JP3809494B2 - Duplex stainless steel and its electron beam welding method - Google Patents

Duplex stainless steel and its electron beam welding method Download PDF

Info

Publication number
JP3809494B2
JP3809494B2 JP2001229344A JP2001229344A JP3809494B2 JP 3809494 B2 JP3809494 B2 JP 3809494B2 JP 2001229344 A JP2001229344 A JP 2001229344A JP 2001229344 A JP2001229344 A JP 2001229344A JP 3809494 B2 JP3809494 B2 JP 3809494B2
Authority
JP
Japan
Prior art keywords
electron beam
stainless steel
less
welding
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001229344A
Other languages
Japanese (ja)
Other versions
JP2003041346A (en
Inventor
眸 伊東
重  隆司
岩司 阿部
治彦 梶村
信二 柘植
隆明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel and Sumikin Stainless Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001229344A priority Critical patent/JP3809494B2/en
Publication of JP2003041346A publication Critical patent/JP2003041346A/en
Application granted granted Critical
Publication of JP3809494B2 publication Critical patent/JP3809494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビーム溶接性に優れた2相ステンレス鋼、およびその2相ステンレス鋼を電子ビーム溶接によって組み立てることを特徴とする電子ビーム溶接方法に関する。
【0002】
【従来の技術】
使用済み核燃料は、従来、水中で保管されており、再処理を行うことを前提としていたため、原子力発電所内および再処理施設で数年間ほどの短い保管期間が想定されていた。しかし、近年、その保管量が増加するとともに、再処理により処理量の限界も予測されていることから、使用済み核燃料を長期間保管することが検討されている。さらに廃棄されるべき高放射能レベル廃棄物の量も増加しており、同様の長期間保管が検討されている。その場合、使用済み核燃料および高放射能レベル廃棄物(以下、両者を合わせて、単に放射性物質という)では、従来の水中での保管に代えて、コスト面および管理面で優れた乾式保管が望まれている。
【0003】
保管容器を用いる放射性物質の保管は、一般に工場で蓋の部分を残して保管容器の主要部分を形成し、その後、放射能を遮蔽する十分な措置が取られた環境下で放射性物質を装入し、密閉構造となるように蓋の部分を溶接して放射性物質を密閉することにより行われる。
【0004】
保管容器は直径約2m、高さ約5mの円筒状をしており、その中に内部構造物を内蔵して、放射性物質を装入する。通常、放射性物質の装入は遠隔操作で行われ、例えば、燃料棒に傷をつけないようにするため、保管容器には構造物として極めて寸法精度の高いことが要求される。
【0005】
従来、工場における保管容器の製造にはTIG溶接が採用されてきた。しかし、TIG溶接によって精度の高い保管容器を形成するには、溶接速度を落す必要があり、生産性の面で不利である。また、高い寸法精度を得るのにも限界があった。そこで、このような問題を解決するため、保管容器の形成に高い寸法精度を確保できる電子ビーム溶接(Electric Beam Welding)を適用することが求められてきた。
【0006】
一方、保管容器は、海岸付近におかれることも多く、飛来する海塩粒子により発生する孔食などを防止するため、使用される材料の耐食性も考慮しなければならない。即ち、放射性物質の保管容器用の材料としては、強度、靱性等の機械的性質だけでなく耐食性に優れることも要求される。特に耐食性に関しては、水中での一時的保管と異なり数十年単位での使用でも腐食問題が起きないことが要求される。
【0007】
特開2001−141878号公報には、原子炉の遮蔽材や核燃料を輸送・保管する容器の隙間腐食や応力腐食割れを防止する腐食防止法が開示されている。この発明では、特に熱中性子を吸収する効果があるBを添加したオーステナイト系ステンレス鋼を用いて作製した容器の耐食性を確保するため、使用環境のClイオン濃度と温度を規定している。しかし、保管容器を常にこのような使用環境下に置いておくことは困難であり、現実的ではない。むしろ、使用環境を調整するのではなく、予想される使用環境に合わせて、保管容器の材料組成を調整する方が現実的である。
【0008】
耐食性に優れた材料としては、例えば、特開平11−80901号公報に記載されているような2相ステンレス鋼が挙げられる。しかし、この公報に記載されている耐食性は、鋼自体、すなわち母材の耐食性であって、溶接を行った際に形成される溶接金属部やHAZ(溶接熱影響部)における耐食性については不明である。よって、特開平11−80901号公報に開示されるような2相ステンレス鋼が、放射性物質の保管容器の材料として好適であるとは限らない。
【0009】
特に、放射性物質の保管容器を作製する際に電子ビーム溶接を使用する場合、真空で溶接することが必須となるため、溶融部において鋼中に含まれるNが放出され、溶接欠陥が生成し耐食性が低下するという問題がある。また、これに加え、電子ビーム溶接を行うとTIG溶接とは異なり溶接部の靱性が低くなるなど、保管容器の材料の機械的特性についても解決しなければならない問題がある。
【0010】
【発明が解決しようとする課題】
本発明の課題は、放射性物質保管容器の材料として使用でき、耐食性や、靱性などの機械的特性の良好な電子ビーム溶接性に優れた2相ステンレス鋼を提供することにある。また、その2相ステンレス鋼を素材として電子ビーム溶接する方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、放射性物質保管容器の製造に電子ビーム溶接を適用することを前提として、放射性物質保管容器が基本的に有していなければならない耐食性、機械的強度といった特性に加え、電子ビーム溶接を適用することができる鋼材を得るために、材料組成に着目した。
【0012】
電子ビーム溶接では、通常のTIG溶接などと異なりフィラーを用いず母材を直接溶融して接合するため、母材の組成が溶接性に直接影響する。特に、電子ビーム溶接では真空中にNが放出されるため、溶接後にも材料中のNを確保する材料設計を行うことが必要になる。そこで、優れた耐食性および機械的強度を持つ2相ステンレス鋼をベースに材料組成の検討を行った。
【0013】
溶接後にも材料中のNを確保するには、放出されるN量を考慮して、予め多めのNを2相ステンレス鋼に含有させておけばよい。しかし、そのような高Nの鋼を電子ビーム溶接すると、溶接金属の靱性が低下する。この靱性低下の原因について調査したところ、高N化による介在物の発生が原因であることが判明し、特に、不純物として混入するTiがNとTiNを作ることにより、靱性が低下していることが判明した。
【0014】
また、溶接欠陥の発生を防止するには、その材料組成にふさわしい溶接条件が必要になるので、併せて溶接条件についても検討を行った。
【0015】
本発明は、以上のような検討結果に基づいて完成に至ったものであり、その要旨は、下記(1)および(2)の2相ステンレス鋼、および(3)の電子ビーム溶接方法にある。
【0016】
(1)質量%で、C:0.005〜0.030%、Si:0.05〜0.75%、Mn:0.20〜1.00%、Ni:5.5〜7.5%、Cr:24.0〜26.0%、Mo:2.5〜3.5%、Cu:0.2〜0.8%、W:0.1〜0.5%、N:0.20〜0.30%、Al:0.010〜0.050%、Ca:0〜0.0050%、B:0〜0.0030%、残部Feおよび不純物からなり、不純物中のPは0.035%以下、Sは0.005%以下、Tiは0.05%以下、Nbは0.1%以下、Vは0.5%以下であることを特徴とする2相ステンレス鋼。
【0017】
(2) 質量%で、C:0.005〜0.030%、Si:0.05〜0.75%、Mn:0.20〜1.00%、Ni:5.5〜7.5%、Cr:24.0〜26.0%、Mo:2.5〜3.5%、Cu:0.2〜0.8%、W:0.1〜0.5%、N:0.20〜0.30%、Al:0.010〜0.050%、Ca:0〜0.0050%、B:0〜0.0030%、残部Feおよび不純物からなり、不純物中のPは0.035%以下、Sは0.005%以下、Tiは0.05%以下、Nbは0.1%以下、Vは0.5%以下であることを特徴とする電子ビーム溶接性に優れた2相ステンレス鋼。
(3)上記(1)または(2)の2相ステンレス鋼を、単位面積あたりの溶接エネルギーが7.7〜18.0kJ/cm2の電子ビーム溶接によって組み立てることを特徴とする電子ビーム溶接方法
【0018】
【発明の実施の形態】
前記(1)の2相ステンレス鋼に係る発明(以下、第1発明という)は、電子ビーム溶接性に優れた2相ステンレス鋼の発明である。ここで、「電子ビーム溶接性に優れた」とは、電子ビーム溶接により溶接を行っても、その溶接部に溶接欠陥が発生せず、溶接した構造物を高い寸法精度で形成できることをいう。第1発明の2相ステンレス鋼は、その材料組成が以下に示す範囲にあることが必要である。なお、以下に述べる材料組成の含有量はいずれも質量%で示す。
【0019】
C:0.005〜0.030%
Cは、オーステナイト安定化元素であり、また強度向上にも寄与する。これらの効果を得るために0.005%以上の含有が必要である。しかし、その含有量が0.030%を超えると、HAZでの炭化物生成が多くなり耐食性の劣化を招く。したがって、C含有量は0.030%以下に抑える必要がある。
【0020】
Si:0.05〜0.75%
Siは鋼の脱酸剤として使用され、0.05%以上の含有が必要である。しかし、Si含有量が0.75%を超えると、σ相の生成が促進され、耐食性や靱性が劣化する。したがって、Siの適正な含有量は0.05〜0.75%である。
【0021】
Mn:0.20〜1.00%
Mnは脱酸剤として機能するほか、オーステナイト形成元素としても機能するため、0.20%以上含有させる。また、MnにはSを固定し、熱間加工性を改善する効果もあるが、Mn含有量が1.00%を超えると、形成されたMnSが孔食発生の基点となる。従って、Mn含有量は0.20〜1.00%、好ましいのは0.20〜0.80%である。
【0022】
Ni:5.5〜7.5%
Niは2相ステンレス鋼の必須成分であり、オーステナイト相を安定化させる効果を有する。その効果を発揮させるために、Ni含有量は5.5〜7.5%とする。5.5%未満ではフェライト相が増えて2相ステンレス鋼としての特性が劣る。また、7.5%を超えるとオーステナイト相が増えすぎ、σ相の生成が促進される。
【0023】
Cr:24.0〜26.0%
Crは2相ステンレス鋼の耐食性の向上に寄与する元素であるため、24.0%以上含有させる。一層すぐれた耐食性を確保するには25.0%以上含有させることが好ましい。しかし、Cr含有量が26.0%を超えると、σ相の生成が促進され熱間加工性が劣化する。したがって、Cr含有量は24.0〜26.0%とする。好ましいのは25.0〜26.0%である。
【0024】
Mo:2.5〜3.5%
MoもCr同様、耐食性の向上に寄与する元素である。そのため、2.5%以上含有させる。優れた耐食性を確保するには3.1%以上含有させることが好ましい。しかし、Mo含有量が3.5%を超えると、σ相の生成が促進され熱間加工性が劣化する。したがって、Mo含有量は2.5〜3.5%、好ましいのは3.1〜3.5%である。
【0025】
Cu:0.2〜0.8%
CuもCr、Moと同様、耐食性の向上に寄与する元素である。そのため、0.2%以上含有させる。しかし、Cu含有量が0.8%を超えると熱間加工性が劣化する。したがって、Cuの適正含有量は0.2〜0.8%である。
【0026】
W:0.1〜0.5%
WもCr、Mo、Cuと同様、耐食性の向上に寄与する元素である。そのため、0.1%以上含有させる。しかし、W含有量が0.5%を超えると、σ相の生成が促進され熱間加工性が劣化する。したがって、W含有量は0.1〜0.5%とする。
【0027】
N:0.20〜0.30%
Nは、耐食性の向上に寄与する元素である。しかし、前述したように、真空中で電子ビーム溶接を行うと鋼中のNが放出される。そのため、Nが放出されても、十分なNが溶接部に残留するように、0.20%以上含有させる。しかし、N含有量が0.30%を超えると、溶接欠陥(ブローホール)が発生する。したがって、適正なN含有量は0.20〜0.30%である。
【0028】
Al:0.010〜0.050%
Alは、後述の理由により脱酸剤としてのTiを含有させることができないので、Tiの代わりに脱酸剤として0.010%以上含有させる。しかし、Al含有量が0.050%を超えるとAlNが形成され、靱性が低下する。したがって、Al含有量は0.010〜0.050%とする。
【0029】
Ca:0〜0.0050%、B:0〜0.0030%
高N化による熱間加工性の低下を補うため、必要に応じてCaまたは/およびBを含有させてもよい。しかし、Caの含有量が0.0050%を超えるとCaSの生成量が増えて耐食性劣化を招く。また、Bの含有量が0.0030%を超えるとCr23(C、B)の粒界析出が促進されて耐食性が損なわれる。
【0030】
本発明の2相ステンレス鋼は、上記の成分と残部Feおよび不純物からなる。不純物中のP、S、Ti、NbおよびVは下記のように規制する。
【0031】
P:0.035%以下
Pは鋼の溶接高温割れ感受性を高める不純物であるので、0.035%以下で、できるだけ低いほど好ましい。
【0032】
S:0.005%以下
Sは、熱間加工性を劣化させ、また耐食性を低下させる不純物である。従って、0.005%以下で、低いほど好ましい。より好ましいのは0.002%以下である。
【0033】
Ti:0.05%以下
Tiは本来、脱酸剤としての機能を有するが、前記のようにNとTiNを形成し、溶接部の靱性を低下させるので、その含有量は0.05%以下とする。TiNの形成をより確実に抑制するためには、Ti含有量は0.01%以下であることが好ましい。
【0034】
Nb:0.1%以下
Nbも窒化物を形成して溶接部の靱性を低下させるので、その含有量は0.1%以下とする。より望ましいのは0.05%以下である。
【0035】
V:0.5%以下
Vの含有量が0.5%を超えるとσ相の生成が促され鋼の熱間加工性が劣化する。従って、Vは0.5%以下に抑えるべきである。なお、Vには耐食性改善の効果があるので、0.5%以下の範囲であれば、その効果を得るべく含有させてもよい。
【0036】
2相ステンレス鋼は、常温ではフェライト量がおよそ50%で残りがオーステナイトである。しかし、高温ではフェライト単相組織となっているため、電子ビーム溶接を行うと、溶接部は一旦フェライト単相となった後、凝固後はオーステナイトがわずかに析出したフェライト量が多い組織となる。特に電子ビーム溶接は、入熱量が小さいので母材による冷却効果が大きく、溶接部の凝固速度が速い。そのため、溶接部は高温での組織が保持された急冷凝固組織となり、フェライトが多くなる。フェライトが過剰な溶接部は、靱性が低下するだけでなく、耐食性も低下する。特にフェライトが増えることにより水素に起因する遅れ破壊の発生の危険性が増す。このような組織変化に伴う特性の低下を防止するためには、溶接部に占めるフェライト量が溶接部の80%以下であればよい。
【0037】
本発明の2相ステンレス鋼は、電子ビーム溶接した際、溶接部に占めるフェライト量が溶接部の80%以下となる。従って、この2相ステンレス鋼を電子ビーム溶接して製造した放射性物質保管容器は、溶接部の靱性および耐食性に優れたものとなる。
【0038】
第2発明は、本発明の2相ステンレス鋼を電子ビーム溶接によって組み立てることを特徴とする電子ビーム溶接方法に関する。
【0039】
電子ビーム溶接では、その入熱管理が重要である。特に、本発明の2相ステンレス鋼ではN含有量を高くしているので、溶接時にNが放出される。その溶接部外へ放出がうまくいかず、溶接部に閉じこめられた場合、ブローホールなどの欠陥となって残りやすい。
【0040】
上記の欠陥発生を防止するため電子ビーム溶接する際の単位面積あたりの溶接エネルギーを7.7〜18.0kJ/cmとすることが必要である。溶接エネルギーが7.7kJ/cm未満であると、入熱不足のために溶接部の外面に表面欠陥が生じる。一方、18.0kJ/cmを超えると、入熱が大きすぎて溶接部(溶融池)への窒素の拡散量が多くなり、多量の気泡ができて内部欠陥が生じる。
【0041】
本発明の2相ステンレス鋼を電子ビーム溶接により溶接すると、極めて寸法精度の高い放射性物質保管容器を得ることができる。その構造物の溶接部には溶接欠陥がなく、優れた耐食性を有する。また、水素に起因する遅れ破壊の発生もなく、衝撃値も高い。これらの特性は、放射性物質保管容器に必須の特性である。
【0042】
【実施例】
表1に示すように組成を調節した50kgの2相ステンレス鋼を高周波電気炉で溶解し、鍛造、熱間圧延した後、1080℃で30分加熱保持し、水冷して厚さ20mmの鋼板を製造した。この鋼板を母材として、1.33×10−2Pa(1×10−4Torr)まで真空度を高めた容器中で電子ビーム溶接を実施した。溶接を行うにあたっては、溶接電流、加速電圧、溶接速度などを変えることにより投入する溶接エネルギーを変化させ適正な溶接条件を決定した。
【0043】
溶接後の供試材については、欠陥観察、シャルピー衝撃試験、遅れ破壊脆性試験および孔食発生電位測定を行うとともに、溶接金属のフェライト率を算出した。
【0044】
欠陥観察では、肉眼で外観上の溶接欠陥を観察するとともに、X線透過法により溶接部の内部を観察した。また、溶接部の断面を光学顕微鏡で観察することによりボイド等の内部欠陥の有無を調査した。
【0045】
シャルピー衝撃試験では、供試材の溶接部のみがノッチ部になるように、JIS Z 2202で規定されるVノッチ衝撃試験片を作製し、JIS Z 2242に従って−50℃における衝撃値(1cmあたりの吸収エネルギー)を測定した。
【0046】
遅れ破壊脆性試験では、溶接部を含み、平行部3φ×20mm、全長70mmの試験片を作製し、この試験片を5%硫酸にチオ尿素を1リットルあたり1.4g溶解させた溶液中で、600MPaの応力をかけて、陰極電解により水素を発生させた。このとき、溶液の温度は35℃、電流密度は0.1mA/cmとし、300時間後、破断しているか否かを調査した。
【0047】
孔食発生電位測定では、溶接部、HAZおよび溶接金属が含まれる試験片を供試材より採取し、この試験片とSCE(標準電極)を電極として、温度85℃の人工海水(市販の金属腐食試験用の人工海水薬剤を用いて調整)中で孔食電位の測定を行った。
【0048】
また、溶接金属のフェライト率は、溶接金属の断面をシュウ酸電解とKOH電解によりエッチングし、500倍の顕微鏡写真を用い画像解析することにより算出した。
【0049】
表1に供試材の化学組成および電子ビーム溶接したときの溶接エネルギーを示す。
【0050】
【表1】

Figure 0003809494
【0051】
表2は、前記の試験の結果をまとめて示した表である。同表における溶接欠陥の評価は、欠陥がない場合を○、欠陥が発生した場合を×で表記した。また、耐遅れ破壊の評価は、破断がない場合を○、破断があった場合を×で表記した。
【0052】
【表2】
Figure 0003809494
【0053】
表1および2からわかるように、本発明の2相ステンレス鋼を本発明で規定する条件で電子ビーム溶接した供試材(No.1〜5)は、いずれも溶接金属におけるフェライト率が80%以下となり、溶接欠陥がなく、衝撃値も大きく、さらに遅れ破壊脆性も見られない。しかも、これらは、孔食発生電位も高く、耐食性にも優れている。
【0054】
一方、S含有量が高い供試材(No.6)は、孔食発生電位が低くなり、耐食性に劣る。これは、溶接金属中にできた硫化物により孔食の発生が促進されたためであると考えられる。また、Cr含有量が低い供試材(No.7)も同様に耐食性が劣る。
【0055】
Ti含有量が高い供試材(No.8)は、耐食性が悪いだけでなく、衝撃値も低い。これは、Tiにより耐食性に効果のあるNが固定化されることに加え、TiN形成により靱性が劣化し、介在物近傍の溶解による孔食の発生が促進されたためであると考えられる。
【0056】
Al含有量が低い供試材(No.9)は、孔食発生電位が低く、耐食性が悪い。これに加えて、溶接金属におけるフェライト率が80%を超すため、耐遅れ破壊脆性も悪化した。また、Al含有量が高い供試材(No.10)では衝撃値が低い。これは、AlがNと化合してAlNを形成したためであると考えられる。
【0057】
N含有量が低い供試材(No.11)は、衝撃値の低下や孔食発生電位の低下が見られ、機械的特性、耐食性ともに十分でない。さらに、溶接金属におけるフェライト率が80%を超し、耐遅れ破壊脆性も悪化した。また、N含有量が高すぎる供試材(No.12)では、溶接欠陥が発生した。
【0058】
本発明の2相ステンレス鋼を母材としたNo.13および14は、電子ビーム溶接の入熱が不適当な例である。これらでは溶接欠陥が発生した。
【0059】
【発明の効果】
本発明の2相ステンレス鋼は電子ビーム溶接性に優れ、溶接を施しても溶接部の耐食性、機械的特性が良好である。このような2相ステンレス鋼に適正な溶接エネルギーを加えて電子ビーム溶接すれば、欠陥ができることもない。従って、本発明の2相ステンレス鋼は、電子ビーム溶接によって組み立てられる放射性物質保管容器の材料としてきわめて好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a duplex stainless steel excellent in electron beam weldability, and an electron beam welding method characterized by assembling the duplex stainless steel by electron beam welding.
[0002]
[Prior art]
Conventionally, spent nuclear fuel has been stored in water and assumed to be reprocessed. Therefore, a short storage period of several years has been assumed in nuclear power plants and reprocessing facilities. However, in recent years, the amount of storage has increased, and the limit of the amount of processing has been predicted by reprocessing, so it has been studied to store spent nuclear fuel for a long period of time. In addition, the amount of high-activity-level waste to be discarded is increasing, and similar long-term storage is being considered. In that case, it is hoped that spent nuclear fuel and high-activity-level waste (hereinafter referred to simply as “radioactive materials”) should be dry storage with excellent cost and management instead of conventional storage in water. It is rare.
[0003]
Storage of radioactive materials using a storage container generally forms a major part of the storage container, leaving the portion of the lid at the factory, then charged with radioactive material in the environment where sufficient measures have been taken to shield the radioactive Then, the lid is welded to seal the radioactive material so as to form a sealed structure.
[0004]
The storage container has a cylindrical shape with a diameter of about 2m and a height of about 5m. The internal structure is built into it and the radioactive material is charged. Usually, the radioactive material is charged by remote control. For example, in order to prevent the fuel rod from being damaged, the storage container is required to have extremely high dimensional accuracy as a structure.
[0005]
Traditionally, TIG welding has been employed for manufacturing storage containers in factories. However, in order to form a highly accurate storage container by TIG welding, it is necessary to reduce the welding speed, which is disadvantageous in terms of productivity. In addition, there is a limit to obtaining high dimensional accuracy. Therefore, in order to solve such problems, it has been required to apply electron beam welding that can ensure high dimensional accuracy in the formation of the storage container.
[0006]
On the other hand, the storage container is often placed near the coast, and the corrosion resistance of the material used must be taken into consideration in order to prevent pitting corrosion caused by the flying sea salt particles. That is, a material for a radioactive material storage container is required to have excellent corrosion resistance as well as mechanical properties such as strength and toughness. In particular, with respect to corrosion resistance, unlike temporary storage in water, it is required that corrosion problems do not occur even when used for decades.
[0007]
JP-A-2001-141878, JP-corrosion method for preventing crevice corrosion and stress corrosion cracking of the container for transportation and storage of the shielding material or nuclear fuel reactor has been disclosed. In this invention, in order to ensure the corrosion resistance of the container produced using the austenitic stainless steel added with B, which has an effect of absorbing thermal neutrons in particular, the Cl ion concentration and temperature of the use environment are defined. However, it is difficult and unrealistic to always keep the storage container in such a use environment. Rather, it is more realistic to adjust the material composition of the storage container in accordance with the expected use environment, rather than adjusting the use environment.
[0008]
Examples of the material having excellent corrosion resistance include duplex stainless steel as described in JP-A-11-80901. However, the corrosion resistance described in this publication is the corrosion resistance of the steel itself, that is, the base metal, and it is unknown about the corrosion resistance in the weld metal part and HAZ (welding heat affected zone) formed during welding. is there. Therefore, duplex stainless steel as disclosed in Japanese Patent Application Laid-Open No. 11-80901 is not necessarily suitable as a material for a radioactive substance storage container.
[0009]
In particular, when electron beam welding is used when producing a storage container for radioactive materials, it is essential to perform welding in a vacuum, so that N contained in the steel is released in the molten part, and welding defects are generated, resulting in corrosion resistance. There is a problem that decreases. In addition, in addition to TIG welding, there is a problem that the mechanical properties of the material of the storage container must be solved, such as the toughness of the welded portion being lowered unlike electron beam welding.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a duplex stainless steel that can be used as a material for a radioactive substance storage container and has excellent mechanical properties such as corrosion resistance and toughness and excellent electron beam weldability. Another object of the present invention is to provide a method for electron beam welding using the duplex stainless steel as a raw material.
[0011]
[Means for Solving the Problems]
Based on the premise that electron beam welding is applied to the production of a radioactive material storage container, the present inventors basically have an electron beam in addition to the characteristics such as corrosion resistance and mechanical strength that the radioactive material storage container must have. In order to obtain a steel material to which welding can be applied, attention was paid to the material composition.
[0012]
In electron beam welding, unlike ordinary TIG welding, the base metal is directly melted and joined without using fillers, so the composition of the base material directly affects weldability. In particular, since N is released in vacuum in electron beam welding, it is necessary to design a material that ensures N in the material even after welding. Therefore, the material composition was examined based on duplex stainless steel having excellent corrosion resistance and mechanical strength.
[0013]
In order to secure N in the material even after welding, a large amount of N may be previously contained in the duplex stainless steel in consideration of the amount of N released. However, when such high-N steel is electron beam welded, the toughness of the weld metal decreases. As a result of investigating the cause of this decrease in toughness, it was found that this was caused by the occurrence of inclusions due to the increase in N, and in particular, the toughness was reduced due to the formation of N and TiN by Ti mixed as impurities. There was found.
[0014]
In addition, in order to prevent the occurrence of welding defects, welding conditions suitable for the material composition are required, so the welding conditions were also examined.
[0015]
The present invention has been completed on the basis of the above examination results, and the gist thereof is the following (1) and (2) duplex stainless steel, and (3) the electron beam welding method. .
[0016]
(1) By mass%, C: 0.005-0.030%, Si: 0.05-0.75%, Mn: 0.20-1.00%, Ni: 5.5-7.5%, Cr: 24.0-26.0%, Mo: 2.5-3.5%, Cu : 0.2 to 0.8%, W: 0.1 to 0.5%, N: 0.20 to 0.30%, Al: 0.010 to 0.050%, Ca: 0 to 0.0050%, B: 0 to 0.0030%, remaining Fe and impurities, P is 0.035% or less, S is 0.005% or less, Ti is 0.05% or less, Nb is 0.1% or less, and V is 0.5% or less.
[0017]
(2) By mass%, C: 0.005-0.030%, Si: 0.05-0.75%, Mn: 0.20-1.00%, Ni: 5.5-7.5%, Cr: 24.0-26.0%, Mo: 2.5-3.5%, Cu : 0.2 to 0.8%, W: 0.1 to 0.5%, N: 0.20 to 0.30%, Al: 0.010 to 0.050%, Ca: 0 to 0.0050%, B: 0 to 0.0030%, remaining Fe and impurities, P is 0.035% or less, S is 0.005% or less, Ti is 0.05% or less, Nb is 0.1% or less, and V is 0.5% or less, and is a duplex stainless steel excellent in electron beam weldability.
(3) An electron beam welding method comprising assembling the duplex stainless steel of (1) or (2 ) above by electron beam welding with a welding energy per unit area of 7.7 to 18.0 kJ / cm 2 .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The invention relating to the duplex stainless steel (1) (hereinafter referred to as the first invention) is an invention of a duplex stainless steel excellent in electron beam weldability. Here, “excellent in electron beam weldability” means that even if welding is performed by electron beam welding, a weld defect does not occur in the welded portion, and a welded structure can be formed with high dimensional accuracy. The duplex stainless steel of the first invention is required to have a material composition within the following range. In addition, all content of the material composition described below is shown by the mass%.
[0019]
C: 0.005-0.030%
C is an austenite stabilizing element and contributes to strength improvement. In order to obtain these effects, a content of 0.005% or more is necessary. However, if its content exceeds 0.030%, the formation of carbides in HAZ increases, leading to deterioration of corrosion resistance. Therefore, the C content needs to be suppressed to 0.030% or less.
[0020]
Si: 0.05-0.75%
Si is used as a deoxidizer for steel and should contain 0.05% or more. However, when the Si content exceeds 0.75%, the generation of the σ phase is promoted, and the corrosion resistance and toughness deteriorate. Therefore, the proper content of Si is 0.05 to 0.75%.
[0021]
Mn: 0.20 to 1.00%
Mn functions not only as a deoxidizer but also as an austenite forming element, so 0.20% or more is contained. Mn also has the effect of fixing S and improving hot workability, but if the Mn content exceeds 1.00%, the formed MnS becomes the starting point for pitting corrosion. Therefore, the Mn content is 0.20 to 1.00%, preferably 0.20 to 0.80%.
[0022]
Ni: 5.5-7.5%
Ni is an essential component of the duplex stainless steel and has an effect of stabilizing the austenite phase. In order to exert the effect, the Ni content is set to 5.5 to 7.5%. If it is less than 5.5%, the ferrite phase increases and the properties as a duplex stainless steel are inferior. On the other hand, if it exceeds 7.5%, the austenite phase increases excessively and the formation of the σ phase is promoted.
[0023]
Cr: 24.0-26.0%
Cr is an element that contributes to improving the corrosion resistance of the duplex stainless steel, so it is contained in an amount of 24.0% or more. In order to ensure better corrosion resistance, it is preferable to contain 25.0% or more. However, if the Cr content exceeds 26.0%, the formation of the σ phase is promoted and the hot workability deteriorates. Therefore, the Cr content is 24.0-26.0%. The preferred range is 25.0 to 26.0%.
[0024]
Mo: 2.5-3.5%
Mo, like Cr, is an element that contributes to improving corrosion resistance. Therefore, it contains 2.5% or more. In order to ensure excellent corrosion resistance, it is preferable to contain 3.1% or more. However, if the Mo content exceeds 3.5%, the formation of the σ phase is promoted and the hot workability deteriorates. Therefore, the Mo content is 2.5 to 3.5%, preferably 3.1 to 3.5%.
[0025]
Cu: 0.2-0.8%
Cu, like Cr and Mo, is an element that contributes to improving corrosion resistance. Therefore, 0.2% or more is contained. However, when the Cu content exceeds 0.8%, the hot workability deteriorates. Therefore, the appropriate content of Cu is 0.2 to 0.8%.
[0026]
W: 0.1-0.5%
W, like Cr, Mo, and Cu, is an element that contributes to improving corrosion resistance. Therefore, 0.1% or more is contained. However, if the W content exceeds 0.5%, the formation of the σ phase is promoted and the hot workability deteriorates. Therefore, the W content is 0.1 to 0.5%.
[0027]
N: 0.20-0.30%
N is an element that contributes to improvement of corrosion resistance. However, as described above, when electron beam welding is performed in a vacuum, N in the steel is released. Therefore, even if N is released, 0.20% or more is contained so that sufficient N remains in the weld. However, if the N content exceeds 0.30%, welding defects (blow holes) occur. Therefore, the proper N content is 0.20 to 0.30%.
[0028]
Al: 0.010 to 0.050%
Since Al cannot contain Ti as a deoxidizing agent for reasons described later, 0.010% or more is contained as a deoxidizing agent instead of Ti. However, when the Al content exceeds 0.050%, AlN is formed and the toughness is lowered. Therefore, the Al content is 0.010 to 0.050%.
[0029]
Ca: 0 to 0.0050%, B: 0 to 0.0030%
In order to compensate for the decrease in hot workability due to the increase in N, Ca or / and B may be contained as necessary. However, if the Ca content exceeds 0.0050%, the amount of CaS produced increases, leading to deterioration in corrosion resistance. On the other hand, if the B content exceeds 0.0030%, grain boundary precipitation of Cr 23 (C, B) 6 is promoted and the corrosion resistance is impaired.
[0030]
The duplex stainless steel of the present invention comprises the above components, the remaining Fe and impurities. P, S, Ti, Nb, and V in the impurity are regulated as follows.
[0031]
P: 0.035% or less P is an impurity that enhances the weld hot cracking susceptibility of steel, so it is preferably 0.035% or less and as low as possible.
[0032]
S: 0.005% or less S is an impurity that degrades hot workability and lowers corrosion resistance. Therefore, 0.005% or less and the lower the better. More preferred is 0.002% or less.
[0033]
Ti: 0.05% or less
Although Ti originally has a function as a deoxidizer, it forms N and TiN as described above and lowers the toughness of the welded portion, so its content is made 0.05% or less. In order to more reliably suppress the formation of TiN, the Ti content is preferably 0.01% or less.
[0034]
Nb: 0.1% or less
Since Nb also forms nitrides and lowers the toughness of the welded portion, its content is made 0.1% or less. More desirable is 0.05% or less.
[0035]
V: 0.5% or less When the content of V exceeds 0.5%, the formation of the σ phase is promoted and the hot workability of the steel deteriorates. Therefore, V should be kept below 0.5%. V has an effect of improving the corrosion resistance, so if it is in the range of 0.5% or less, it may be contained to obtain the effect.
[0036]
The duplex stainless steel has a ferrite content of about 50% at room temperature and the rest is austenite. However, since it has a ferrite single phase structure at high temperatures, when electron beam welding is performed, the welded portion once becomes a ferrite single phase, and after solidification, has a structure with a large amount of ferrite in which austenite is slightly precipitated. In particular, since electron beam welding has a small amount of heat input, the cooling effect by the base material is large, and the solidification rate of the welded portion is fast. Therefore, the welded portion becomes a rapidly solidified structure in which the structure at a high temperature is held, and the amount of ferrite increases. A weld with excessive ferrite will not only lower toughness but also corrosion resistance. In particular, the increase in ferrite increases the risk of delayed fracture due to hydrogen. In order to prevent the deterioration of characteristics due to such a structural change, the ferrite content in the welded portion may be 80% or less of the welded portion.
[0037]
When the duplex stainless steel of the present invention is subjected to electron beam welding, the ferrite content in the welded portion is 80% or less of the welded portion. Therefore, the radioactive substance storage container manufactured by electron beam welding of this duplex stainless steel is excellent in the toughness and corrosion resistance of the welded portion.
[0038]
The second invention is a two-phase stainless steel about child beam welding method collector, characterized in that assembling by electron beam welding of the present invention.
[0039]
In electron beam welding, the heat input management is important. In particular, since the N content is increased in the duplex stainless steel of the present invention, N is released during welding. If it is not released to the outside of the weld and is confined to the weld, it tends to remain as a blowhole defect.
[0040]
In order to prevent the occurrence of the above defects, it is necessary to set the welding energy per unit area during electron beam welding to 7.7 to 18.0 kJ / cm 2 . If the welding energy is less than 7.7 kJ / cm 2 , surface defects occur on the outer surface of the weld due to insufficient heat input. On the other hand, if it exceeds 18.0 kJ / cm 2 , the heat input is too large, the amount of nitrogen diffused into the weld zone (molten pool) increases, a large amount of bubbles are formed, and internal defects occur.
[0041]
When the duplex stainless steel of the present invention is welded by electron beam welding, a radioactive substance storage container with extremely high dimensional accuracy can be obtained. The welded part of the structure has no weld defects and has excellent corrosion resistance. Moreover, there is no occurrence of delayed fracture due to hydrogen, and the impact value is high. These characteristics are essential for the radioactive material storage container.
[0042]
【Example】
As shown in Table 1, 50kg duplex stainless steel with a controlled composition was melted in a high-frequency electric furnace, forged and hot rolled, then heated and held at 1080 ° C for 30 minutes, water cooled, and a 20mm thick steel plate Manufactured. Using this steel plate as a base material, electron beam welding was performed in a container whose vacuum was increased to 1.33 × 10 −2 Pa (1 × 10 −4 Torr). In performing welding, the welding energy to be input was changed by changing the welding current, acceleration voltage, welding speed, etc., and appropriate welding conditions were determined.
[0043]
For the specimen after welding, defect observation, Charpy impact test, delayed fracture brittleness test and pitting corrosion potential measurement were performed, and the ferrite ratio of the weld metal was calculated.
[0044]
In the defect observation, the weld defect on the appearance was observed with the naked eye, and the inside of the weld was observed by the X-ray transmission method. In addition, the presence or absence of internal defects such as voids was investigated by observing the cross section of the weld with an optical microscope.
[0045]
In the Charpy impact test, a V-notch impact test piece specified in JIS Z 2202 was prepared so that only the welded part of the specimen became a notch, and the impact value at −50 ° C. according to JIS Z 2242 (per 1 cm 2 Absorption energy).
[0046]
In the delayed fracture brittleness test, a test piece including a welded part, a parallel part 3φ × 20 mm, and a total length of 70 mm was prepared, and this test piece was 600 MPa in a solution in which 1.4 g of thiourea was dissolved in 5% sulfuric acid per liter. Thus, hydrogen was generated by cathodic electrolysis. At this time, the temperature of the solution was set to 35 ° C., the current density was set to 0.1 mA / cm 2, and after 300 hours, it was examined whether or not it was broken.
[0047]
In the measurement of pitting corrosion occurrence potential, specimens containing welds, HAZ and weld metal were collected from the test material, and artificial seawater (commercially available metal) at a temperature of 85 ° C was prepared using this specimen and SCE (standard electrode) as electrodes. The pitting potential was measured in an artificial seawater chemical for corrosion test).
[0048]
Further, the ferrite ratio of the weld metal was calculated by etching the cross section of the weld metal by oxalic acid electrolysis and KOH electrolysis and analyzing the image using a 500-fold photomicrograph.
[0049]
Table 1 shows the chemical composition of the test material and the welding energy when electron beam welding is performed.
[0050]
[Table 1]
Figure 0003809494
[0051]
Table 2 summarizes the results of the above tests. The evaluation of the weld defect in the same table is indicated by ◯ when there is no defect and by × when the defect occurs. In addition, in the evaluation of delayed fracture resistance, the case where there was no break was indicated by ○, and the case where there was a break was indicated by ×.
[0052]
[Table 2]
Figure 0003809494
[0053]
As can be seen from Tables 1 and 2, the specimens (Nos. 1 to 5) obtained by electron beam welding of the duplex stainless steel of the present invention under the conditions specified in the present invention all have a ferrite ratio of 80% in the weld metal. There are no weld defects, a large impact value, and no delayed fracture brittleness. In addition, they have high pitting corrosion generation potential and excellent corrosion resistance.
[0054]
On the other hand, the sample material (No. 6) having a high S content has a low pitting corrosion potential and is inferior in corrosion resistance. This is thought to be because the occurrence of pitting corrosion was promoted by sulfides formed in the weld metal. Similarly, the test material (No. 7) having a low Cr content is inferior in corrosion resistance.
[0055]
The test material with high Ti content (No. 8) has not only poor corrosion resistance but also low impact value. This is considered to be due to the fact that Ti, which has an effect on corrosion resistance, is immobilized by Ti, and that the toughness is deteriorated by TiN formation and the generation of pitting corrosion due to dissolution in the vicinity of inclusions is promoted.
[0056]
The test material (No. 9) having a low Al content has a low pitting corrosion potential and poor corrosion resistance. In addition, since the ferrite ratio in the weld metal exceeded 80%, the delayed fracture brittleness also deteriorated. Moreover, the impact value is low in the specimen (No. 10) with a high Al content. This is considered to be because Al combined with N to form AlN.
[0057]
The test material (No. 11) with a low N content shows a decrease in impact value and a decrease in pitting corrosion potential, and mechanical properties and corrosion resistance are not sufficient. Furthermore, the ferrite ratio in the weld metal exceeded 80%, and the delayed fracture brittleness also deteriorated. Further, in the specimen (No. 12) in which the N content was too high, welding defects occurred.
[0058]
Nos. 13 and 14 using the duplex stainless steel of the present invention as a base material are examples in which heat input by electron beam welding is inappropriate. In these, welding defects occurred.
[0059]
【The invention's effect】
The duplex stainless steel of the present invention is excellent in electron beam weldability, and even when welding is performed, the corrosion resistance and mechanical properties of the welded portion are good. If appropriate welding energy is added to such a duplex stainless steel and electron beam welding is performed, no defects are formed. Therefore, the duplex stainless steel of the present invention is extremely suitable as a material for a radioactive substance storage container assembled by electron beam welding.

Claims (3)

質量%で、C:0.005〜0.030%、Si:0.05〜0.75%、Mn:0.20〜1.00%、Ni:5.5〜7.5%、Cr:24.0〜26.0%、Mo:2.5〜3.5%、Cu:0.2〜0.8%、W:0.1〜0.5%、N:0.20〜0.30%、Al:0.010〜0.050%、Ca:0〜0.0050%、B:0〜0.0030%、残部Feおよび不純物からなり、不純物中のPは0.035%以下、Sは0.005%以下、Tiは0.05%以下、Nbは0.1%以下、Vは0.5%以下であることを特徴とする2相ステンレス鋼。  In mass%, C: 0.005-0.030%, Si: 0.05-0.75%, Mn: 0.20-1.00%, Ni: 5.5-7.5%, Cr: 24.0-26.0%, Mo: 2.5-3.5%, Cu: 0.2- 0.8%, W: 0.1 to 0.5%, N: 0.20 to 0.30%, Al: 0.010 to 0.050%, Ca: 0 to 0.0050%, B: 0 to 0.0030%, balance Fe and impurities. P in the impurities is A duplex stainless steel characterized by 0.035% or less, S 0.005% or less, Ti 0.05% or less, Nb 0.1% or less, and V 0.5% or less. 質量%で、C:0.005〜0.030%、Si:0.05〜0.75%、Mn:0.20〜1.00%、Ni:5.5〜7.5%、Cr:24.0〜26.0%、Mo:2.5〜3.5%、Cu:0.2〜0.8%、W:0.1〜0.5%、N:0.20〜0.30%、Al:0.010〜0.050%、Ca:0〜0.0050%、B:0〜0.0030%、残部Feおよび不純物からなり、不純物中のPは0.035%以下、Sは0.005%以下、Tiは0.05%以下、Nbは0.1%以下、Vは0.5%以下であることを特徴とする電子ビーム溶接性に優れた2相ステンレス鋼。  In mass%, C: 0.005-0.030%, Si: 0.05-0.75%, Mn: 0.20-1.00%, Ni: 5.5-7.5%, Cr: 24.0-26.0%, Mo: 2.5-3.5%, Cu: 0.2- 0.8%, W: 0.1 to 0.5%, N: 0.20 to 0.30%, Al: 0.010 to 0.050%, Ca: 0 to 0.0050%, B: 0 to 0.0030%, balance Fe and impurities. P in the impurities is A duplex stainless steel with excellent electron beam weldability, characterized by 0.035% or less, S 0.005% or less, Ti 0.05% or less, Nb 0.1% or less, and V 0.5% or less. 請求項1または請求項2に記載の2相ステンレス鋼を、単位面積あたりの溶接エネルギーが7.7〜18.0kJ/cm2の電子ビーム溶接によって組み立てることを特徴とする電子ビーム溶接方法An electron beam welding method comprising assembling the duplex stainless steel according to claim 1 or 2 by electron beam welding with a welding energy per unit area of 7.7 to 18.0 kJ / cm 2 .
JP2001229344A 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method Expired - Lifetime JP3809494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229344A JP3809494B2 (en) 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229344A JP3809494B2 (en) 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method

Publications (2)

Publication Number Publication Date
JP2003041346A JP2003041346A (en) 2003-02-13
JP3809494B2 true JP3809494B2 (en) 2006-08-16

Family

ID=19061703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229344A Expired - Lifetime JP3809494B2 (en) 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method

Country Status (1)

Country Link
JP (1) JP3809494B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719118B2 (en) * 2006-10-02 2011-07-06 新日本製鐵株式会社 Electron beam welded joint with excellent brittle fracture resistance
JP4989597B2 (en) * 2008-09-19 2012-08-01 日立Geニュークリア・エナジー株式会社 Method for producing spent nuclear fuel storage rack, filler material used in the method, and spent nuclear fuel storage rack produced by the method
KR101177488B1 (en) 2009-12-29 2012-08-27 주식회사 포스코 Ultra High strength and high corrosion resistant stainless steel alloy and method for manufacturing the same
US11512374B2 (en) 2017-03-30 2022-11-29 Nippon Steel Stainless Steel Corporation Duplex stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003041346A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
CN108138280B (en) The manufacturing method of austenite stainless steel and austenite stainless steel
Kuo et al. Effects of filler metal composition on joining properties of alloy 690 weldments
EP3693484A1 (en) Austenitic stainless steel weld metal and welded structure
JP2018122329A (en) Coated arc welding electrode
Lee et al. The microstructure and fracture behavior of the dissimilar alloy 690-SUS 304L joint with various Nb addition
JP3809494B2 (en) Duplex stainless steel and its electron beam welding method
KR101660154B1 (en) Austenitic alloy tube
Beghini et al. Effect of hydrogen on the ductility reduction of F82H martensitic steel after different heat treatments
US5820818A (en) Stainless steel having excellent thermal neutron absorption ability
Lin et al. Effects of beam offset on mechanical properties and corrosion resistance of Alloy 690–SUS 304L EBW joints for nuclear power plant
JP2007024609A (en) Manufacturing method of spent fuel storage rack
CN113319468A (en) Component design method of nuclear power nickel-based alloy welding wire capable of preventing welding cracks and nuclear power nickel-based alloy welding wire
KR100294354B1 (en) Austenite stainless steel excellent in thermal neutron absorption
KR102094614B1 (en) Welding composition for hyper duplex stainless steel and method for manufacturing welding part using the same
JP2005336602A (en) STEEL MATERIAL USED FOR HIGH HEAT INPUT WELDING BY HEAT INPUT OF 20 TO 100 kJ/mm AND HAVING HIGH TOUGHNESS AT HAZ
EP0844312B1 (en) Stainless steels excellent in thermal neutron absorption
WO2017086169A1 (en) Duplex stainless steel material and duplex stainless steel tube
Gussev et al. Microstructure analysis of laser beam weldments performed on neutron-irradiated 304L steel containing 3 and 8 appm helium
JP7011987B2 (en) Ni-based weld metal and welded structure
JP3237486B2 (en) Stainless steel with excellent thermal neutron absorption capacity
Nage et al. Effect of 0.1 wt% N on the pitting and stress corrosion cracking behaviour of as welded and post weld heat treated austenitic stainless steel weld
JPS63259055A (en) Austenitic stainless steel
Sawai et al. Microstructural evolution of welded austenitic stainless steels irradiated in the spectrally-tailored ORR experiment at 400° C
JP3393043B2 (en) Low nuclear heat generation and low activation Mn-Cr non-magnetic steel with excellent corrosion resistance and weldability
KR20220114475A (en) Flux-cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3809494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term