JP3808778B2 - Heavy duty tire - Google Patents

Heavy duty tire Download PDF

Info

Publication number
JP3808778B2
JP3808778B2 JP2002013237A JP2002013237A JP3808778B2 JP 3808778 B2 JP3808778 B2 JP 3808778B2 JP 2002013237 A JP2002013237 A JP 2002013237A JP 2002013237 A JP2002013237 A JP 2002013237A JP 3808778 B2 JP3808778 B2 JP 3808778B2
Authority
JP
Japan
Prior art keywords
tread
tire
groove
ground contact
carcass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002013237A
Other languages
Japanese (ja)
Other versions
JP2003211914A (en
Inventor
訓 津田
実 西
准司 大平
光晴 小矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2002013237A priority Critical patent/JP3808778B2/en
Priority to AU2002354498A priority patent/AU2002354498A1/en
Priority to US10/495,363 priority patent/US7469731B2/en
Priority to EP02788847A priority patent/EP1459909B1/en
Priority to PCT/JP2002/013155 priority patent/WO2003053722A1/en
Priority to CNB028236408A priority patent/CN1292928C/en
Publication of JP2003211914A publication Critical patent/JP2003211914A/en
Application granted granted Critical
Publication of JP3808778B2 publication Critical patent/JP3808778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、接地面形状を特定することにより、トレッド接地端での肩落ち摩耗、及びショルダー溝に沿う軌道摩耗を抑制し、摩耗の均一化を図った重荷重用タイヤに関する。
【0002】
【従来の技術、及び発明が解決しようとする課題】
例えば重荷重用夕イヤでは、一般に、そのトレッド面は、単一円弧或いは複数円弧を用いた凸円弧状曲線で形成されている。従って、その接地面形状aも、図6に略示する如く、周方向の接地長さbが、タイヤ赤道側からトレッド接地端側に向かって次第に減じる凸円弧状に形成されている。
【0003】
しかしこのような、タイヤでは、タイヤ赤道側での接地長さb1に対して、トレッド接地端側での接地長さb2が大幅に減じるため、トレッド接地端側のトレッド面に路面との滑りが発生し、いわゆる肩落ち摩耗等の偏摩耗が生じやすくなる。
【0004】
そのために、トレッド曲率半径を大きくし、前記接地長さb2を接地長さb1に近づけることにより、トレッド接地端側での滑りを抑制することが行われている。しかし、このような手法においては、タイヤ軸方向最外側に配されるショルダー溝fより内側のトレッドセンター部ycが、外側のトレッドショルダー部ysに比して摩耗する所謂センター摩耗を招いたり、又ショルダー溝fの一方/他方の側縁が摩耗する所謂軌道摩耗を招くなど、摩耗の均一化に対して充分満足のいく結果を得るに至っていない。
【0005】
そこで本発明者は、前記接地面形状aの輪郭線において、タイヤ赤道上の赤道点p1と、前記ショルダー溝fのタイヤ赤道側の溝側縁点p2とを通る直線のタイヤ軸方向線との角度α、及び前記ショルダー溝fのトレッド端側の溝側縁点p3と、トレッド接地端上の接地端点p4を通る直線のタイヤ軸方向線との角度βとに着目して研究を行った。その結果、この角度α、βを所定範囲に規制することにより、肩落ち摩耗、軌道摩耗、センター摩耗等を抑制でき、摩耗の均一化を高レベルで図りうることを究明し得た。
【0006】
即ち本発明は、前記角度α、βを規制して接地面形状を特定することを基本として、肩落ち摩耗、軌道摩耗、センター摩耗等を抑制でき、摩耗の均一化を高レベルで図りうる重荷重用タイヤの提供を目的としている。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本願請求項1の発明は、周方向に連続してのびる2本以上の縦主溝を有するトレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、トレッド部の内方かつカーカスの外側に配されるベルト層とを具えた重荷重用タイヤであって、
前記縦主溝のうちのタイヤ軸方向最外側に配されるショルダー溝は、その溝中心線が、タイヤ赤道Cからトレッド接地半巾の0.4〜0.7倍の距離を隔てた領域を通るとともに、
正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時の接地面形状の輪郭線において、
タイヤ赤道上の赤道点Paと、前記ショルダー溝のタイヤ赤道側の溝側縁点Pbとを通る直線J1のタイヤ軸方向線との角度αは0°より大かつ12°以下、かつ前記ショルダー溝のトレッド接地端側の溝側縁点Pcと、トレッド接地端上の接地端点Pdとを通る直線J2のタイヤ軸方向線との角度βは−3°以上かつ前記角度α以下とするとともに、
前記接地面形状における、前記赤道点Paでの周方向接地長さLaと、前記接地端点Pdでの周方向接地長さLdとの比La/Ldは、1.0より大かつ1.20以下であることを特徴としている。
【0008】
又請求項2の発明では、前記ベルト層は、カーカス側の第1のベルトプライと、その外側の第2のベルトプライとを含むとともに、
トレッド面の輪郭線と前記第2のベルトプライとの間のトレッド厚さをTとしたとき、タイヤ赤道Cからトレッド接地半巾の0.60〜0.7倍の距離を隔てた領域に、前記トレッド厚さTが最小値Tmin となるトレッド厚さ最小位置を有するとともに、前記トレッド厚さTは、前記トレッド厚さ最小位置から前記第2のベルトプライの外端の位置まで増加することを特徴としている。
【0009】
又請求項3の発明では、前記ベルト層のベルトコード及びカーカスのカーカスコードは、金属コードであることを特徴としている。
【0010】
なお本明細書において、前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば
・JATMAであれば、標準リムよりリム幅の狭いリムがあるサイズは、「標準リムより1ランク狭いリム幅のリム」、標準リムよりリム幅の狭いリムが設定されていないサイズについては、「標準リム」を意味し、
・TRAであれば、”Design Rim”よりリム幅の狭いリムがあるサイズは、「”Design Rim”より1ランク狭いリム幅のリム」、”Design Rim”よりリム幅の狭いリムが設定されていないサイズについては、「”Design Rim”」を意味し、・ETRTOであれば、”Measuring Rim ”よりリム幅の狭いリムがあるサイズは、「”Measuring Rim ”より1ランク狭いリム幅のリム」、”Measuring Rim ”よりリム幅の狭いリムが設定されていないサイズについては、「”Measuring Rim ”」を意味する。
【0011】
また前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" であるが、タイヤが乗用車用である場合には180kPaとする。また前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。
【0012】
又本明細書において、前記「接地端」とは、前記正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時に接地するトレッド接地面のタイヤ軸方向外端を意味し、この外端(接地端)とタイヤ赤道との間の距離をトレッド接地半巾という。
【0013】
【発明の実施の形態】
以下、本発明の実施の一形態を、図示例とともに説明する。図1は、本発明の重荷重用タイヤが、トラック・バス用等である場合の断面図、図2はそのトレッド部を拡大して示す断面図である。
【0014】
図1において、重荷重用タイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の外側に配されるベルト層7とを具える。
【0015】
前記カーカス6は、カーカスコードをタイヤ周方向に対して70〜90度の角度で配列した1枚以上、本例では1枚のカーカスプライ6Aからなり、カーカスコードとして、スチール等の金属コードが使用される。
【0016】
又前記カーカスプライ6Aは、前記ビードコア5、5間に跨るプライ本体部6aの両側に、前記ビードコア5の周りを内から外に折り返して係止される折返し部6bを有する。このプライ本体部6aと折返し部6bとの間には、ビードコア5から半径方向外方にのびるビードエーペックスゴム8が配置され、ビード部4からサイドウォール部3にかけて補強している。
【0017】
前記ベルト層7は、ベルトコードとして金属コードを用いた3枚以上のベルトプライから形成される。本例では、スチールコードをタイヤ周方向に対して例えば60±15°の角度で配列してなりかつ半径方向最内に配される第1のベルトプライ7Aと、タイヤ周方向に対して例えば10〜35°の小角度で配列する第2〜4のベルトプライ7B、7C、7Dとの4枚構造の場合を例示している。
【0018】
このベルト層7では、第1のベルトプライ7Aのタイヤ軸方向のプライ巾は、第2のベルトプライ7Bのプライ巾に比して小かつ第3のベルトプライ7Cのプライ巾と略同一としており、最大巾となる第2のベルトプライ7Bのプライ巾WBをトレッド接地巾WTの0.80〜0.95倍とすることにより、トレッド部2の略全巾をタガ効果を有して補強し、かつトレッド剛性を高めている。なお最も巾狭となる第4のベルトプライ7Dは、第1〜3のベルトプライ7A〜7D及びカーカス6を外傷より保護するブレーカとして機能している。
【0019】
次に、前記タイヤ1は、トレッド部2に、周方向に連続してのびる2本以上の縦主溝Gを有するトレッドパターンを設けている。この縦主溝Gは、溝巾が3mm以上の溝体であり、直線状又はジグザグ状を有して周方向に延在する。
【0020】
なお本例では、前記縦主溝Gが、タイヤ赤道Cの両側の内の縦主溝Giと、その外側の外の縦主溝Goとの4本からなる場合を例示しており、従って該外の縦主溝Goが、タイヤ軸方向最外側のショルダー溝Gsを構成する。
【0021】
このショルダー溝Gsは、その溝中心線Nが、タイヤ赤道Cからトレッド接地半巾WT/2の0.4〜0.7倍の距離を隔てた領域を通る。即ち、溝中心線Nのタイヤ赤道Cからの距離Knは、トレッド接地半巾WT/2の0.4〜0.7倍の範囲であり、これによって、前記トレッド部2を、ショルダー溝Gより内側のトレッドセンター部Ycと、外側のトレッドショルダー部Ysとに区分している。なおショルダー溝Gsが、ジグザグ溝の場合には、ジグザグの振幅の中心を、溝中心線Nとする。
【0022】
そして本実施形態では、このようなタイヤ1における摩耗の均一化を図るため、前記タイヤ1を正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時の接地面形状10を以下の如く特定している。
【0023】
詳しくは、図4、5に示すように、
(1) 前記接地面形状10の輪郭線Fにおいて、
・ タイヤ赤道C上の赤道点Paと、前記ショルダー溝Gsのタイヤ赤道C側の溝側縁点Pbとを通る直線J1のタイヤ軸方向線との角度αを、0°より大かつ12°以下、
・ 前記ショルダー溝Gsのトレッド接地端E側の溝側縁点Pcと、トレッド接地端E上の接地端点Pdとを通る直線J2のタイヤ軸方向線との角度βを、−3°以上かつ前記角度α以下、
(2) 前記接地面形状10において
・ 前記赤道点Paでの周方向接地長さLaと、前記接地端点Pdでの周方向接地長さLdとの比La/Ldを、1.0より大かつ1.20以下、
に規制している。
【0024】
ここで、前記角度α、βは本発明者が案出した、新規なパラメータであり、この角度α、βを適正にすることが、耐偏摩耗性の向上(摩耗の均一化)にとって重要であることが判明した。
【0025】
即ち、前記角度αが12°を越えると、前記トレッドショルダー部Ysの接地圧が低下し、トレッドセンター部Ycでの荷重負担が過度に高まるため、トレッドショルダー部Ysに比してトレッドセンター部Ycでの摩耗が早くなるなどセンター摩耗が進行し、摩耗の均一性が損なわれる。逆に、前記角度αが0°以下になると、トレッドセンター部Ycに比べて、トレッドショルダー部Ysの接地圧が上昇する結果、このトレッドショルダー部Ysの発熱が大きくなり、温度上昇によってベルト端に剥離損傷を誘発させるなど耐久性を損ねる傾向となる。
【0026】
これに対し、前記角度βを、−3°以上かつ角度α以下の範囲に規制することにより、トレッド接地端Eでの滑りを減じ肩落ち摩耗を抑制できる。前記角度βが角度αを越えると、ショルダー溝Gsの溝側縁点Pb、Pcでの接地長さLb、Lcに対して、接地端点Pdでの接地長さLdが過小となり、肩落ち摩耗が発生しやすくなる。逆に前記角度βが−3°より小になると、溝側縁点Pcで接地圧低下を引き起こし、この溝側縁点Pcでの摩耗が早くなる等、軌道摩耗が発生する、或いは、トレッドショルダー部Ys全体の接地圧が極端に小さくなり、センター摩耗が発生する。
【0027】
なお本明細書では、前記角度α、βは、前記直線J1、J2がタイヤ軸方向外側に向かって、接地長さ中心10C側に傾斜する向きを正(+)として定義している。
【0028】
又肩落ち摩耗のために、前記比La/Ldを、1.0より大かつ1.20以下の範囲に規制することも重要であり、比La/Ldが1.20を越えると、接地端点Pdでの接地長さLdが赤道点Paでの接地長さLaに対して過度に短くなるため、前記角度βの大きさに関係なく、トレッド接地端Eでの滑りが発生しやすくなる。
【0029】
なお軌道摩耗の観点からは、前記接地面形状10の接地長Lは、タイヤ軸方向外側に向かって次第に減じる、即ち輪郭線Fの各位置での接線が正(+)の向きに傾斜していることも好ましい。
【0030】
次に、このような接地面形状10を得るために、本例では、図2に示すように、前記正規内圧状態におけるトレッド面の輪郭線S(以下トレッド輪郭線Sという)と前記第2のベルトプライ7Bとの間のトレッド厚さをTとしたとき、図3の如く、タイヤ赤道Cからトレッド接地半巾WT/2の0.60〜0.7倍の距離を隔てた領域に、前記トレッド厚さTが最小値Tmin となるトレッド厚さ最小位置Qを設ける、即ちトレッド厚さ最小位置Qのタイヤ赤道Cからの距離Kqをトレッド接地半巾WT/2の0.60〜0.7倍とするとともに、前記トレッド厚さTを、前記トレッド厚さ最小位置Qからタイヤ軸方向外側に向かって、前記第2のベルトプライ7Bの外端の位置まで増加させている。
【0031】
又同様に、前記トレッド厚さTは、前記トレッド厚さ最小位置Qからタイヤ軸方向内側に向かって、タイヤ赤道Cの位置まで増加している。なお本例では、タイヤ赤道Cでのトレッド厚さTcは、第2のベルトプライ7Bの外端での厚さTbに比して大のものを示しているがTc≦Tbとすることもできる。
【0032】
又このようなトレッド厚さTの分布を得るために、本例では、図2の如く、前記第2のベルトプライ7Bを、タイヤ赤道C上に中心を有する単一円弧で形成している。又前記トレッドセンター部Ycにおけるトレッド輪郭線Sを、単一円弧或いは複数円弧を用いた凸円弧状の輪郭線S1により形成するとともに、前記トレッドショルダー部Ysにおけるトレッド輪郭線Sを、略直線状の輪郭線S2によって形成している。
【0033】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0034】
【実施例】
図1の構造をなすタイヤサイズ275/80R 22.5の重荷重用タイヤを、表1の仕様に基づき試作するとともに、各試供タイヤの摩耗性能をテストし肩落ち摩耗、軌道摩耗、及び摩耗の均一性を比較し、その結果を表1に示す。
【0035】
(1)摩耗性能;
試供タイヤを、リム(7.50×22.5)、内圧(875kPa)にて、トラック(2−2・Dタイプ)の前輪に装着し、60、000kmの距離を走行するとともに、走行後のトレッド接地端での摩耗(肩落ち摩耗)の発生状況、ショルダー溝の側縁での摩耗(軌道摩耗)の発生状況を、目視によって外観確認した。
又、内の縦主溝の位置、及び外の縦主溝(ショルダー溝)の位置における摩耗量Zi、Zoを測定し、その差Zi−Zoを確認した。差Zi−Zoが大きければセンター摩耗が発生しており、逆に、差が小さい(0に近い)ければ、均一な摩耗形態であり、耐偏摩耗性能が良好であることを示している。
【0036】
【表1】

Figure 0003808778
【0037】
【発明の効果】
叙上の如く本発明は、角度α、βを規制し接地面形状を特定しているため、肩落ち摩耗、軌道摩耗、センター摩耗等を抑制でき、摩耗の均一化を高レベルで達成しうる。
【図面の簡単な説明】
【図1】本発明の一実施例のタイヤの断面図である。
【図2】そのトレッド部を拡大してを示す断面図である。
【図3】トレッド厚さの分布の一例を示す線図である。
【図4】接地面形状を示す線図である。
【図5】その輪郭線を拡大して示す線図である。
【図6】従来タイヤにおける接地面形状を示す線図である。
【符号の説明】
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
7 ベルト層
10 接地面形状
F 接地面形状の輪郭線
G 縦主溝
Gs ショルダー溝
N 溝中心線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heavy duty tire that suppresses shoulder drop wear at a tread contact end and track wear along a shoulder groove by specifying the shape of the contact surface, thereby achieving uniform wear.
[0002]
[Background Art and Problems to be Solved by the Invention]
For example, in a heavy load evening ear, the tread surface is generally formed by a convex arcuate curve using a single arc or a plurality of arcs. Accordingly, the ground contact surface shape a is also formed in a convex arc shape in which the circumferential contact length b gradually decreases from the tire equator side toward the tread contact end side, as schematically shown in FIG.
[0003]
However, in such a tire, since the contact length b2 on the tread contact end side is significantly reduced with respect to the contact length b1 on the tire equator side, the tread surface on the tread contact end side slips from the road surface. It is likely to cause uneven wear such as so-called shoulder wear.
[0004]
Therefore, the tread curvature radius is increased and the contact length b2 is brought close to the contact length b1 to suppress slipping on the tread contact end side. However, in such a technique, the tread center portion yc on the inner side of the shoulder groove f arranged on the outermost side in the tire axial direction causes so-called center wear that wears compared to the outer tread shoulder portion ys, or A sufficiently satisfactory result has not been obtained with respect to uniform wear, such as so-called orbital wear in which one / other side edge of the shoulder groove f is worn.
[0005]
Accordingly, the inventor of the present invention has a straight tire axial direction line passing through the equator point p1 on the tire equator and the groove side edge point p2 on the tire equator side of the shoulder groove f in the contour line of the ground contact surface shape a. The research was conducted by paying attention to the angle α and the angle β between the groove side edge point p3 on the tread end side of the shoulder groove f and the straight tire axial direction line passing through the ground end point p4 on the tread ground contact end. As a result, it has been found that by controlling the angles α and β within a predetermined range, it is possible to suppress shoulder drop wear, track wear, center wear, and the like, and to achieve uniform wear.
[0006]
In other words, the present invention is based on the fact that the ground surface shape is specified by regulating the angles α and β, and it is possible to suppress shoulder drop wear, track wear, center wear, and the like, and a heavy load that can achieve uniform wear at a high level. The purpose is to provide heavy duty tires.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present application includes a carcass extending from a tread portion having two or more longitudinal main grooves extending continuously in a circumferential direction to a bead core of a bead portion through a sidewall portion, A heavy-duty tire comprising a belt layer disposed inside the tread and outside the carcass,
The shoulder groove disposed on the outermost side in the tire axial direction of the longitudinal main groove passes through a region where the groove center line is separated from the tire equator C by a distance 0.4 to 0.7 times the tread ground half width. With
In the contour of the contact surface shape when a normal load is applied to a tire in a normal internal pressure state in which a normal rim is assembled and filled with a normal internal pressure,
An angle α between a tire axial direction line of a straight line J1 passing through the equator point Pa on the tire equator and the groove side edge point Pb on the tire equator side of the shoulder groove is greater than 0 ° and not more than 12 °, and the shoulder groove The angle β between the groove side edge point Pc on the tread ground contact end side and the tire axial direction line of the straight line J2 passing through the ground contact end point Pd on the tread ground contact end is set to be −3 ° or more and the angle α or less,
The ratio La / Ld between the circumferential ground contact length La at the equator point Pa and the circumferential ground contact length Ld at the ground contact point Pd in the ground contact surface shape is greater than 1.0 and not greater than 1.20. It is characterized by being.
[0008]
In the invention of claim 2, the belt layer includes a first belt ply on the carcass side and a second belt ply on the outside thereof.
When the tread thickness between the contour line of the tread surface and the second belt ply is T, in the region separated from the tire equator C by a distance of 0.60 to 0.7 times the tread ground half width, The tread thickness T has a minimum tread thickness position where the minimum value Tmin is reached, and the tread thickness T increases from the minimum tread thickness position to the position of the outer end of the second belt ply. It is said.
[0009]
In the invention of claim 3, the belt cord of the belt layer and the carcass cord of the carcass are metal cords.
[0010]
In the present specification, the “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based. For example, if it is JATMA, the rim width is larger than the standard rim. A size with a narrow rim means “a rim with a rim width that is one rank narrower than a standard rim”, and a size without a rim with a narrower rim width than a standard rim means a “standard rim”.
-For TRA, the size with a rim with a rim width narrower than “Design Rim” is set to “a rim with a rim width one rank lower than“ Design Rim ””, and a rim with a rim width narrower than “Design Rim”. If there is no size, it means “Design Rim”. ・ If it is ETRTO, a rim with a narrower rim width than “Measuring Rim” means a rim with a rim width one rank lower than “Measuring Rim”. , “Measuring Rim” means a size where a rim having a rim width smaller than that of “Measuring Rim” is not set.
[0011]
The “regular internal pressure” is the air pressure specified by the tire for each tire. The maximum air pressure in the case of JATMA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in the case of TRA, If it is ETRTO, it is “INFLATION PRESSURE”, but if the tire is for a passenger car, it is 180 kPa. The “regular load” is the load specified by the standard for each tire. The maximum load capacity shown in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” is the maximum load capacity for JATMA and TRA for TRA. If it is ETRTO, it is "LOAD CAPACITY".
[0012]
Further, in the present specification, the “grounding end” means the outer end in the tire axial direction of the tread grounding surface that is grounded when a normal load is applied to a tire in a normal internal pressure state that is assembled to the normal rim and filled with a normal internal pressure. The distance between the outer end (grounding end) and the tire equator is called a tread grounding half width.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view when the heavy-duty tire of the present invention is for trucks and buses, and FIG. 2 is an enlarged cross-sectional view of the tread portion.
[0014]
In FIG. 1, a heavy load tire 1 includes a carcass 6 extending from a tread portion 2 through a sidewall portion 3 to a bead core 5 of a bead portion 4, and a belt disposed inside the tread portion 2 and outside the carcass 6. With layer 7.
[0015]
The carcass 6 includes at least one carcass cord in which carcass cords are arranged at an angle of 70 to 90 degrees with respect to the tire circumferential direction, in this example, one carcass ply 6A, and a metal cord such as steel is used as the carcass cord. Is done.
[0016]
The carcass ply 6A has folded portions 6b on both sides of the ply main body portion 6a straddling the bead cores 5 and 5 and folded around the bead core 5 from the inside to the outside. A bead apex rubber 8 extending radially outward from the bead core 5 is disposed between the ply main body portion 6a and the folded portion 6b, and is reinforced from the bead portion 4 to the sidewall portion 3.
[0017]
The belt layer 7 is formed of three or more belt plies using metal cords as belt cords. In this example, the steel cord is arranged at an angle of, for example, 60 ± 15 ° with respect to the tire circumferential direction, and is arranged at the innermost radial direction, for example, 10A with respect to the tire circumferential direction. The case of the four-sheet structure of the second to fourth belt plies 7B, 7C, 7D arranged at a small angle of ˜35 ° is illustrated.
[0018]
In this belt layer 7, the ply width in the tire axial direction of the first belt ply 7A is smaller than the ply width of the second belt ply 7B and is substantially the same as the ply width of the third belt ply 7C. By making the ply width WB of the second belt ply 7B, which is the maximum width, 0.80 to 0.95 times the tread grounding width WT, the entire width of the tread portion 2 is reinforced with a tagging effect. And the tread rigidity is increased. The narrowest fourth belt ply 7D functions as a breaker that protects the first to third belt plies 7A to 7D and the carcass 6 from external damage.
[0019]
Next, in the tire 1, a tread pattern having two or more vertical main grooves G extending continuously in the circumferential direction is provided in the tread portion 2. The vertical main groove G is a groove body having a groove width of 3 mm or more, has a linear shape or a zigzag shape, and extends in the circumferential direction.
[0020]
In this example, the case where the vertical main groove G is composed of four vertical main grooves Gi on both sides of the tire equator C and an outer vertical main groove Go on the outer side is illustrated. The outer vertical main groove Go constitutes the outermost shoulder groove Gs in the tire axial direction.
[0021]
The shoulder groove Gs passes through a region where the groove center line N is separated from the tire equator C by a distance 0.4 to 0.7 times the tread ground half width WT / 2. That is, the distance Kn from the tire equator C of the groove center line N is in the range of 0.4 to 0.7 times the tread ground half width WT / 2, whereby the tread portion 2 is located inside the shoulder groove G. Are divided into a tread center portion Yc and an outer tread shoulder portion Ys. When the shoulder groove Gs is a zigzag groove, the center of the zigzag amplitude is defined as a groove center line N.
[0022]
In the present embodiment, in order to achieve uniform wear in the tire 1 as described above, the tire 1 is assembled to a normal rim and connected to the tire in a normal internal pressure state in which the normal internal pressure is filled and a normal load is applied. The ground shape 10 is specified as follows.
[0023]
Specifically, as shown in FIGS.
(1) In the contour line F of the ground contact surface shape 10,
The angle α between the tire equator C on the tire equator C and the tire axial direction line of the straight line J1 passing through the shoulder groove Ps on the tire equator C side of the shoulder groove Gs is greater than 0 ° and not more than 12 °. ,
The angle β between the groove side edge point Pc on the tread ground contact end E side of the shoulder groove Gs and the tire axial direction line of the straight line J2 passing through the ground contact end point Pd on the tread ground contact E is −3 ° or more and Angle α or less,
(2) In the ground contact surface shape 10: The ratio La / Ld between the circumferential ground contact length La at the equator point Pa and the circumferential ground contact length Ld at the ground contact end point Pd is greater than 1.0. 1.20 or less,
Is regulated.
[0024]
Here, the angles α and β are new parameters devised by the present inventor, and it is important for the improvement of uneven wear resistance (uniform wear) to make the angles α and β appropriate. It turned out to be.
[0025]
That is, if the angle α exceeds 12 °, the contact pressure of the tread shoulder portion Ys decreases, and the load load on the tread center portion Yc increases excessively. Therefore, the tread center portion Yc compared to the tread shoulder portion Ys. The center wear progresses, for example, the wear at the time becomes faster, and the uniformity of wear is impaired. Conversely, when the angle α is 0 ° or less, the contact pressure of the tread shoulder portion Ys increases as compared to the tread center portion Yc. As a result, the heat generation of the tread shoulder portion Ys increases, and the temperature rise causes the belt end. It tends to impair durability, such as inducing peeling damage.
[0026]
On the other hand, by restricting the angle β to the range of −3 ° or more and the angle α or less, it is possible to reduce slipping at the tread ground contact E and suppress shoulder wear. When the angle β exceeds the angle α, the contact length Ld at the contact end point Pd becomes too small with respect to the contact lengths Lb and Lc at the groove side edge points Pb and Pc of the shoulder groove Gs. It tends to occur. On the other hand, when the angle β is smaller than −3 °, the contact pressure is lowered at the groove side edge point Pc, and the wear at the groove side edge point Pc is accelerated. The ground pressure of the entire portion Ys becomes extremely small, and center wear occurs.
[0027]
In the present specification, the angles α and β define the direction in which the straight lines J1 and J2 are inclined toward the ground contact length center 10C toward the outer side in the tire axial direction as positive (+).
[0028]
It is also important to limit the ratio La / Ld to a range greater than 1.0 and less than or equal to 1.20 due to shoulder fall wear, and if the ratio La / Ld exceeds 1.20, the ground contact endpoint Since the contact length Ld at Pd is excessively shorter than the contact length La at the equator point Pa, slippage at the tread contact end E is likely to occur regardless of the size of the angle β.
[0029]
From the viewpoint of track wear, the contact length L of the contact surface shape 10 gradually decreases toward the outer side in the tire axial direction, that is, the tangent line at each position of the contour line F is inclined in the positive (+) direction. It is also preferable.
[0030]
Next, in order to obtain such a ground contact surface shape 10, in this example, as shown in FIG. 2, the tread surface contour line S (hereinafter referred to as the tread contour line S) and the second tread surface in the normal internal pressure state. When the thickness of the tread between the belt ply 7B is T, as shown in FIG. 3, the tread is located in a region separated from the tire equator C by a distance of 0.60 to 0.7 times the tread grounding half width WT / 2. The minimum tread thickness position Q where the thickness T is the minimum value Tmin is provided, that is, the distance Kq from the tire equator C at the minimum tread thickness position Q is 0.60 to 0.7 times the tread ground half width WT / 2. At the same time, the tread thickness T is increased from the minimum tread thickness position Q toward the outer side in the tire axial direction to the position of the outer end of the second belt ply 7B.
[0031]
Similarly, the tread thickness T increases from the minimum tread thickness position Q toward the tire equator C toward the inside in the tire axial direction. In this example, the tread thickness Tc at the tire equator C is larger than the thickness Tb at the outer end of the second belt ply 7B, but Tc ≦ Tb can also be set. .
[0032]
In order to obtain such a distribution of the tread thickness T, in this example, the second belt ply 7B is formed by a single arc having a center on the tire equator C as shown in FIG. The tread contour S in the tread center portion Yc is formed by a convex arc-shaped contour S1 using a single arc or a plurality of arcs, and the tread contour S in the tread shoulder Ys is substantially linear. It is formed by the contour line S2.
[0033]
As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.
[0034]
【Example】
A heavy-duty tire having a tire size of 275 / 80R 22.5 having the structure shown in FIG. 1 was prototyped based on the specifications shown in Table 1, and the wear performance of each sample tire was tested to eliminate shoulder wear, track wear, and uniform wear. The results are shown in Table 1.
[0035]
(1) Wear performance;
A sample tire was mounted on the front wheel of a truck (2-2D type) with a rim (7.50 × 22.5) and internal pressure (875 kPa), and it traveled a distance of 60,000 km. The appearance of wear at the tread contact edge (shoulder fall wear) and the occurrence of wear at the side edge of the shoulder groove (track wear) were visually confirmed.
Further, the wear amounts Zi and Zo at the position of the inner vertical main groove and the position of the outer vertical main groove (shoulder groove) were measured, and the difference Zi-Zo was confirmed. If the difference Zi-Zo is large, center wear has occurred, and conversely, if the difference is small (close to 0), it indicates a uniform wear form and good uneven wear resistance.
[0036]
[Table 1]
Figure 0003808778
[0037]
【The invention's effect】
As described above, the present invention regulates the angles α and β and specifies the contact surface shape, so that it is possible to suppress shoulder drop wear, track wear, center wear, etc., and to achieve uniform wear at a high level. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tire according to an embodiment of the present invention.
FIG. 2 is an enlarged sectional view showing the tread portion.
FIG. 3 is a diagram showing an example of a distribution of tread thickness.
FIG. 4 is a diagram showing a ground plane shape.
FIG. 5 is an enlarged diagram showing the outline.
FIG. 6 is a diagram showing a contact surface shape in a conventional tire.
[Explanation of symbols]
2 Tread portion 3 Side wall portion 4 Bead portion 5 Bead core 6 Carcass 7 Belt layer 10 Ground surface shape F Ground surface shape contour G Vertical main groove Gs Shoulder groove N Groove center line

Claims (3)

周方向に連続してのびる2本以上の縦主溝を有するトレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、トレッド部の内方かつカーカスの外側に配されるベルト層とを具えた重荷重用タイヤであって、
前記縦主溝のうちのタイヤ軸方向最外側に配されるショルダー溝は、その溝中心線が、タイヤ赤道Cからトレッド接地半巾の0.4〜0.7倍の距離を隔てた領域を通るとともに、
正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時の接地面形状の輪郭線において、
タイヤ赤道上の赤道点Paと、前記ショルダー溝のタイヤ赤道側の溝側縁点Pbとを通る直線J1のタイヤ軸方向線との角度αは0°より大かつ12°以下、かつ前記ショルダー溝のトレッド接地端側の溝側縁点Pcと、トレッド接地端上の接地端点Pdとを通る直線J2のタイヤ軸方向線との角度βは−3°以上かつ前記角度α以下とするとともに、
前記接地面形状における、前記赤道点Paでの周方向接地長さLaと、前記接地端点Pdでの周方向接地長さLdとの比La/Ldは、1.0より大かつ1.20以下であることを特徴とする重荷重用タイヤ。
A carcass extending from the tread portion having two or more longitudinal main grooves extending continuously in the circumferential direction to the bead core of the bead portion through the sidewall portion, and a belt layer disposed inside the tread portion and outside the carcass A heavy duty tire with
The shoulder groove disposed on the outermost side in the tire axial direction of the longitudinal main groove passes through a region where the groove center line is separated from the tire equator C by a distance 0.4 to 0.7 times the tread ground half width. With
In the contour of the contact surface shape when a normal load is applied to a tire in a normal internal pressure state in which a normal rim is assembled and filled with a normal internal pressure,
An angle α between a tire axial direction line of a straight line J1 passing through the equator point Pa on the tire equator and the groove side edge point Pb on the tire equator side of the shoulder groove is greater than 0 ° and not more than 12 °, and the shoulder groove The angle β between the groove side edge point Pc on the tread ground contact end side and the tire axial direction line of the straight line J2 passing through the ground contact end point Pd on the tread ground contact end is set to be −3 ° or more and the angle α or less,
The ratio La / Ld between the circumferential ground contact length La at the equator point Pa and the circumferential ground contact length Ld at the ground contact point Pd in the ground contact surface shape is greater than 1.0 and not greater than 1.20. A heavy-duty tire characterized by
前記ベルト層は、カーカス側の第1のベルトプライと、その外側の第2のベルトプライとを含むとともに、
トレッド面の輪郭線と前記第2のベルトプライとの間のトレッド厚さをTとしたとき、タイヤ赤道Cからトレッド接地半巾の0.60〜0.7倍の距離を隔てた領域に、前記トレッド厚さTが最小値Tmin となるトレッド厚さ最小位置を有するとともに、前記トレッド厚さTは、前記トレッド厚さ最小位置から前記第2のベルトプライの外端の位置まで増加することを特徴とする請求項1記載の重荷重用タイヤ。
The belt layer includes a first belt ply on the carcass side and a second belt ply on the outside thereof,
When the tread thickness between the contour line of the tread surface and the second belt ply is T, in the region separated from the tire equator C by a distance of 0.60 to 0.7 times the tread ground half width, The tread thickness T has a minimum tread thickness position where the minimum value Tmin is reached, and the tread thickness T increases from the minimum tread thickness position to the position of the outer end of the second belt ply. The heavy duty tire according to claim 1 .
前記ベルト層のベルトコード及びカーカスのカーカスコードは、金属コードであることを特徴とする請求項1又は2記載の重荷重用タイヤ。The heavy duty tire according to claim 1 or 2, wherein the belt cord of the belt layer and the carcass cord of the carcass are metal cords.
JP2002013237A 2001-12-21 2002-01-22 Heavy duty tire Expired - Fee Related JP3808778B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002013237A JP3808778B2 (en) 2002-01-22 2002-01-22 Heavy duty tire
AU2002354498A AU2002354498A1 (en) 2001-12-21 2002-12-16 Heavy-duty tire
US10/495,363 US7469731B2 (en) 2001-12-21 2002-12-16 Heavy-duty tire having ground-contact surface shape
EP02788847A EP1459909B1 (en) 2001-12-21 2002-12-16 Heavy-duty tire
PCT/JP2002/013155 WO2003053722A1 (en) 2001-12-21 2002-12-16 Heavy-duty tire
CNB028236408A CN1292928C (en) 2001-12-21 2002-12-16 Heavy-duty tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013237A JP3808778B2 (en) 2002-01-22 2002-01-22 Heavy duty tire

Publications (2)

Publication Number Publication Date
JP2003211914A JP2003211914A (en) 2003-07-30
JP3808778B2 true JP3808778B2 (en) 2006-08-16

Family

ID=27650243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013237A Expired - Fee Related JP3808778B2 (en) 2001-12-21 2002-01-22 Heavy duty tire

Country Status (1)

Country Link
JP (1) JP3808778B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151308A (en) * 2004-12-01 2006-06-15 Bridgestone Corp Pneumatic radial tire
JP2006298158A (en) * 2005-04-20 2006-11-02 Yokohama Rubber Co Ltd:The Pneumatic tire
US20070137744A1 (en) * 2005-12-20 2007-06-21 Kiyoshi Ueyoko Radial aircraft tire and method of manufacture
JP4866177B2 (en) * 2006-08-28 2012-02-01 住友ゴム工業株式会社 Heavy duty tire
JP5181873B2 (en) * 2008-06-30 2013-04-10 横浜ゴム株式会社 Pneumatic tire
JP5265992B2 (en) * 2008-09-01 2013-08-14 株式会社ブリヂストン Pneumatic tire
JP4972124B2 (en) * 2009-04-28 2012-07-11 住友ゴム工業株式会社 Heavy duty radial tire
US9751365B2 (en) * 2011-09-13 2017-09-05 The Goodyear Tire & Rubber Company High mileage truck tire tread
DE112012006999B9 (en) 2012-10-10 2022-08-04 The Yokohama Rubber Co., Ltd. tire
JP6798273B2 (en) * 2016-11-21 2020-12-09 住友ゴム工業株式会社 Pneumatic tires

Also Published As

Publication number Publication date
JP2003211914A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP6186147B2 (en) Pneumatic tire
JP4015623B2 (en) Heavy duty tire
JP3723764B2 (en) Pneumatic tire
JP6111134B2 (en) Pneumatic tire
JP5073568B2 (en) Pneumatic tire
EP2623339B1 (en) Motorcycle tire
US7469731B2 (en) Heavy-duty tire having ground-contact surface shape
JP6450224B2 (en) Pneumatic tire
EP3415342B1 (en) Heavy-duty tire
WO2003059654A1 (en) Heavy duty tire
JP3808778B2 (en) Heavy duty tire
WO2005068225A1 (en) Pneumatic tire
JP5109481B2 (en) Heavy duty pneumatic tire
JP2001171312A (en) Tire for heavy load
JP4742759B2 (en) Pneumatic tire
JPH0596912A (en) Heavy duty tire
JP2007069665A (en) Pneumatic tire
JP4392147B2 (en) Heavy duty tire
JP5503457B2 (en) Pneumatic tire
JP3513340B2 (en) Pneumatic tires for vehicles
JP2006168638A (en) Pneumatic tire
JP4629960B2 (en) Heavy duty tire
JP4388309B2 (en) Heavy duty tire
JPH06143922A (en) Radial tire for heavy load
JP3798696B2 (en) Heavy duty tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3808778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees