JP3809526B2 - Small animal behavior measurement and control device - Google Patents
Small animal behavior measurement and control device Download PDFInfo
- Publication number
- JP3809526B2 JP3809526B2 JP2003165978A JP2003165978A JP3809526B2 JP 3809526 B2 JP3809526 B2 JP 3809526B2 JP 2003165978 A JP2003165978 A JP 2003165978A JP 2003165978 A JP2003165978 A JP 2003165978A JP 3809526 B2 JP3809526 B2 JP 3809526B2
- Authority
- JP
- Japan
- Prior art keywords
- flat plate
- animal
- control device
- micro
- behavior
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、土壌や動植物組織など三次元的な微細構造を有する空間内での微小動物(原生動物、後生動物など)の行動(学習、走性、忌避、探索など)を計測又は制御するための装置に関する。この装置は自然に近い行動環境を人工的に作り出すことにより容易かつ高い再現性で微小動物の行動学的解析を可能にするため、生物学、農学、環境工学などの分野で利用できる。
【0002】
【従来の技術】
微小動物の生息環境は主に土壌または液中であることから、微小動物の行動を計測するための行動空間として寒天培地(非特許文献1)、培養液(非特許文献2)、土壌(非特許文献3)、微粒子充填容器(非特許文献4)などが用いられる。それらの内部あるいは表層での微小動物の行動を顕微鏡による観察あるいは媒体を通過して外部に現れた頭数などから移動速度、行動半径、行動軌跡、刺激に対する応答時間などを計測する手法が広く使われてきた。また、それらの行動空間内に様々な化学組成を有する溶液を添加して、微小動物の行動を制御して計測するなどの研究が行われてきた。
【0003】
【非特許文献1】
PLINE, M. and DUSENBERY, D. B. 1987. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera - computer tracking. Journal of Chemical Ecology 13: 873-888.
【0004】
【非特許文献2】
KENNEDY, M. J. 1979. The responses of miracidia and cercariae of Bunodera mediovitellata (Trematoda: Allocreadiidae) to light and gravity. Canadian Journal of Zoology 57: 603-609.
【0005】
【非特許文献3】
WALLACE, H. R. 1958. Movement of eelworms - 1. The influence of pore size and moisture content of the soil on the migration of larvae of the beet eelworm, Heterodera schachtii Schmidt. Annals of Applied Biology 46: 74-85.
【0006】
【非特許文献4】
ROBINSON, A. F. 1994. Movement of five nematode species through sand subjected to natural temperature gradient fluctuations. Journal of Nematology 26: 46-58.
【0007】
【発明が解決しようとする課題】
はじめに線虫の行動軌跡や行動半径、移動速度、刺激への応答時間を計測する場合に従来使われている寒天培地法を例示して説明する。この方法は行動を簡便かつ詳細に観察できるという利点がある反面、土壌あるいは動植物組織中で生息する線虫の自然な行動を必ずしも反映したものとはならないという問題点がある。すなわち、土壌や動植物組織は障害物と空隙からなる三次元的な微細構造物であり、かつその内部では毛細管現象などによる溶液の移動が生じていることから、自然状態の線虫はそれらの物理的要因を利用して行動していると考えられる。しかし寒天培地には上述のような三次元的微細構造がないことや毛細管現象による溶液移動がない、などの点で線虫本来の自然な行動を計測しているとは言い難い。さらに、様々な化学組成に対する応答やそれらによる行動制御を実施する際には寒天培地上に溶液を滴下して実験を行うが、平坦な空間で液浸状態の線虫は行動が制限される、開放系であるために浸透や蒸散などにより作用濃度の制御が困難、などの問題がある。
【0008】
一方、実際の生息環境に近い状態での計測方法としては、線虫の易動度のみを単純に計測する場合に用いられる土壌や微粒子を充填した容器による方法がある。この方法では、自然な状態での易動度を計測できるという利点がある反面、行動を外部からいっさい観察できない、容器内の物理的条件(充填状態、気泡の有無など)を均一に制御するのが難しい、などの理由により容器がブラックボックス化してしまうという問題点がある。
【0009】
この発明は、前述したような当該技術の有している課題を解決するために、障害物と空隙からなる三次元的な微細構造を有し、かつそれらの形態、サイズ、物理的条件などを土壌や動植物組織内部のような環境に近くなるように制御された人工的な行動環境を提供することにより、三次元的な微細構造内部での微小動物の行動を自然な状態に近づけて簡便に計測制御できる装置を提供するものである。
【0010】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意検討を重ねた結果、微細精密加工技術を援用して平板上にミクロンオーダーでサイズや形状を制御した三次元微細構造物を形成し、かつ該微細構造面に対して上から平板状の蓋を密着させることにより、土壌や動植物組織内のような障害物と空隙からなる三次元的な微細構造を有する行動空間を作り出すことを着想した。こうして形成された空間内に微小動物を導入することにより微細構造内に微小動物を閉じこめ、かつ閉空間であることを利用して物理化学的条件を精密に制御しながら、顕微鏡などにより自然状態に近い形で三次元的な微細構造内での行動を簡便かつ詳細に計測制御できることを見いだし、本発明を完成した。
【0011】
即ち、本発明は、以下の(1)〜(7)の発明を含む。
(1)相互に連結する複数の微細な凹型構造が表面に形成されている第一の平板と、第一の平板の凹型構造面と接し、前記凹型構造の開口部を覆う第二の平板とから構成され、凹型構造内に微小動物を導入してその行動を計測又は制御することのできる微小動物行動計測制御装置。
(2)第一の平板と第二の平板を収納することのできる容器を有する、(1)記載の微小動物行動計測制御装置。
(3)導入する微小動物が、後生動物又は原生動物である、(1)又は(2)記載の微小動物行動計測制御装置。
(4)第二の平板に微細電極が形成されている、(1)〜(3)のいずれか一つに記載の微小動物行動計測制御装置。
(5)凹型構造の深さと最大幅が0.02mm以上である、(1)〜(4)のいずれか一つに記載の微小動物行動計測制御装置。
(6)第一の平板又は第二の平板に貫通孔が設けられている、(1)〜(5)のいずれか一つに記載の微小動物行動計測制御装置。
(7)第一の平板及び第二の平板が透明である、(1)〜(6)のいずれか一つに記載の微小動物行動計測制御装置。
【0012】
【発明の実施の形態】
本発明の微小動物行動計測制御装置は、相互に連結する複数の微細な凹型構造が表面に形成されている第一の平板と、第一の平板の凹型構造面と接し、前記凹型構造の開口部を覆う第二の平板とから構成される。また、この装置は、第一の平板と第二の平板を収納する容器を有していてもよい。
【0013】
凹型構造の開口部を第二の平板で覆うことにより、障害物と空隙からなる微細構造空間を形成させることができる。本発明の装置では、この微細構造空間の障害物や空隙の大きさ、形状、空隙表面の性質、空隙を満たす媒質の種類やその他の物理化学的条件を自在かつ精密に設定可能であり、それら環境条件の制御を通じて微小動物の行動制御も行える。
【0014】
また、第一の平板又は第二の平板に貫通孔を設けることで、微細構造空間内に微小動物、それらの必須栄養物、その他の化学物質などを導入・循環させることが可能であり、両平板を密閉可能な容器に格納することにより、精密に微細構造空間の環境制御を行うことが可能である。
【0015】
第一の平板の材質は可塑性があればどのようなものでもよいが、凹型構造を形成するための原版との親和性が高い、化学反応性が低い、透明性が高いなどの特性を有するものが好ましい。このような材料としては、ポリジメチルシロキサン、ポリジメチルシランなどを例示できる。
【0016】
第一の平板の形状及び寸法は、微小動物が行動可能な微細構造空間が形成できるようなものであれば特に限定されない。
【0017】
凹型構造は、微細加工樹脂平板成型用の原版を使用して形成できる。微細加工樹脂平板成型用の原版を製造する方法は、ミクロンオーダーの加工精度が保証される三次元微細加工法であればどのようなものでもよいが、微小動物の大きさを考慮して0.01mm以上の大きさを有する微細構造を形成できる方法であることが好ましい。製造方法として、シリコン基板を用いた場合にはシリコン結晶異方性エッチング法、収束イオンビーム法、金属基板を用いた場合にはメタルエッチング法、電鋳法などを例示できる。
【0018】
第一の平板を成型する方法は特に規定しないが、ガラス、雲母、または金属などの平坦な板の上に、原版を接着剤、磁力、または毛細管現象により密着固定させて、該原版を被覆するように第一の平板材料を滴下して硬化せしめることが好ましい。
【0019】
第一の平板には、相互に連結する複数の微細な凹型構造が形成されている。凹型構造の形状は、相互に連結することにより微小動物に対する適当な障害物と空隙になり得るものであればどのようなものでもよい。凹型構造の寸法は、深さ及び最大幅が0.02mm以上であることが好ましいが、微小動物の大きさや行動形態に応じてこれより小さくてもよい。例えば、植物寄生性線虫は通常体長が約0.4mm、体幅が約0.02mmであることから、凹型構造の寸法は、図1に示すような寸法で深さを0.05mmとしてもよい。複数の凹型構造のそれぞれが異なる形状及び寸法であってもよいが、すべてが同一の形状及び寸法であることが好ましい。凹型構造は第一の平板上にランダムに配置されていてもよいが、縦横に等間隔に整然と配置されていることが好ましい。凹型構造を形成させる範囲は特に限定されないが、図2に示すように第一の平板の中央付近とすることが好ましい。
【0020】
第二の平板の材質は、顕微鏡などで観察するために透明かつ平坦度の高いものが好ましく、また、化学反応性の低いものが好ましい。具体的には、ガラス、石英、アクリル樹脂などを例示できる。
【0021】
第二の平板には微小電極を形成させていてもよく、これにより微小動物を電気的に検出することや電気的に行動制御することが可能になる。微小電極を構築する場合、クロム、白金、インジウムスズ酸化物などのパターンを第二の平板上に形成する必要があるため、これらのパターン形成工程に耐えられる材質である必要がある。また、微小電極表面に電気的絶縁性を付与する必要がある場合には、透明絶縁性樹脂で電極部の一部または全面を被覆することが好ましい。
【0022】
第二の平板の形状及び寸法は、第一の平板の凹型構造部分の開口部を覆うことができるものであればできる特に限定されない。
【0023】
容器は第一の平板と第二の平板を収納することのできるものであればどのようなものでもよい。材質は、顕微鏡などで観察するために、第一の平板と密着する部分が透明かつ平坦度の高いものが好ましく、また、化学反応性の低いものが好ましい。このような材質としてはガラス、石英、アクリル樹脂などを例示できる。
【0024】
計測及び制御の対象とする微小動物は特に限定されず、後生動物、原生動物のいずれでもよい。原生動物としては、繊毛虫類、肉質虫類、鞭毛虫類などを例示でき、後生動物としては、線虫類、吸虫類、原虫類などを例示できる。計測及び制御の対象とする最も好ましい微小動物は線虫類である。
【0025】
以下に本発明の装置の一態様を図面により説明する。
【0026】
図1は第一の平板上に形成する凹型構造の寸法図、図2は凹型構造を形成した第一の平板の寸法図、図3は第一の平板と第二の平板を収納する容器の寸法図、図4は第二の平板の寸法図、図5は微小動物行動計測装置の組み立て図、図6は微小動物行動計測装置の使用例を示す図である。
【0027】
図1において、黒色部分は樹脂平板面よりも0.05mmの深さで均一に凹んだ部分を表す。図2において、斜線の正方形部分は、前述の凹みが縦横に整列した状態で連なっている領域を表す。斜線の正方形の外側の正方形は、均一に凹んだ部分を表している。図3において、上側の図は第一の平板を収納・固定するための円形空間を形成した円形容器の上面図で下側の図はその側面図示している。図4において、上側の図は第二の平板の上面図で下側がその側面図を示している。図5は、図2〜図4までの部品の組み合わせ方を示し、51は第二の平板、52は第一の平板、53は容器である。第一の平板を容器内に収納した後、第二の平板を第一の平板に密着させ、かつ容器上端に突き当てるように上からはめ込んで固定する。図6において、図5の微小動物行動計測装置を用いた顕微鏡観察による計測方法が図示されており、61は微小動物導入用送液管、62は溶液注入管、63は溶液送出管、64は微小動物行動計測装置、65は倒立型顕微鏡、66は対物レンズである。
【0028】
以下、微小動物として線虫を用い、顕微鏡観察により線虫の移動速度を計測する場合を例として、微小動物の行動計測方法を説明する。最初に、容器の第一の平板を収納する部分に蒸留水を入れた状態で、凹型構造面を上にして第一の平板を沈める。次に、第二の平板を容器上端に突き当てるようにはめ込み、第一の平板を容器と第二の平板にはさみ、しっかりと密着させる。これにより、微小動物が三次元微細構造内から容器内に漏れないような構造になる。微小動物導入用送液管、溶液注入管、溶液送出管を取り付けて蒸留水中に懸濁された線虫を微小動物導入用送液管からマイクロピペットにより注入することにより、線虫は自重により沈降して微細構造面に到達する。第二の平板に設けられている微小動物導入用送液管、溶液注入管、溶液送出管の貫通孔にあたっている微細構造面では上方が解放空間になっているため、線虫の行動は微細構造の制約無しに行動することができるが、貫通孔部分から外れたところでは線虫は微細構造の凹型部分に沿って行動する。図6に示すように倒立顕微鏡の試料台にのせて対物レンズを通して微細構造面上での線虫の行動を観察することができる。この状態で線虫の行動を制御するために、たとえば餌となる物質(植物組織や動物組織の粉砕物)、光照射、電磁気的刺激、振動、溶液中の溶存ガス濃度制御、溶液流動などを与えることもできる。行動の計測として、たとえば線虫の移動速度を計測する場合には、顕微鏡画像を記録装置に保存しておき、一定時間内に線虫が通過した凹型構造の数を数えることで移動距離を計算し、時間でわり算することにより簡便に計測できる。あるいは画像処理により線虫の行動軌跡を自動追尾してリアルタイムで線虫の移動速度を計測することも可能である。
【0029】
【実施例】
図1に示した凹型構造を図2に示した第一の平板上に構築したものを用いて図6の構成で石英製の容器に格納して計測を実施した。第一の平板の材料はポリジメチルシランを用い、シリコン結晶異方性エッチング法により製造した原版から厚さ1mm、直径20mmの透明な第一の平板を作製した。計測対象として昆虫寄生線虫Steinernema carpocapsaeの感染体幼虫をシャーレ中で蒸留水に懸濁した試料を用いた。実体顕微鏡で虫体の存在を確認しながらマイクロピペットにより5×10-3mlの蒸留水と共に虫体を吸引し、図6の微小動物導入用送液管内に吐出して線虫を微細構造面に導入した。導入された線虫は外部からの光刺激をうけて活発に活動し、凹型構造内を移動する様子を倒立顕微鏡に取り付けたCCDカメラにより記録した。線虫の移動軌跡解析のために、記録した動画像に対して画像処理を行うことにより全画像中から虫体の画像だけを抽出して重ね合わせた結果、図7のように行動していることが明らかとなった。また移動速度は10秒間に移動した凹型構造の数を数えることにより、最も早く移動する線虫の場合には約0.5mm/秒と計測することができた。
【0030】
【発明の効果】
以上説明したように、本発明を用いることにより、土壌や動植物組織など三次元的な微細構造を有する空間内での微小動物(原生動物、後生動物など)の行動(学習、走性、忌避、探索など)を計測制御することができる。この装置は自然に近い状態で容易かつ高い再現性で微小動物の行動学的解析を可能にすることから、生物学、農学、環境工学などの分野で生物学的環境指標の計測装置として利用できる。
【図面の簡単な説明】
【図1】第一の平板上に形成されている凹型構造の寸法図(深さ0.05mm)。
【図2】凹型構造を形成した第一の平板の寸法図(板厚1mm)。
【図3】第一の平板と第二の平板を収納する容器の寸法図。
【図4】第二の平板の寸法図。
【図5】微小動物行動計測装置の組み立て図。
【図6】微小動物行動計測装置の使用例を示す図。
【図7】微小動物行動計測装置内での線虫の移動軌跡画像解析結果を示す図。
【符号の説明】
51 第二の平板
52 第一の平板
53 容器
61 微小動物導入用送液管
62 溶液注入管
63 溶液送出管
64 微小動物行動計測装置
65 倒立型顕微鏡
66 対物レンズ[0001]
BACKGROUND OF THE INVENTION
The present invention measures or controls the behavior (learning, chemotaxis, avoidance, search, etc.) of minute animals (protozoa, metazoans, etc.) in a space having a three-dimensional microstructure such as soil and animal and plant tissues. Relating to the device. This device can be used in fields such as biology, agriculture, and environmental engineering because it enables easy and highly reproducible behavioral analysis of minute animals by artificially creating a behavioral environment close to nature.
[0002]
[Prior art]
Since the habitat of micro-animals is mainly in soil or liquid, the agar medium (Non-patent Document 1), culture medium (Non-patent Document 2), and soil (non-patent document 2) are used as action spaces for measuring the behavior of micro animals. Patent Document 3), a fine particle filled container (Non-Patent Document 4), and the like are used. A method of measuring movement speed, action radius, action trajectory, response time to stimulus, etc. from observation of a micro animal in the inside or surface layer with a microscope or the number of heads appearing outside through a medium is widely used. I came. In addition, studies have been made such as adding solutions having various chemical compositions in the behavior space to control and measure the behavior of micro animals.
[0003]
[Non-Patent Document 1]
PLINE, M. and DUSENBERY, DB 1987.Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking.Journal of Chemical Ecology 13: 873-888.
[0004]
[Non-Patent Document 2]
KENNEDY, MJ 1979. The responses of miracidia and cercariae of Bunodera mediovitellata (Trematoda: Allocreadiidae) to light and gravity.Canadian Journal of Zoology 57: 603-609.
[0005]
[Non-Patent Document 3]
WALLACE, HR 1958. Movement of eelworms-1. The influence of pore size and moisture content of the soil on the migration of larvae of the beet eelworm, Heterodera schachtii Schmidt. Annals of Applied Biology 46: 74-85.
[0006]
[Non-Patent Document 4]
ROBINSON, AF 1994. Movement of five nematode species through sand subjected to natural temperature gradient fluctuations. Journal of Nematology 26: 46-58.
[0007]
[Problems to be solved by the invention]
First, an agar medium method conventionally used for measuring the behavior locus, behavior radius, movement speed, and response time to a stimulus of a nematode will be described as an example. While this method has the advantage that the behavior can be observed easily and in detail, it has the problem that it does not necessarily reflect the natural behavior of nematodes that inhabit the soil or animal and plant tissues. In other words, soil and animal and plant tissues are three-dimensional microstructures consisting of obstacles and voids, and the movement of the solution occurs due to capillarity inside. It is thought that it is acting by using a factor. However, it is difficult to say that the natural behavior of the nematode is measured in that the agar medium does not have the above-described three-dimensional microstructure and does not move by a capillary phenomenon. Furthermore, when conducting responses to various chemical compositions and controlling behavior by them, the experiment is performed by dropping the solution on the agar medium, but the behavior of the nematodes in the immersion state is limited in a flat space. Since it is an open system, there is a problem that it is difficult to control the working concentration due to infiltration or transpiration.
[0008]
On the other hand, as a measurement method in a state close to the actual habitat environment, there is a method using a container filled with soil or fine particles used when simply measuring the mobility of nematodes. Although this method has the advantage of being able to measure the mobility in a natural state, the physical conditions in the container (filled state, presence / absence of bubbles, etc.) cannot be observed uniformly. However, there is a problem that the container becomes a black box because it is difficult.
[0009]
The present invention has a three-dimensional microstructure consisting of obstacles and voids, and their form, size, physical conditions, etc., in order to solve the problems of the technology as described above. By providing an artificial behavioral environment that is controlled so as to be close to the environment such as soil and animal and plant tissues, the behavior of micro-animals inside a three-dimensional microstructure can be easily brought close to the natural state. An apparatus capable of measuring and controlling is provided.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor formed a three-dimensional microstructure having a size and shape controlled on a flat plate on the flat plate with the aid of fine precision processing technology, and the fine The idea was to create an action space with a three-dimensional microstructure consisting of obstacles and voids, such as in soil and animal and plant tissues, by attaching a flat lid from the top to the structural surface. By introducing the micro-animal into the space formed in this way, the micro-animal is confined in the fine structure, and the physicochemical conditions are precisely controlled by utilizing the closed space, and the natural state is obtained with a microscope or the like. The present invention has been completed by finding that it is possible to measure and control actions within a three-dimensional microstructure in a close form in a simple and detailed manner.
[0011]
That is, the present invention includes the following inventions (1) to (7).
(1) a first flat plate having a plurality of fine concave structures connected to each other formed on the surface, a second flat plate in contact with the concave structure surface of the first flat plate and covering the opening of the concave structure; A micro-animal behavior measurement and control device that can measure or control the behavior of a micro-animal introduced into a concave structure.
(2) The minute animal behavior measurement control device according to (1), further including a container that can store the first flat plate and the second flat plate.
(3) The micro-animal behavior measurement control device according to (1) or (2), wherein the micro-animal to be introduced is a metazoan or a protozoan.
(4) The minute animal behavior measurement control device according to any one of (1) to (3), wherein a fine electrode is formed on the second flat plate.
(5) The micro-animal behavior measurement control device according to any one of (1) to (4), wherein the depth and the maximum width of the concave structure are 0.02 mm or more.
(6) The minute animal behavior measurement control device according to any one of (1) to (5), wherein a through hole is provided in the first flat plate or the second flat plate.
(7) The minute animal behavior measurement control device according to any one of (1) to (6), wherein the first flat plate and the second flat plate are transparent.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The micro-animal behavior measurement control device according to the present invention includes a first flat plate having a plurality of fine concave structures connected to each other on a surface thereof, a concave structure surface of the first flat plate, and an opening of the concave structure. And a second flat plate covering the part. Moreover, this apparatus may have the container which accommodates a 1st flat plate and a 2nd flat plate.
[0013]
By covering the opening of the concave structure with the second flat plate, a fine structure space composed of an obstacle and a gap can be formed. In the apparatus of the present invention, the size and shape of the obstacles and voids in the microstructure space, the nature of the void surface, the type of the medium that fills the voids, and other physicochemical conditions can be set freely and precisely. It is possible to control the behavior of micro animals through the control of environmental conditions.
[0014]
In addition, by providing a through hole in the first flat plate or the second flat plate, it is possible to introduce and circulate micro animals, their essential nutrients, other chemical substances, etc. in the microstructure space. By storing the flat plate in a sealable container, it is possible to precisely control the environment of the fine structure space.
[0015]
Any material can be used for the first flat plate as long as it has plasticity, but it has characteristics such as high affinity with the original plate for forming the concave structure, low chemical reactivity, and high transparency. Is preferred. Examples of such materials include polydimethylsiloxane and polydimethylsilane.
[0016]
The shape and dimensions of the first flat plate are not particularly limited as long as a fine structure space in which a micro animal can act can be formed.
[0017]
The concave structure can be formed by using an original plate for microfabricated resin flat plate molding. The original plate for microfabricated resin flat plate molding can be any 3D micromachining method that guarantees micron-order machining accuracy, but it is 0.01mm in consideration of the size of the microanimal. A method capable of forming a microstructure having the above size is preferable. Examples of the manufacturing method include a silicon crystal anisotropic etching method and a focused ion beam method when a silicon substrate is used, and a metal etching method and an electroforming method when a metal substrate is used.
[0018]
The method for molding the first flat plate is not particularly defined, but the original plate is adhered and fixed to a flat plate such as glass, mica, or metal by an adhesive, magnetic force, or capillary phenomenon, and the original plate is covered. Thus, it is preferable that the first flat plate material is dropped and cured.
[0019]
The first flat plate has a plurality of fine concave structures that are connected to each other. The shape of the concave structure may be any shape as long as it can be connected to each other to form a suitable obstacle and space for the micro animal. The size of the concave structure is preferably 0.02 mm or more in depth and maximum width, but may be smaller than this depending on the size of the micro animal and the behavioral form. For example, since plant parasitic nematodes usually have a body length of about 0.4 mm and a body width of about 0.02 mm, the dimensions of the concave structure may be as shown in FIG. 1 with a depth of 0.05 mm. Each of the plurality of concave structures may have a different shape and size, but all preferably have the same shape and size. Although the concave structure may be randomly arranged on the first flat plate, it is preferable that the concave structure is regularly arranged at equal intervals in the vertical and horizontal directions. The range in which the concave structure is formed is not particularly limited, but is preferably near the center of the first flat plate as shown in FIG.
[0020]
The material of the second flat plate is preferably transparent and high in flatness for observation with a microscope or the like, and preferably low in chemical reactivity. Specifically, glass, quartz, acrylic resin and the like can be exemplified.
[0021]
Microelectrodes may be formed on the second flat plate, which makes it possible to electrically detect a minute animal and to control behavior electrically. When a microelectrode is constructed, it is necessary to form a pattern of chromium, platinum, indium tin oxide, or the like on the second flat plate, and therefore, it is necessary to use a material that can withstand these pattern forming steps. In addition, when it is necessary to provide electrical insulation to the surface of the microelectrode, it is preferable to cover a part or the entire surface of the electrode portion with a transparent insulating resin.
[0022]
The shape and dimensions of the second flat plate are not particularly limited as long as they can cover the opening of the concave structure portion of the first flat plate.
[0023]
Any container may be used as long as it can accommodate the first flat plate and the second flat plate. In order to observe the material with a microscope or the like, the material that is in close contact with the first flat plate is preferably transparent and has high flatness, and preferably has low chemical reactivity. Examples of such materials include glass, quartz, and acrylic resin.
[0024]
The minute animal to be measured and controlled is not particularly limited, and may be either a metazoan or a protozoan. Examples of protozoa include ciliates, fleshworms, and flagellates. Examples of metazoans include nematodes, flukes, and protozoa. The most preferred micro animals to be measured and controlled are nematodes.
[0025]
Hereinafter, an embodiment of the apparatus of the present invention will be described with reference to the drawings.
[0026]
FIG. 1 is a dimensional view of a concave structure formed on a first flat plate, FIG. 2 is a dimensional view of a first flat plate formed with a concave structure, and FIG. 3 is a view of a container for housing the first flat plate and the second flat plate. FIG. 4 is a dimensional diagram of the second flat plate, FIG. 5 is an assembly diagram of the minute animal behavior measuring device, and FIG. 6 is a diagram showing an example of use of the minute animal behavior measuring device.
[0027]
In FIG. 1, the black portion represents a portion that is uniformly recessed at a depth of 0.05 mm from the resin flat plate surface. In FIG. 2, the hatched square portion represents a region where the above-mentioned dents are connected in a state where they are aligned vertically and horizontally. The square outside the hatched square represents a uniformly recessed portion. In FIG. 3, the upper drawing shows a top view of a circular container in which a circular space for storing and fixing the first flat plate is formed, and the lower drawing shows a side view thereof. In FIG. 4, the upper drawing is a top view of the second flat plate, and the lower drawing is a side view thereof. FIG. 5 shows a method of combining the parts shown in FIGS. 2 to 4, wherein 51 is a second flat plate, 52 is a first flat plate, and 53 is a container. After the first flat plate is accommodated in the container, the second flat plate is brought into close contact with the first flat plate, and fitted and fixed from above so as to abut against the upper end of the container. In FIG. 6, a measurement method by microscopic observation using the micro-animal behavior measuring apparatus of FIG. 5 is illustrated, in which 61 is a micro-animal introduction liquid feeding pipe, 62 is a solution injection pipe, 63 is a solution delivery pipe, and 64 is A minute animal behavior measuring device, 65 is an inverted microscope, and 66 is an objective lens.
[0028]
Hereinafter, a method for measuring the behavior of a minute animal will be described by taking as an example the case of using a nematode as the minute animal and measuring the moving speed of the nematode by microscopic observation. First, the first flat plate is sunk with the concave structure surface facing upward in a state where distilled water is put in a portion of the container that accommodates the first flat plate. Next, the second flat plate is fitted to the upper end of the container so that the first flat plate is sandwiched between the container and the second flat plate and firmly adhered. Thereby, it becomes a structure where a micro animal does not leak into the container from the three-dimensional microstructure. The nematode settles by its own weight by injecting the nematode suspended in distilled water with a micro animal introduction liquid pipe, a solution injection pipe, and a solution delivery pipe into the micro animal introduction pipe. To reach the microstructured surface. The nematode's behavior is fine because the upper surface is a free space on the fine structure surface that touches the through hole of the micro-animal introduction tube, solution injection tube, and solution delivery tube provided on the second flat plate. However, the nematode behaves along the concave part of the microstructure when it deviates from the through-hole part. As shown in FIG. 6, the behavior of the nematode on the fine structure surface can be observed through the objective lens on the sample stage of the inverted microscope. In order to control the behavior of nematodes in this state, for example, food substances (plants and pulverized products of animal tissues), light irradiation, electromagnetic stimulation, vibration, dissolved gas concentration control in solution, solution flow, etc. Can also be given. For example, when measuring the movement speed of a nematode as an action measurement, a microscope image is stored in a recording device, and the movement distance is calculated by counting the number of concave structures that the nematode has passed within a certain period of time. However, it can be easily measured by dividing by time. Alternatively, the movement speed of the nematode can be measured in real time by automatically tracking the action locus of the nematode by image processing.
[0029]
【Example】
Measurement was carried out by storing the concave structure shown in FIG. 1 on the first flat plate shown in FIG. 2 and storing it in a quartz container with the configuration shown in FIG. The first flat plate was made of polydimethylsilane, and a transparent first flat plate having a thickness of 1 mm and a diameter of 20 mm was prepared from an original plate manufactured by silicon crystal anisotropic etching. A sample in which an infectious larva of the insect parasitic nematode Steinernema carpocapsae was suspended in distilled water in a petri dish was used as a measurement target. While confirming the presence of the worm body with a stereomicroscope, the worm body is aspirated with 5 × 10 -3 ml of distilled water using a micropipette and discharged into the micro-animal feeding tube shown in FIG. Introduced. The introduced nematodes were actively activated by light stimulation from the outside, and the movement in the concave structure was recorded by a CCD camera attached to an inverted microscope. In order to analyze the movement trajectory of the nematode, by performing image processing on the recorded moving image, only the image of the worm body is extracted from all the images, and the result is superimposed as shown in FIG. It became clear. The moving speed was measured to be about 0.5 mm / sec for the fastest moving nematode by counting the number of concave structures moved in 10 seconds.
[0030]
【The invention's effect】
As described above, by using the present invention, the behavior (learning, chemotaxis, avoidance, etc.) of minute animals (protozoa, metazoans, etc.) in a space having a three-dimensional microstructure such as soil and animal and plant tissues Search, etc.) can be measured and controlled. Since this device enables behavioral analysis of minute animals in a state close to nature with high reproducibility, it can be used as a measurement device for biological environmental indicators in fields such as biology, agriculture, and environmental engineering. .
[Brief description of the drawings]
FIG. 1 is a dimensional diagram (depth 0.05 mm) of a concave structure formed on a first flat plate.
FIG. 2 is a dimensional diagram of a first flat plate having a concave structure (plate thickness: 1 mm).
FIG. 3 is a dimensional diagram of a container that houses a first flat plate and a second flat plate.
FIG. 4 is a dimension diagram of a second flat plate.
FIG. 5 is an assembly diagram of a minute animal behavior measuring device.
FIG. 6 is a diagram showing an example of use of a minute animal behavior measuring device.
FIG. 7 is a diagram illustrating a result of analyzing a moving locus image of a nematode in a minute animal behavior measuring apparatus.
[Explanation of symbols]
51
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165978A JP3809526B2 (en) | 2003-06-11 | 2003-06-11 | Small animal behavior measurement and control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165978A JP3809526B2 (en) | 2003-06-11 | 2003-06-11 | Small animal behavior measurement and control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005000047A JP2005000047A (en) | 2005-01-06 |
JP3809526B2 true JP3809526B2 (en) | 2006-08-16 |
Family
ID=34092265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003165978A Expired - Lifetime JP3809526B2 (en) | 2003-06-11 | 2003-06-11 | Small animal behavior measurement and control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3809526B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130309807A1 (en) * | 2011-02-04 | 2013-11-21 | Mitsubishi Electric Corporation | Pattern forming method and manufacturing method of solar battery |
WO2017149626A1 (en) * | 2016-02-29 | 2017-09-08 | 株式会社日立製作所 | Cancer analysis system and cancer analysis method |
US11150234B2 (en) | 2016-09-12 | 2021-10-19 | Hirotsu Bio Science Inc. | Method for evaluating taxic behavior in response to odor substance based on olfactory sense in nematodes, and dish and behavior evaluation system used in evaluation method |
JPWO2019225633A1 (en) * | 2018-05-24 | 2021-07-08 | 国立研究開発法人量子科学技術研究開発機構 | Biological Sample Microchips, Covers, Biological Sample Encapsulation Kits and Methods |
-
2003
- 2003-06-11 JP JP2003165978A patent/JP3809526B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005000047A (en) | 2005-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gupta et al. | Microfluidic approaches for manipulating, imaging, and screening C. elegans | |
JP6854376B2 (en) | Control of DEP force and control of electrowetting in different compartments of the same microfluidic device | |
Keloth et al. | Single cell isolation using optical tweezers | |
Sivagnanam et al. | Exploring living multicellular organisms, organs, and tissues using microfluidic systems | |
Hwang et al. | Microfluidic tools for developmental studies of small model organisms–nematodes, fruit flies, and zebrafish | |
US8622987B2 (en) | Chemistrode, a plug-based microfluidic device and method for stimulation and sampling with high temporal, spatial, and chemical resolution | |
Yang et al. | Fish-on-a-chip: microfluidics for zebrafish research | |
US20230149927A1 (en) | Microfluidic device, system, and method for the study of organisms | |
US5427663A (en) | Microlithographic array for macromolecule and cell fractionation | |
Johari et al. | On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments | |
US20160097028A1 (en) | Microfluidic device for cell spheroid culture and analysis | |
US20090311717A1 (en) | Microfluidic chip design comprising capillaries | |
Pandey et al. | Decision-making by nematodes in complex microfluidic mazes | |
Midkiff et al. | Microfluidic technologies for high throughput screening through sorting and on-chip culture of C. elegans | |
Geng et al. | Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics | |
Pratt et al. | DropSOAC: stabilizing microfluidic drops for time-lapse quantification of single-cell bacterial physiology | |
Carrasco-Pujante et al. | Associative conditioning is a robust systemic behavior in unicellular organisms: an interspecies comparison | |
JP3809526B2 (en) | Small animal behavior measurement and control device | |
US20140308207A1 (en) | Open microfluidic devices for chemotaxis, methods of using same, and applications of same | |
Ghaemi et al. | Microfluidic device for microinjection of Caenorhabditis elegans | |
KR100863753B1 (en) | Micropost array for quantitative measurement of c. elegans behaviors and the preparation method thereof | |
Ryu et al. | Open micro-fluidic system for atomic force microscopy-guided in situ electrochemical probing of a single cell | |
Cabeen et al. | Single-cell microfluidic analysis of Bacillus subtilis | |
Bernstein et al. | BioMEMS for high-throughput handling and microinjection of embryos | |
Njus | Behavioral assays with smart worm recognition programs applied to plant-parasitic and human-parasitic nematodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3809526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |