JP3808970B2 - Mercury recovery method from contaminated soil - Google Patents

Mercury recovery method from contaminated soil Download PDF

Info

Publication number
JP3808970B2
JP3808970B2 JP12029397A JP12029397A JP3808970B2 JP 3808970 B2 JP3808970 B2 JP 3808970B2 JP 12029397 A JP12029397 A JP 12029397A JP 12029397 A JP12029397 A JP 12029397A JP 3808970 B2 JP3808970 B2 JP 3808970B2
Authority
JP
Japan
Prior art keywords
mercury
contaminated soil
recovering
heat
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12029397A
Other languages
Japanese (ja)
Other versions
JPH10296229A (en
Inventor
明人 松山
広江 岩崎
正人 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP12029397A priority Critical patent/JP3808970B2/en
Publication of JPH10296229A publication Critical patent/JPH10296229A/en
Application granted granted Critical
Publication of JP3808970B2 publication Critical patent/JP3808970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本件出願人は、水銀汚染土壌の浄化処理方法として鉄などの遷移元素化合物を添加剤として、汚染土壊に混合撹辞し、ロータリキルン等によつて250 ℃〜300 ℃に低温加熱し、汚染土壌中の水銀を蒸発させて除去する方法を既に特許出願している。(特願平7 ‐203805)本発明はこの方法特許をさらに改善したものであり、蒸発気散した水銀の回収方法である。
【0002】
【従来の技術】
汚染土壌からの水銀回収方法水銀汚染土壌の加熱浄化処理した際に、生成する水銀の捕集方法はこれまでに次のような方法が提案されている。
<イ>水銀鉱石の精鎌技術としてこれまでに広く行われている方法であるが、鉱石を600 ℃〜800 ℃程度に高温加熱し、鉱石中の水銀を水銀蒸気として加熱気化させ、急激に蒸気を冷却することにより水銀を凝縮・沈澱させる方法。
<ロ>鉱石ではなく水銀汚染土壌を、前述と同程度の高温で加熱処理する方法。この方法では、過マンガン酸カリウム、硫酸酸性溶液(通称カメレオン溶液)によって湿式酸化吸収溶液中で蒸発水銀を捕集する。あるいは、単純に活性炭などで吸着除去させる方法。
【0003】
【発明が解決しようとする課題】
前述したような従来の水銀の回収方法においては、以下に示すような問題点が存在した。
<イ>物理、化学的吸着によつて水銀を気相中より除去処理することは可能であるが、化合物の形態となると物理的な吸着が主体となるため、十分な除去性能を示すとは限らない。
<ロ>カメレオン溶液の場合は、水銀あるいは水銀化合物であつても大抵の水銀化合物は酸化捕集することができる。しかし化学的には可能であるが、捕集能力や捕集速度を考慮にいれると、捕集しやすい化合物とそうではない化合物が生ずる。一例を挙げると、硫化水銀などは捕集することが困難である。また水銀単体として回収するための処理プロセスが、カメレオン溶波に再度還元剤を添加し加熱することが必要なことなど、操作が煩雑である。
<ハ>活性炭では水銀吸着限界が生じるため、適宜交換しなければならない。カメレオン溶液の場合は、時間経過とともに溶液中の過マンガン酸カリウムが空気中の酸素と反応して自動酸化されるため、定期的に溶液を交換しなければならない。このように運転中には多大なメインテナンス作業が必要である。
【0004】
【本発明の目的】
本発明はこれら問題点を解決するためになされたもので、資源リサイクルが容易であり、回収プロセスが簡単で、イニシャルコストが低廉な、汚染土壌からの水銀回収方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
すなわち本発明は、水銀で汚染された土壌に、反応促進剤として二価の鉄を主成分とするものを添加し、水銀の沸点よりも低い250℃から300℃までの温度で加熱して撹拌混合し、加熱蒸気中に生成してくる水銀化合物を、100℃以上の温度を維持して硫化水銀となる反応を防いだ状態で、再度、水銀の沸点よりも高い温度で加熱し、水銀化合物を熱分解し金属水銀として回収する汚染土壌からの水銀回収方法を特徴としたものである。
【0006】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
【0007】
<イ>水銀除去方法の概要
硫化水銀などの水銀化合物によつて汚染された土壌に反応促進添加剤を撹幹混合し、水銀の沸点よりも低い温度、例えば250 ℃〜300 ℃程度の温度で加熱する。これによつて汚染土壌中の水銀濃度は減少する。
【0008】
<口>添加剤
反応促進添加剤として幾つか挙げられるがここでは鉄の硫化物を使用した場合を説明する。
添加剤は、二価の鉄を主成分とするものであればよい。成分としては、鉄の硫化物などが該当する。水銀汚染土壌に鉄の硫化物を混合加熱することにより、十分な除去率を得ることができる。
本加熱反応によつて除去された水銀は、この例の場合、加熱排出空気が冷却されるにつれて、気相中で除去された水銀蒸気および鉄の硫化物が酸化物へ加熱変性したことにより発生する硫黄が化学反応を起し、硫化水銀の形態となって除去排出される。
【0009】
<ハ>再加熱の方法
添加剤を混合加熱することにより、除去された水銀および硫黄成分は土壌中から気相中へと移行するが、カメレオン溶液に至るまでの導管が100 ℃以下程度になると気相中の水銀成分は硫化水銀となる。この反応を防ぐため、再加熱反応管3までの導管をリボンヒーター6で100 ℃以上に加熱し保温する。
100 ℃以上に加熱保温された導管を経て、加熱排気は500 ℃程度に加熱された再加熱反応管3内に導かれる。
反応管3内部には隔壁やガラスビーズ31等を詰めることにより、加熱反応時間をながくとり燃焼酸化を円滑に進行させる。
500 ℃程度に加熱排気を再加熱することによつて、気相中に存在する硫黄成分は燃焼酸化し亜硫酸ガスの形態となる。
これにより硫黄成分は水銀蒸気と反応せず、水銀及び亜硫酸ガスはそのまま捕集溶液に移行する。
再加熱する熱源としては、ロータリキルンを加熱する際に発生する廃熱を利用する方法が採用できる。あるいは電気・ガス・油などの別エネルギーを用いて加熱することができる。
【0010】
【実施例】
以下に硫化鉄を用いた水銀の加熱除去実験例を説明する。
【0011】
<イ>実験装置
図−1 に示す加熱実験系を用いて実験を行つた。本実験系は再加熱装置付きロータリキルンの構造を模したものであり、加熱を行いながら実験系を大気圧より若干低い圧力に保ち、空気を横に流すことができる。
図中、1は加熱反応炉、2は試料、3は再加熱反応炉、4は水銀吸収反応器、5は微量水銀除去用活性炭である。

Figure 0003808970
【0012】
<ロ>汚染土壌
実験の用いた石英砂による模擬汚染土壌は、石英砂5gに硫化水銀12mgを添加混合することによつて作成した。作成後、硫化鉄(FeS )を重量比で2 %程度(0.1g)混合し、加熱実験に供した。
【0013】
<ハ>実験経過加熱昇温速度は300 ℃までで5 分〜10分程度に設定した。加熱昇温を行っている問も通風し装置内減圧は保持した。300 ℃に達して後、15分ごとに4 回カメレオン溶液中の水銀濃度を測定し経時変化をみた。その結果、模擬汚染土壌を加熱した実験結果と比べ、硫化鉄を加熱混合することによりカメレオン溶液中に水銀は移行し十分に捕集された。(図−2)
【0014】
【発明の効果】
以上の通り、本発明によれば汚染土壌からの水銀回収方法汚染土壌中の水銀を金属水銀として回収することができる。したがって、資源リサイクルが可能である。
また、本発明の方法によれば、加熱排気を冷却するだけで水銀を回収することができるため、回収プロセスが簡易になる。そのため処理プラントのイニシヤルコストを低減することができる。
【図面の簡単な説明】
【図1】水銀を加熱して回収する方法を確認する実験装置を示す図。
【図2】再加熱による水銀捕集率の経時変化を示す図。[0001]
BACKGROUND OF THE INVENTION
The Applicant, as a purification method for mercury-contaminated soil, uses a transition element compound such as iron as an additive, mixes and agitates it to the contaminated soil, and heats it at a low temperature of 250 ° C to 300 ° C with a rotary kiln, etc. A patent application has already been filed for a method of removing mercury by evaporation. (Japanese Patent Application No. 7-203805) The present invention is a further improvement of this method patent, and is a method for recovering evaporated mercury.
[0002]
[Prior art]
Methods for recovering mercury from contaminated soil The following methods have been proposed for collecting mercury generated when heat-purifying mercury-contaminated soil.
<B> This is a method that has been widely used in the past as a technology for mercury ore, but the ore is heated to a high temperature of about 600 ℃ to 800 ℃, and the mercury in the ore is heated and vaporized as mercury vapor. A method of condensing and precipitating mercury by cooling steam.
<B> A method of heat treating mercury-contaminated soil instead of ore at a high temperature similar to that described above. In this method, evaporated mercury is collected in a wet oxidative absorption solution with potassium permanganate and a sulfuric acid acidic solution (commonly known as a chameleon solution). Alternatively, it is simply removed by adsorption with activated carbon.
[0003]
[Problems to be solved by the invention]
The conventional mercury recovery methods as described above have the following problems.
<B> Although it is possible to remove mercury from the gas phase by physical and chemical adsorption, physical adsorption is the main component in the form of a compound, so that sufficient removal performance is exhibited. Not exclusively.
<B> In the case of a chameleon solution, even if it is mercury or a mercury compound, most mercury compounds can be collected by oxidation. However, although it is chemically possible, if the collection ability and collection speed are taken into consideration, a compound that is easy to collect and a compound that is not so are produced. For example, mercury sulfide is difficult to collect. Further, the process for recovering as a simple substance of mercury requires complicated operations such as adding a reducing agent to the chameleon melting wave and heating it again.
<C> Mercury adsorption limit occurs in activated carbon, so it must be replaced as appropriate. In the case of a chameleon solution, potassium permanganate in the solution reacts with oxygen in the air and is auto-oxidized over time, so the solution must be periodically replaced. Thus, a great deal of maintenance work is required during operation.
[0004]
[Object of the present invention]
The present invention has been made to solve these problems, and an object thereof is to provide a method for recovering mercury from contaminated soil, which is easy to recycle resources, has a simple recovery process, and has a low initial cost. .
[0005]
[Means for Solving the Problems]
That is, the present invention adds a divalent iron-based material as a reaction accelerator to soil contaminated with mercury, and heats and stirs the mixture at a temperature of 250 ° C. to 300 ° C. lower than the boiling point of mercury. The mercury compound produced in the heated steam is mixed and heated again at a temperature higher than the boiling point of mercury while maintaining a temperature of 100 ° C. or higher to prevent the reaction to become mercury sulfide. It is characterized by a method for recovering mercury from contaminated soil by pyrolyzing and recovering it as metallic mercury.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0007]
<B> Outline of mercury removal method Reaction-promoting additives are stirred and mixed into soil contaminated with mercury compounds such as mercury sulfide, and the temperature is lower than the boiling point of mercury, for example, about 250 ° C to 300 ° C. Heat. This reduces the mercury concentration in the contaminated soil.
[0008]
<Mouth> Additives Some examples of reaction-promoting additives may be mentioned. Here, the case where iron sulfide is used will be described.
The additive should just be what has bivalent iron as a main component. Ingredients include iron sulfide. A sufficient removal rate can be obtained by mixing and heating iron sulfide in mercury-contaminated soil.
In this example, the mercury removed by this heating reaction is generated by the heat modification of mercury vapor and iron sulfide removed in the gas phase as the heated exhaust air is cooled. Sulfur undergoes a chemical reaction and is removed and discharged in the form of mercury sulfide.
[0009]
<C> Reheating method By mixing and heating the additive, the removed mercury and sulfur components move from the soil to the gas phase, but when the conduit leading to the chameleon solution reaches about 100 ° C or less. The mercury component in the gas phase is mercury sulfide. In order to prevent this reaction, the conduit to the reheating reaction tube 3 is heated to 100 ° C. or more by the ribbon heater 6 and kept warm.
The heated exhaust gas is led into a reheated reaction tube 3 heated to about 500 ° C. through a conduit heated to 100 ° C. or higher.
Filling the inside of the reaction tube 3 with partition walls, glass beads 31 and the like allows the combustion reaction to proceed smoothly with a shorter heating reaction time.
By reheating the heated exhaust gas to about 500 ° C., the sulfur component present in the gas phase is burnt and oxidized to form sulfurous acid gas.
As a result, the sulfur component does not react with the mercury vapor, and the mercury and sulfurous acid gas are transferred to the collection solution as they are.
As a heat source for reheating, a method using waste heat generated when the rotary kiln is heated can be employed. Or it can heat using another energy, such as electricity, gas, and oil.
[0010]
【Example】
Hereinafter, an experimental example of mercury heat removal using iron sulfide will be described.
[0011]
<I> Experimental apparatus An experiment was conducted using the heating experimental system shown in Fig.1. This experimental system imitates the structure of a rotary kiln with a reheating device, and while heating, the experimental system can be kept at a pressure slightly lower than atmospheric pressure, and air can flow sideways.
In the figure, 1 is a heating reactor, 2 is a sample, 3 is a reheating reactor, 4 is a mercury absorption reactor, and 5 is activated carbon for removing trace amounts of mercury.
Figure 0003808970
[0012]
<B> Simulated contaminated soil with quartz sand used in the contaminated soil experiment was prepared by adding 12 mg of mercury sulfide to 5 g of quartz sand. After the preparation, about 2% (0.1 g) of iron sulfide (FeS) by weight was mixed and subjected to a heating experiment.
[0013]
<C> The experimental heating rate was set to about 5 to 10 minutes up to 300 ° C. The question of heating and heating was also ventilated to maintain the reduced pressure in the apparatus. After reaching 300 ° C, the mercury concentration in the chameleon solution was measured four times every 15 minutes and the change with time was observed. As a result, compared with the experimental results of heating the simulated contaminated soil , the mercury was transferred and sufficiently collected in the chameleon solution by heating and mixing iron sulfide . (Figure 2)
[0014]
【The invention's effect】
As described above, according to the present invention, mercury in contaminated soil can be recovered as metallic mercury. Therefore, resource recycling is possible.
In addition, according to the method of the present invention, mercury can be recovered simply by cooling the heated exhaust, so that the recovery process is simplified. Therefore, the initial cost of the processing plant can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an experimental apparatus for confirming a method for recovering mercury by heating.
FIG. 2 is a graph showing a change over time in mercury collection rate due to reheating.

Claims (5)

水銀で汚染された土壌に、
反応促進剤として二価の鉄を主成分とするものを添加し、
水銀の沸点よりも低い250℃から300℃までの温度で加熱して撹拌混合し、
加熱蒸気中に生成してくる水銀化合物を、
100℃以上の温度を維持して硫化水銀となる反応を防いだ状態で、
再度、水銀の沸点よりも高い温度で加熱し、
水銀化合物を熱分解し金属水銀として回収する、
汚染土壌からの水銀回収方法。
In soil contaminated with mercury,
As a reaction accelerator, add the main component of divalent iron,
Heat at 250 ° C to 300 ° C lower than the boiling point of mercury, stir and mix,
Mercury compounds generated in heated steam
Maintaining a temperature of 100 ° C or higher and preventing mercury sulfide reaction,
Again, heat at a temperature higher than the boiling point of mercury,
Mercury compounds are pyrolyzed and recovered as metallic mercury,
Mercury recovery method from contaminated soil.
加熱蒸気中に生成してくる水銀化合物を再度、
500℃程度の気相中に存在する硫黄成分が燃焼酸化して亜硫酸ガスの形態となる程度に加熱して行う、
請求項1記載の汚染土壌からの水銀回収方法。
Mercury compounds generated in the heated steam again
Performed by heating the sulfur component present in the gas phase at about 500 ° C. to the extent that it is burnt and oxidized to form sulfurous acid gas,
A method for recovering mercury from contaminated soil according to claim 1.
反応促進剤として、
鉄の硫化物を使用して行う、
請求項1記載の汚染土壌からの水銀回収方法。
As a reaction accelerator,
Using iron sulfide,
A method for recovering mercury from contaminated soil according to claim 1.
再加熱する熱源として、電気、ガス、油などの別エネルギーを用いて行う、請求項1記載の汚染土壌からの水銀回収方法。  The method for recovering mercury from contaminated soil according to claim 1, wherein another energy such as electricity, gas or oil is used as a heat source for reheating. 再加熱する熱源として、ロータリキルンを加熱する際に発生する廃熱を利用して行う、
請求項1記載の汚染土壌からの水銀回収方法。
As a heat source for reheating, the waste heat generated when the rotary kiln is heated is used.
A method for recovering mercury from contaminated soil according to claim 1.
JP12029397A 1997-04-23 1997-04-23 Mercury recovery method from contaminated soil Expired - Lifetime JP3808970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12029397A JP3808970B2 (en) 1997-04-23 1997-04-23 Mercury recovery method from contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12029397A JP3808970B2 (en) 1997-04-23 1997-04-23 Mercury recovery method from contaminated soil

Publications (2)

Publication Number Publication Date
JPH10296229A JPH10296229A (en) 1998-11-10
JP3808970B2 true JP3808970B2 (en) 2006-08-16

Family

ID=14782660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12029397A Expired - Lifetime JP3808970B2 (en) 1997-04-23 1997-04-23 Mercury recovery method from contaminated soil

Country Status (1)

Country Link
JP (1) JP3808970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008337A1 (en) * 2011-07-14 2013-01-17 株式会社ワンワールド Method for carbonization and device for carbonization of organic matter in soil
CN117564071B (en) * 2024-01-16 2024-04-16 江苏省有色金属华东地质勘查局地球化学勘查与海洋地质调查研究院 Ecological restoration device and method for safe utilization of mercury polluted farmland

Also Published As

Publication number Publication date
JPH10296229A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
BRPI1101481A2 (en) Method for the preparation of fly ash and Method for the operation of a waste incineration plant
JPH11503221A (en) Waste heat treatment method and apparatus
US6022514A (en) Method for recovering phosphorus from organic sludge
JP2006263651A (en) Carbonated carbide, production method therefor, method for collecting zinc from fly ash from incinerator, and method for treating acidic gas in exhaust gas in incinerator
JP3808970B2 (en) Mercury recovery method from contaminated soil
JP5800388B2 (en) Phosphate fertilizer manufacturing system and manufacturing method
CA2182168C (en) Process for treating solid waste containing volatilizable inorganic contaminants
JPH01127100A (en) Method for heat-treatment of waste
JP3775891B2 (en) How to recover mercury from mercury contaminated soil
JP3391263B2 (en) Method for recovering phosphorus from incinerated ash containing phosphorus
JPH01108101A (en) Separation and recovery of iodine
JPS6341962B2 (en)
RU2334800C1 (en) Method of extraction of vanadium out of after burning waste of sulphuric black oil
KR100315906B1 (en) Method of treating chlorine-containing plastic wastes
JP3501546B2 (en) Collection of valuable metals
JP2002310418A (en) Method for treating waste
JPH0633158A (en) Treatment of zinc-and tin-containing scrap
JP3895858B2 (en) Mercury sulfide refining method and apparatus
JP3353577B2 (en) Method for recovering phosphorus from waste incineration ash containing phosphorus
JP2003117520A (en) Method for treating incineration ash
JP2000282154A (en) Method for recovering metal from fused slag of waste material
JP3391259B2 (en) Method for reforming incinerated ash containing phosphorus
JPH10279301A (en) Separation of phosphorus component
RU2147713C1 (en) Method of thermal reworking of solid wastes
JP4442736B2 (en) A method of removing mercury from mercury-containing waste such as fluorescent tubes and mercury batteries or from this treated product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term