center portion 22. , 26. The central portion 22 and the conductor portions 24 and 26 are integrally formed. The conductor portion 24 and the conductor portion 26 are symmetric with respect to the central portion 22. That is, the conductor part 24 and the conductor part 26 are formed so that the cross-sectional shape orthogonal to the arc direction is symmetrical with respect to the center part of the conductor parts 24 and 26 in the arc direction. Therefore, when the cross section of the heating conductor 20 is observed, the shape is changed from the middle of the curve. The induction heating coil 10 is usually made of copper or a copper alloy, but may be made of other highly conductive materials.
[0021]
The cross section in the circumferential direction of the conductor portion 24 has a generally trapezoidal shape, and the surface to be heated (inner peripheral surface) of the conductor portion 24 is a protrusion in which one side cross section of the conductor portion 24 protrudes in the conductor width direction. It has a portion 24b, and the other side is structured so as to be separated from the surface to be heated by inclining toward the direction opposite to the protruding portion 24b (the direction in which the base portion 24 is thinned).
[0022]
That is, the conductor portion 24 includes a trapezoidal base portion 24a and a protruding portion 24b protruding from the end portion of the base portion 24a closest to the surface 74 of the pin portion 72 toward the outside of the arc. The outer peripheral surface (circular outer peripheral surface) 24c of the base portion 24a is a flat circular arc. On the other hand, the inner peripheral surface (the inner peripheral surface of the arc) of the base portion 24a is substantially parallel to the outer peripheral surface 24c and the inclined surface 24d that descends in the direction opposite to the protruding portion 24b (the direction approaching the outer peripheral surface 24c). It consists of a plane 24e.
[0023]
In addition, an arc-shaped liquid path 24 f through which a cooling liquid for cooling the conductor part 24 flows is formed inside the conductor part 24. Such a liquid passage 24f is also formed in the central portion 22 and the conductor portion 26 as will be described later, and these liquid passages are formed continuously without being bent. For this reason, a large amount of cooling liquid flows smoothly through these liquid paths, whereby the heating conductor 20 is sufficiently cooled. As a result, the durability of the heating conductor 20 is improved and the life of the induction heating coil 10 is extended.
[0024]
Similarly to the conductor portion 24, the conductor portion 26 is also formed with a base portion 26a, a protruding portion 26b, an outer peripheral surface 26c, an inclined surface 26d, a flat surface 26e, and a liquid path 26f. However, the shape of the base portion 26 a is symmetrical with respect to the base portion 24 a with respect to the central portion 22. Further, the protruding portion 26b protrudes on the side opposite to the protruding portion 24b. Furthermore, the inclined surface 26d is inclined in a direction opposite to the inclined surface 24d. As a result, as described above, the conductor portion 26 is symmetrical with the conductor portion 24 with respect to the central portion 22. Here, although the central portion 22 is formed at a position where the arc-shaped heating conductor 20 is divided into two equal parts, a plurality of central portions 22 may be formed so as to be divided into three equal parts or more. Further, the central portion 22 may be formed at a position where the heating conductor 20 is divided into 2: 1, 3: 1, or the like. The number of central portions 22 formed at which position is determined according to the shape of the object to be heated and the surface to be heated.
[0025]
As shown in FIG. 1, a rectangular parallelepiped conductor 28 is connected to one end portion of the conductor portion 24 (the end portion on the side opposite to the central portion 22). The conductor 28 protrudes toward the outside of the arc of the heating conductor 20. Similarly, a rectangular parallelepiped conductor 30 is also connected to one end portion of the conductor portion 26 (the end portion on the side opposite to the central portion 22). This conductor 30 also protrudes toward the outside of the arc of the heating conductor 20.
[0026]
An AC power supply conductor 40 that supplies AC power (AC current) to the heating conductor 20 is connected to the end of the conductor 28 opposite to the end connected to the conductor portion 24. The AC power supply conductor 40 includes two conductor portions 42 and 44 parallel to each other. These two conductor portions 42 and 44 have a substantially arc shape apart from the conductor portion 24 outside the conductor portion 24 having a quarter arc shape. The two conductor portions 42 and 44 are concentric and are also substantially concentric with the conductor portion 24. Moreover, the shape of the cross section of the two conductor parts 42 and 44 is the same. In addition, as shown in FIGS. 2 and 3, liquid paths 42a and 44a connected to the liquid path 24f are formed inside the two conductor portions 42 and 44, respectively. Here, the two conductor portions 42 and 44 are used, but three or more conductor portions may be used.
[0027]
Similarly to the above, the AC power supply conductor 50 for supplying AC power to the heating conductor 20 is connected to the end of the conductor 30 opposite to the end connected to the conductor portion 26. . The AC power supply conductor 50 includes two conductor portions 52 and 54 that are parallel to each other. These two conductor portions 52 and 54 have a substantially arc shape apart from the conductor portion 26 outside the conductor portion 26 having a quarter arc shape. The two conductor portions 52 and 54 are concentric and are also substantially concentric with the conductor portion 26. Moreover, the shape of the cross section of the two conductor parts 52 and 54 is the same. As shown in FIGS. 2 and 3, liquid passages 52a and 54a connected to the liquid passage 26f are formed inside the two conductor portions 52 and 54, respectively.
[0028]
Of the two conductor portions 42 and 44 described above, the end portion opposite to the end portion connected to the conductor 28 is connected to a connection conductor 60 connected to the high frequency power supply 80. A supply pipe 62 for supplying the coolant to the heating conductor 20 is connected to the connection conductor 60. The liquid path 62 a formed in the supply pipe 62 is branched and connected to the liquid paths 42 a and 44 a formed in the two conductor portions 42 and 44. Of the two conductor portions 52 and 54 described above, the end portion on the side opposite to the end portion connected to the conductor 30 is connected to the connection conductor 64 connected to the high-frequency power source 80. A supply pipe 66 for supplying the coolant to the heating conductor 20 is connected to the connection conductor 64. A liquid path 66a formed in the supply pipe 66 is branched and connected to liquid paths 52a and 54a formed in the two conductor portions 52 and 54, respectively.
[0029]
The alternating current supplied from the high-frequency power supply 80 to the connecting conductor 60 is divided into two halves by the two conductor portions 42 and 44. Accordingly, each of the two conductor portions 42 and 44 passes only an alternating current having a value half that of the alternating current supplied to the connecting conductor 60. For this reason, the density of the alternating magnetic flux produced | generated by the alternating current which each flows into each conductor part 42 and 44 is low. As a result, only a low density eddy current is induced in the members and parts in the vicinity of the conductor portions 42 and 44, and these members and parts are not heated to a high temperature. Therefore, deformation due to heating of the parts and members in the vicinity of the conductor portions 42 and 44 hardly occurs, and deformation of the induction heating coil 10 as a whole can be suppressed.
[0030]
The alternating currents flowing through the conductor portions 42 and 44 are combined into one by the conductor 28 and flow into the heating conductor 20 as it is. As a result, the density of the alternating magnetic flux generated by the alternating current flowing through the heating conductor 20 is high, and the surface 74 of the pin portion 72 and its corner portion (R portion) in FIG. 2 are heated to a desired temperature. In this case, when the surface 74 and its corners are heated to the quenching temperature and rapidly cooled, a quenching pattern (quenched hardened layer) 76 having a uniform thickness is obtained as shown in FIGS. This quench-hardened layer 76 has a uniform thickness in any part, and does not become a hardened layer having a deep central portion and shallow both end portions as in the prior art. The alternating current flowing through the heating conductor 20 passes through the conductor 30 and is divided by the conductor portions 52 and 54, and returns to the alternating-current power supply 80 via the connection conductor 64.
[0031]
Since the crankshaft 70 is rotating, the protrusions 24b and 26b alternately heat both corners of the surface 74 as shown in FIGS. Thereby, both corners of the surface 74 are uniformly induction-heated, and a quenching pattern 76 having substantially the same depth is formed at any corner. In the above example, the AC power supply conductors 40 and 50 are each divided into two, but may be divided into a plurality of three or more. Further, a core (magnetic body) 82 is attached to the surface of the heating conductor 20 other than the surface facing the surface 74 of the pin portion 72 and the tip surface of the protruding portion 24b. By sticking the core 82 in this way, the alternating magnetic flux penetrating the portion other than the surface 74 of the pin portion 72 is weakened.
[0032]
A second embodiment of the induction heating coil of the present invention will be described with reference to FIGS.
[0033]
FIG. 4 is a perspective view showing the induction heating coil of the second embodiment, and shows a state where the core is removed. FIG. 5 is a cross-sectional view schematically showing a state in which the pin portion of the crankshaft is heated using the induction heating coil of FIG. In these drawings, the same components as those shown in FIGS. 1 to 3 are denoted by the same reference numerals.
[0034]
The induction heating coil 100 of the second embodiment is similar to the induction heating coil 10 of the first embodiment. However, the shape of the heating conductor 120 of the induction heating coil 100 is slightly different from the shape of the heating conductor 20 of the induction heating coil 10. The difference is that the heating conductor 20 of the first embodiment is formed with a protrusion 26b, but such a protrusion 26b is not formed on the heating conductor 120 of the second embodiment. is there. The reason why the protrusions 26 b are not formed on the heating conductor 120 is that the induction heating coil 100 does not induction-heat the corners of the surface 74 of the pin portion 72. For this reason, when the surface 74 of the pin portion 72 is heated to the quenching temperature and rapidly cooled using the induction heating coil 100, a cured pattern (quenched cured layer) 78 as shown in FIG. 5 is obtained. This hardened and hardened layer 78 has a uniform thickness in every portion, and does not become a hardened layer having a deep central portion and shallow both ends as in the prior art.
[0035]
As described above, the heating conductor 120 has a rectangular parallelepiped center portion 122 formed in the arc-shaped center portion and a quarter arc shape formed on both sides of the center portion 122. Conductor portions 124 and 126. The central portion 122 and the conductor portions 124 and 126 are integrally formed. The conductor portion 124 and the conductor portion 126 are symmetric with respect to the central portion 122. That is, the conductor part 124 and the conductor part 126 are formed so that the cross-sectional shapes orthogonal to the arc direction are symmetrical with respect to the center part of the conductor parts 124 and 126 in the arc direction. Therefore, when the cross section of the heating conductor 120 is observed, the shape is changed from the middle of the curve. The induction heating coil 100 is usually made of copper or a copper alloy, but may be made of another highly conductive material.
[0036]
The conductor portion 124 is a pentagonal shape close to a trapezoid. The outer peripheral surface (circular outer peripheral surface) 124a of the conductor portion 124 is a flat circular arc. On the other hand, the inner peripheral surface (the inner peripheral surface of the arc) of the conductor portion 124 is composed of a flat surface 124b substantially parallel to the outer peripheral surface 124a and an inclined surface 124c descending in a direction approaching the outer peripheral surface 124a.
[0037]
In addition, an arc-shaped liquid path 124 d through which a cooling liquid for cooling the conductor part 124 flows is formed inside the conductor part 124. Such a liquid path 124d is also formed in the central part 122 and the conductor part 126, and these liquid paths are formed continuously without being bent. For this reason, a large amount of coolant flows smoothly in these liquid paths, and thereby the heating conductor 120 is sufficiently cooled. As a result, the durability of the heating conductor 120 is improved and the life of the induction heating coil 100 is extended.
[0038]
Similarly to the conductor portion 124, the conductor portion 126 is also formed with an outer peripheral surface 126a, a flat surface 126b, an inclined surface 126c, and a liquid path 126d. However, the shape of the conductor portion 126 is symmetrical with respect to the conductor portion 124 with respect to the central portion 122. Further, the flat surface 126b is located on the opposite side of the flat surface 124b with the central portion 122 interposed therebetween. Further, the inclined surface 126c is inclined in a direction opposite to the inclined surface 124c. As a result, as described above, the conductor portion 126 is symmetric with respect to the conductor portion 124 with respect to the central portion 122. Here, although the central portion 122 is formed at a position where the arc-shaped heating conductor 120 is divided into two equal parts, a plurality of central portions 122 may be formed so as to be divided into three equal parts or more. Further, the central portion 122 may be formed at a position where the heating conductor 120 is divided into 2: 1, 3: 1, or the like. The number of central portions 122 formed at which position is determined according to the shape of the object to be heated and the surface to be heated.
[0039]
The induction heating coil 100 has the same structure as the induction heating coil 10 except that the protrusions 24b and 26b formed on the induction heating coil 10 are not provided as described above. It is the same as that of 10.
[0040]
【The invention's effect】
As described above, since the first induction heating coil of the present invention has one heating conductor, even if a narrow fillet portion is formed on the arcuate surface of the crankshaft, the heating conductor is formed on the narrow fillet portion. So that the surface and the like can be evenly induction heated. In addition, since the shape of the heating conductor in the arc direction is symmetrical with respect to the central portion in the arc direction, the sliding surface including the fillet portion of the crankshaft and the corner portion (R portion) are induction-heated. In this case, a protrusion approaching one of the two corners is formed on one part with the central part in the arc direction of the heating conductor as a boundary, and on the part opposite to this one part, A protrusion approaching the other one of the two corners is formed. Thereby, two corners can be induction-heated equally. Further, the heating conductor extends in an arc shape, and since no crank is formed on the heating conductor, there is no bent portion. For this reason, inside the heating conductor, the liquid path through which the coolant flows can be formed almost straight without bending. Unlike such a bent liquid path, a large amount of coolant flows smoothly in such a liquid path without bending, so that the heating conductor can be sufficiently cooled. As a result, the durability of the heating conductor is improved and the life of the induction heating coil can be extended.
[0041]
In the second induction heating coil of the present invention, since there is one heating conductor, even if a narrow fillet portion is formed on the arcuate surface of the crankshaft, the heating conductor can be inserted into the narrow fillet portion. The surface and the like can be induction-heated. Further, the heating conductor extends in an arc shape, and since no crank is formed on the heating conductor, there is no bent portion. For this reason, inside the heating conductor, the liquid path through which the coolant flows can be formed almost straight without bending. Unlike such a bent liquid path, a large amount of coolant flows smoothly in such a liquid path without bending, so that the heating conductor can be sufficiently cooled. As a result, the durability of the heating conductor is improved and the life of the induction heating coil can be extended. In addition, since a plurality of AC power supply conductors are connected to the heating conductor in order to supply AC power to one heating conductor, the value of the AC current flowing through each AC power supply conductor is: It is lower than the value of the alternating current flowing through one heating conductor. For this reason, depending on the alternating current flowing through each AC power supply conductor, a portion of the object to be heated located near each AC power supply conductor is not induction-heated to a high temperature. As a result, only the portion where the heating conductor approaches is induction heated to a predetermined temperature, and the portion where the AC power supply conductor approaches does not need to be induction heated to a high temperature. That is, since it is not necessary to heat a portion that does not need to be induction heated to a high temperature, distortion and deformation of the heated object after heating can be reduced.
[0042]
Here, in the case where the plurality of AC power supply conductors are composed of two or more conductors having the same length and the same cross-sectional area, the value is not more than half of the value of the AC current flowing through the heating conductor. AC current flows through each of the two or more AC power supply conductors. For this reason, the value of the eddy current generated due to the AC current flowing through each AC power supply conductor is small. Therefore, the part located in the vicinity of the AC power supply conductor in the object to be heated is not induction-heated to a high temperature. As a result, distortion and deformation of the heated object after heating can be further reduced.
[0043]
In addition, when the heating conductor is used instead of the heating conductor, the shape of the cross section perpendicular to the arc direction is symmetrical with respect to the portion other than the central portion in the arc direction. Since the cross-sectional shape of the object is changed from the middle of the arc, by changing the cross-sectional shape according to which part of the fillet portion of the object to be heated is induction-heated, induction heating is performed. The desired part can be induction-heated evenly. For example, when induction heating the corners on both sides of the bottom of the fillet part, a protrusion approaching one of the two corners on one part with the substantially center of the curved part of the heating conductor as a boundary And a protrusion approaching the other one of the two corners is formed in a portion opposite to the one portion. Thereby, two corners can be induction-heated equally.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an induction heating coil according to a first embodiment, showing a state where a core is removed.
2 is a cross-sectional view schematically showing a state where a pin portion of a crankshaft is heated using the induction heating coil of FIG.
3 is a cross-sectional view schematically showing a state where a pin portion is heated by rotating about 90 ° from the state shown in FIG.
FIG. 4 is a perspective view showing an induction heating coil according to a second embodiment, showing a state where a core is removed.
5 is a cross-sectional view schematically showing a state where a pin portion of a crankshaft is heated using the induction heating coil of FIG.
[Explanation of symbols]
10, 100 Induction heating coils 20, 120 Heating conductors 22, 122 Central portions 24, 26, 124, 126 Conductor portions 24f, 26f, 124d, 126d Liquid passages 40, 50 AC power supply conductors 60, 64 Connecting conductors 70 Crankshaft 72 Crankshaft pin 74 Pin surface 80 High frequency power supply

Claims (3)

被加熱物に形成された円弧状の表面に接近してこの表面を誘導加熱する、該表面に倣って円弧状に延びる1本の加熱用導体と、
該1本の加熱用導体の両端部それぞれに接続された、該1本の加熱用導体に交流電力を供給するための一対の交流電力供給用導体と、
該一対の交流電力供給用導体に接続されると共に所定の高周波電源に接続される接続用導体とを備え、
前記1本の加熱用導体は、冷却液が流れる円弧状の液路がその内部に形成されたものであり、
前記一対の交流電力供給用導体及び前記接続用導体は、前記液路に接続された液路がその内部に形成されたものであり、
前記一対の交流電力供給用導体それぞれは、円弧状の前記1本の加熱用導体の円弧外側に該1本の加熱用導体から離れて配置されたものであって、互いに並行な複数本の導体からなるものであり、さらに、
前記1本の加熱用導体は、円弧方向の中央部に形成された中央部と、この中央部を挟んでその両側に形成された2つの導体部からなるものであり、
前記2つの導体部のうちの1つの導体部の被加熱物対向面は、その円弧方向に直交する導体部幅方向においてこの導体部幅方向の一端側から他端側になるほど被加熱物から離れるように傾斜したものであり、
前記2つの導体部のうちの前記1つの導体部とは異なる他の1つの導体部の被加熱物対向面は、前記導体部幅方向の前記他端側から前記一端側になるほど被加熱物から離れるように傾斜したものであることを特徴とする誘導加熱コイル。
One heating conductor extending in an arc following the surface, approaching the arc-shaped surface formed on the object to be heated and inductively heating the surface;
A pair of AC power supply conductors connected to both ends of the one heating conductor for supplying AC power to the one heating conductor;
A connection conductor connected to the pair of AC power supply conductors and connected to a predetermined high-frequency power source;
The one heating conductor is formed with an arc-shaped liquid passage through which a coolant flows,
The pair of AC power supply conductors and the connection conductors are formed with a liquid path connected to the liquid path therein.
Each of the pair of AC power supply conductors is disposed on the outer side of the arc of the arc-shaped heating conductor and is separated from the heating conductor, and a plurality of conductors parallel to each other. In addition,
The one heating conductor is composed of a central portion formed in the central portion in the arc direction and two conductor portions formed on both sides of the central portion.
The surface to be heated of one conductor portion of the two conductor portions is separated from the object to be heated toward the other end side from one end side in the conductor portion width direction in the conductor portion width direction orthogonal to the arc direction. Is inclined like
The object-to-be-heated object facing surface of another conductor part different from the one conductor part of the two conductor parts is closer to the one end side from the other end side in the conductor part width direction. An induction heating coil characterized by being inclined so as to leave .
前記2つの導体部のうちの1つの導体部の前記一端側には、前記導体部幅方向に向かって突出した突出部が形成されており、
前記2つの導体部のうちの前記1つの導体部とは異なる前記他の1つの導体部の前記他端側には、前記導体部幅方向に向かって突出した突出部が形成されたことを特徴とする請求項1に記載の誘導加熱コイル。
A protruding portion that protrudes in the width direction of the conductor portion is formed on the one end side of one of the two conductor portions,
A protruding portion that protrudes in the width direction of the conductor portion is formed on the other end side of the other conductor portion different from the one conductor portion of the two conductor portions. The induction heating coil according to claim 1.
前記一対の交流電力供給用導体はそれぞれ、
同じ長さで同じ断面積を有する2本以上の導体からなるものであることを特徴とする請求項1又は2に記載の誘導加熱コイル。
Each of the pair of AC power supply conductors is
The induction heating coil according to claim 1 or 2, comprising two or more conductors having the same length and the same cross-sectional area.
JP2000024672A 2000-01-28 2000-01-28 Induction heating coil Expired - Fee Related JP3810606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024672A JP3810606B2 (en) 2000-01-28 2000-01-28 Induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024672A JP3810606B2 (en) 2000-01-28 2000-01-28 Induction heating coil

Publications (2)

Publication Number Publication Date
JP2001210461A JP2001210461A (en) 2001-08-03
JP3810606B2 true JP3810606B2 (en) 2006-08-16

Family

ID=18550617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024672A Expired - Fee Related JP3810606B2 (en) 2000-01-28 2000-01-28 Induction heating coil

Country Status (1)

Country Link
JP (1) JP3810606B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479987B2 (en) * 2010-04-15 2014-04-23 トヨタ自動車株式会社 Quenching coil

Also Published As

Publication number Publication date
JP2001210461A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP4940132B2 (en) Multi-frequency heat treatment of processed products by induction heating
JP3621685B2 (en) Inner surface induction heating coil
EP2387863B1 (en) Induction heat treatment of complex-shaped workpieces
JP6282294B2 (en) Inductors for single-shot induction heating of composite workpieces
JP3810606B2 (en) Induction heating coil
US4549057A (en) Flux concentrator assembly for inductor
JP3595353B2 (en) Heating inductor
JP4572039B2 (en) High frequency induction heating device
JP4236108B2 (en) Inductor for heating inner surface of bottomed hole
JP3761328B2 (en) Induction heating coil
JP3140986B2 (en) Induction hardening coil
JP2005011625A (en) Induction heating device
JP3578795B2 (en) Internal hardening method of cylinder block
JPH10324910A (en) Induction hardening coil
JP2004238724A (en) High-frequency induction heating coil for crankshaft
JPH0711435Y2 (en) Half open saddle type high frequency heating coil for crankshaft R firing
JP2004156088A (en) High frequency induction heating coil for flat-hardening crankshaft
JP4364457B2 (en) Induction heating coil
JP3578785B2 (en) Induction heating coil
JPH0136905Y2 (en)
JPS63279591A (en) Inductor for metal pipe heating
JPH07242933A (en) Semi-opening induction hardening coil
JP3767327B2 (en) Induction heating coil
JPH07226292A (en) High frequency induction heating coil
JPH04259788A (en) High frequency induction heating coil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees