JP3808354B2 - Toning method for zirconium-based amorphous alloys - Google Patents

Toning method for zirconium-based amorphous alloys Download PDF

Info

Publication number
JP3808354B2
JP3808354B2 JP2001364559A JP2001364559A JP3808354B2 JP 3808354 B2 JP3808354 B2 JP 3808354B2 JP 2001364559 A JP2001364559 A JP 2001364559A JP 2001364559 A JP2001364559 A JP 2001364559A JP 3808354 B2 JP3808354 B2 JP 3808354B2
Authority
JP
Japan
Prior art keywords
film
amorphous alloy
based amorphous
heat treatment
toning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364559A
Other languages
Japanese (ja)
Other versions
JP2003166044A (en
Inventor
仁 大船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP2001364559A priority Critical patent/JP3808354B2/en
Publication of JP2003166044A publication Critical patent/JP2003166044A/en
Application granted granted Critical
Publication of JP3808354B2 publication Critical patent/JP3808354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ジルコニウム基非晶質合金を茶系、グレー系又は黒色系に調色する方法に関する。本発明の方法は、各種非晶質合金製成形品、例えばセンサー部品、ダイヤフラム等の機械部品、ゴルフクラブヘッド構成部品(フェース、クラウン、ソール等)などのスポーツ用品分野、化学プラント、髄内釘や歯科部品(義歯等)などの医療生体部品、薬品容器、医療器具部品、時計、腕輪、バックル等の装飾部品、触媒反応層等の化学分野、建築部品、光コネクタ構成部品(キャピラリー、フェルール、スリーブ、V溝基板等)等の光学部品などの部品や製品の表面に不動態化処理を行なうと同時に調色する表面処理に適用できる。
【0002】
【従来の技術】
金属材料から作製された成形品は、セラミックス製成形品に比べ、加工が不要であるか容易な加工で済むことが多い。金属材料の中でも、非晶質合金(金属ガラス)は、溶湯からの金型鋳造によっても、またガラス遷移領域を利用した粘性流動による成形加工によっても、金型形状及び寸法を極めて忠実に再現し、その後の加工を行なわなくても非常に精度の良い成形品を低コストで製造できるという利点を有する。また、非晶質合金は機械的強度や化学的性質に優れるため、様々な部品や製品に応用されており、例えば特開平10−186176号、特開平10−311923号には非晶質合金製のフェルール、キャピラリー、スリーブ等の光コネクタ構成部品が、また特開平11−104281号公報には少なくともフェース部が非晶質合金から作製されたゴルフクラブヘッドが開示されている。
【0003】
また、アモルファス構造である非晶質合金は、結晶粒界を持たないため、高耐食性を有することが知られている。この非晶質合金の高耐食性を活かして種々の製品に適用することが可能である。例えば、特開昭52−82461号公報には時計用メタルバンドを非晶質金属から作製することが提案されており、また、特開昭54−122614号公報等には、時計の胴、裏蓋、電池蓋、リューズ、スイッチボタン、回転ベゼル等の時計外装部品に非晶質金属を使用することが提案されている。また、高耐食性を有するステンレス、Ti合金は時計、医療生体部品等に広く使用されており、このような用途にも非晶質合金を適用することが期待できる。
【0004】
【発明が解決しようとする課題】
前記のように、非晶質合金を適用可能な用途としてはかなり広範な分野が考えられる。しかしながら、非晶質合金の色調はその組成によって決まってしまうため、耐食性、機械的性質等の特性だけでなく、高級感を持ち、意匠性にも優れるといった現在の多様な要望に応えられないのが現状である。
このため、各種の色調の彩飾皮膜をコーティングすることが考えられるが、単にコーティングするだけでは高耐食性という非晶質合金の優れた特性が減殺されてしまう。また、医療生体部品、薬品容器、医療器具部品、光コネクタ構成部品など、通常の皮膜をコーティングすることが不適当な用途もある。
【0005】
従って、本発明の基本的な目的は、ジルコニウム基非晶質合金本来の優れた特性を維持したまま、比較的簡単にかつ均一に茶系、グレー系又は黒色系に調色する方法を提供し、それによって高級感を持ち、意匠性にも優れる非晶質合金製品を提供して現在の多様な要望に応えることにある。
さらに本発明の目的は、母材のアモルファス構造を変えることなく、また寸法変化を伴わずに、従来の表面硬化法に比べて低い処理コストで成形品の表面部のみを不動態化処理すると同時に茶系、グレー系又は黒色系に調色できる方法を提供することにある。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明によれば、少なくとも体積率50%以上の非晶質相を含むジルコニウム基非晶質合金に熱処理を施すことによりその表面に形成される皮膜の膜厚を制御し、 表色系(CIE 1976)(JIS Z8729)でL <35、−20<a <20、−20<b <20であり、かつ膜厚が0.1〜8μmの黒色系、35≦L ≦70、−20<a <20、−20<b <20であり、かつ膜厚が8μmを超えるグレー系(灰色系)、又は35≦L 、−20<a <20、20≦b であり、かつ膜厚が0.1μm未満の茶系に調色することを特徴とするジルコニウム系非晶質合金の調色方法が提供される。
【0007】
好適には、前記熱処理を大気雰囲気下で行ない、合金元素の酸化物を含む膜、特に正方晶系ジルコニア膜、好ましくは合金の他の構成元素を固溶した部分安定化ジルコニア膜を形成する。別の態様では、前記熱処理を酸素又は/及び窒素を含む雰囲気下又は大気雰囲気下で行ない、前記ジルコニウム基非晶質合金表面に形成される皮膜が合金元素の酸化物又は窒化物を含む膜であり、その含有割合が表面部から深さ方向に連続的に減少している皮膜を形成する。
【0008】
より具体的な好適な態様においては、母材自体の少なくとも1種の構成元素、特にZrの酸化反応又は窒化反応の最低温度以上の温度で行ない、より好ましくは、前記熱処理を、(1)処理温度350℃−処理時間10分、(2)処理温度350℃−処理時間120分、(3)処理温度420℃−処理時間120分、(4)処理温度450℃−処理時間10分の(1)〜(4)により囲まれる範囲内で行なう。
特に好適には、前記熱処理により、膜厚0.1〜8μmの黒色皮膜を形成する。
【0009】
【発明の実施の形態】
本発明者は、Zr基非晶質合金に熱処理を施すことによりその表面に形成される皮膜の膜厚を制御すれば、前記茶系、グレー系又は黒色系の任意の色調に調色できることを見出し、本発明を完成するに至ったものである。
ここで、皮膜厚さと色調の関係について説明すると、形成される膜が正方晶系ジルコニア膜の場合、膜厚が0.1μm未満の場合には茶系、0.1〜8μmの場合には黒色系、8μmを超える場合にはグレー系となる。
【0010】
この皮膜厚さは、熱処理温度、処理時間等の熱処理条件により制御できる。熱処理温度が高くなると膜の生成速度が速くなり、そのため高温処理では短時間で厚い膜を生成させることが可能となる。但し、使用する材料の等温変態曲線(TTT曲線)のアモルファス領域内の温度及び時間で熱処理する必要があるため、その材料のTTT曲線から各処理温度における最高処理時間が決定される。
膜厚と熱処理条件の関係について示せば、一般に以下のとおりである。
茶系(<0.1μm):熱処理温度400℃以下で熱処理時間10分以下、
黒色系(0.1〜8μm):熱処理温度400℃以下では熱処理時間は10分以上、TTT曲線範囲の最高時間以下、熱処理温度400℃以上では熱処理時間は2時間以下、
グレー系(>8μm):熱処理温度400℃以上で熱処理時間は2時間以上、TTT曲線範囲の最高時間以下。
【0011】
本発明の熱処理方法の好適な態様について説明すると、非晶質合金製成形品を、酸素(又は窒素)を含む雰囲気下にて、その材料のTTT曲線のアモルファス領域内の温度及び時間で熱処理し、上記成形品表面に所望の膜厚(色調)の不動態膜(セラミック系硬質層)を形成する。このときの膜厚に応じて前記したように茶系、グレー系又は黒色系の任意の色調が得られるが、基本的にはZr基非晶質合金の熱処理法であるため、酸素を含む雰囲気下にて熱処理を行なった場合、正方晶系ジルコニア膜あるいは他の構成元素を固溶した部分安定化ジルコニア膜が形成される。
【0012】
また、本発明の方法は、Zr基非晶質合金の熱処理法であるため、簡易な装置を用い、低コストで母材表面に一体的な強固な不動態膜を生成でき、従って、その表面の調色と同時に表面硬化が行なわれ、耐食性や耐摩耗性がさらに一段と向上する。また、熱処理であるため、被処理物を固定していても均一な不動態膜を容易に生成でき、従来の硬質膜のコーティングのように被コーティング物を回転させたりしなくてもよく、処理装置も複雑でなく、簡単な構成とすることができる。通常、硬質膜のコーティングでは膜の剥離が大きな問題となるが、本発明の方法では母材自体の少なくとも1種の構成元素のセラミック化、例えば酸化反応や窒化反応により酸化物や窒化物が生成し、しかもこれらのセラミック微粒子の生成割合、従って母材中での含有割合が処理雰囲気と接する表面程高く、深さ方向に漸次減少する構造傾斜したセラミック系硬質膜を形成するため、母材と一体的な強固な硬質層であり、コーティング膜のような剥離が問題となることはなく、また表面粗さ変化やサイズ変化を生じることも殆どない。特に酸化処理の場合、大気中で行なえるため、高価な真空装置を必要とせず、より経済的な方法といえる。また、処理操作も、従来の鋼の酸化処理や窒化処理技術よりも簡単に行なうことができる。
【0013】
本発明によるZr基非晶質合金の調色法に用いられる反応性ガスとしては、酸素、空気、窒素、アンモニア等が用いられる。酸素や窒素は、酸化や窒化を生じる濃度で、一般に各々1ppm以上含む雰囲気、例えばAr等の不活性ガス雰囲気又は真空雰囲気として利用できる。なお、反応を促進させるためにH2を混入することもできる。空気を利用する場合、大気中で熱処理すれば容易に非晶質合金製成形品表面を酸化させることができる。熱処理の条件は、母材自体の少なくとも1種の構成元素、特にZrの酸化反応や窒化反応を生じる温度及び時間以上で、母材自体が結晶化しない条件、即ちその材料の等温変態曲線(TTT曲線)のアモルファス領域内にあることが必要である。合金表面に形成される不動態膜の厚さ(深さ)や構造傾斜度は、熱処理の温度や時間を変えることによって変化するが、反応性ガスの濃度(分圧)を変えることによっても、セラミック成分の含有割合が表面に向って連続的に又は段階的に増加して構造傾斜したセラミック系硬質層を形成できる。このような不動態膜を形成しても、表面粗さ変化やサイズ変化は殆ど生じることはない。
【0014】
本発明を適用するZr基非晶質合金は、少なくとも体積率50%以上の非晶質相を含む実質的に非晶質の合金から作製されている部品や製品であればよく、特定の材料のものに限定されない。たとえば、特開平10−186176号、特開平10−311923号、特開平11−104281号、特開平11−189855号等に記載されている非晶質合金など、従来公知の各種Zr基非晶質合金を用いることができる。より好ましくは、下記一般式(1)で示される組成を有する非晶質合金製成形品に好適に適用できる。
【0015】
一般式(1):Zra1 bLnc2 d3 e4 f
但し、M1はNi、Cu、Fe、Co、Mn、Nb、Ti、V、Cr、Zn、Al及びGaよりなる群から選ばれる少なくとも1種の元素、LnはY、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Yb及びMm(希土類元素の集合体であるミッシュメタル)よりなる群から選ばれる少なくとも1種の元素、M2はBe、B、C、N及びOよりなる群から選ばれる少なくとも1種の元素、M3はTa、W及びMoよりなる群から選ばれる少なくとも1種の元素、M4はAu、Pt、Pd及びAgよりなる群から選ばれる少なくとも1種の元素、a、b、c、d、e及びfはそれぞれ原子%で、25≦a≦85、15≦b≦75、0≦c≦30、0≦d≦30、0≦e≦15、0≦f≦15である。
【0016】
上記非晶質合金は、下記一般式(1−a)〜(1−p)の非晶質合金を含む。
一般式(1−a):Zra1 b
この非晶質合金は、M1元素がZrと共存するために、混合エンタルピーが負で大きく、アモルファス形成能が良い。
一般式(1−b):Zra1 bLnc
この非晶質合金のように、上記一般式(1−a)の合金に希土類元素を添加することによりアモルファスの熱的安定性が向上する。
【0017】
一般式(1−c):Zra1 b2 d
一般式(1−d):Zra1 bLnc2 d
これらの非晶質合金のように、原子半径の小さな元素M2(Be,B,C,N,O)でアモルファス構造中の隙間を埋めることによって、その構造が安定化し、アモルファス形成能が向上する。
【0018】
一般式(1−e):Zra1 b3 e
一般式(1−f):Zra1 bLnc3 e
一般式(1−g):Zra1 b2 d3 e
一般式(1−h):Zra1 bLnc2 d3 e
これらの非晶質合金のように、高融点金属M3(Ta,W,Mo)を添加した場合、アモルファス形成能に影響を与えずに耐熱性、耐食性が向上する。
【0019】
一般式(1−i):Zra1 b4 f
一般式(1−j):Zra1 bLnc4 f
一般式(1−k):Zra1 b2 d4 f
一般式(1−l):Zra1 bLnc2 d4 f
一般式(1−m):Zra1 b3 e4 f
一般式(1−n):Zra1 bLnc3 e4 f
一般式(1−o):Zra1 b2 d3 e4 f
一般式(1−p):Zra1 bLnc2 d3 e4 f
これらの貴金属M4(Au,Pt,Pd,Ag)を含んだ非晶質合金の場合、結晶化が起きても脆くならない。
【0020】
前記した非晶質合金の中でも、ガラス遷移温度(Tg)と結晶化温度(Tx)の温度差が極めて広いZr−TM−Al系(TM:遷移金属)非晶質合金は、高強度、高耐食性であると共に、過冷却液体領域(ガラス遷移領域)ΔTx=Tx−Tgが60K以上と極めて広く、この温度領域では粘性流動により数10MPa以下の低応力でも非常に良好な加工性を示す。また、冷却速度が数10K/s程度の鋳造法によっても非晶質バルク材が得られるなど、非常に安定で製造し易い特徴を持っている。これらの合金は、溶湯からの金型鋳造によっても、またガラス遷移領域を利用した粘性流動による成形加工によっても、非晶質材料ができると同時に、金型形状及び寸法を極めて忠実に再現する。
【0021】
本発明に利用されるこれらのZr−TM−Al系非晶質合金は、合金組成、測定法によっても異なるが、非常に大きなΔTxの範囲を持っている。例えばZr60Al15Co2.5Ni7.5Cu15合金(Tg:652K、Tx:768K)のΔTxは116Kと極めて広い。硬度は室温からTg付近までビッカース硬度(Hv)で460(DPN)、引張強度は1,600MPa、曲げ強度は3,000MPaに達する。熱膨張率αは室温からTg付近まで1×10-5/Kと小さく、ヤング率は91GPa、圧縮時の弾性限界は4〜5%を超える。さらに靭性も高く、シャルピー衝撃値で60〜70kJ/m2を示す。このように非常に高強度の特性を示しながら、ガラス遷移領域まで加熱されると、流動応力は10MPa程度まで低下する。このため極めて加工が容易で、低応力で複雑な形状の微小部品や高精度部品に成形できるのが本合金の特徴である。しかも、いわゆるガラス(非晶質)としての特性から加工(変形)表面は極めて平滑性が高く、結晶合金を変形させたときのように滑り帯が表面に現われるステップなどは実質的に発生しない特徴を持っている。
【0022】
一般に、非晶質合金はガラス遷移領域まで加熱すると長時間の保持によって結晶化が始まるが、本合金のようにΔTxが広い合金は非晶質相が安定であり、ΔTx内の温度を適当に選べば2時間程度までは結晶が発生せず、通常の成形加工においては結晶化を懸念する必要はない。
また、本合金は溶湯からの凝固においてもこの特性を如何なく発揮する。一般に非晶質合金の製造には急速な冷却が必要とされるが、本合金は冷却速度10K/s程度の冷却で溶湯から容易に非晶質単相からなるバルク材を得ることができる。その凝固表面はやはり極めて平滑であり、金型表面のミクロンオーダーの研磨傷でさえも忠実に再現する転写性を持っている。
従って、鋳造材料として本合金を適用すれば、金型表面が成形品の要求特性を満たす表面品質を持っておれば、金型鋳造法によって所定の形状、寸法精度、及び表面品質を満足する成形品を単一のプロセスで量産性良く製造でき、寸法調整、表面粗さ調整の工程を省略又は短縮することができる。
【0023】
【実施例】
以下、本発明の効果を具体的に確認した幾つかの実施例を示すが、本発明が下記実施例に限定されるものでないことはもとよりである。
図1は、本発明による熱処理条件をZr基非晶質合金(Zr55Ni5Al10Cu30)を例に示したものである。この合金のTTT曲線は図1に示すようであるので、図中(1)及び(2)のアモルファス領域の条件(但し、180℃以上(一般にいわれているZrの酸化最低温度)、1分以上)で大気中熱処理をすれば、非晶質合金表面を容易に酸化できる。窒化処理の場合、ZrとNの反応温度が400℃以上であるため、図1の(2)の領域で処理する。
【0024】
このような条件で熱処理を行なうことにより、耐摩耗性の高い強固な不動態膜(セラミック系硬質層)が非晶質合金表面に生成する。この際、非晶質合金を構成する元素の酸化物及び窒化物の生成自由エネルギーの低いものが優先的に変化するので、不動態膜の組成はそれに対応したものとなる。前記Zr基非晶質合金の場合、大気中での熱処理により、Zr基非晶質合金(母材)の表面にZrO2を主とする酸化物を含有するセラミック系硬質層が生成し、かつ酸化物の含有割合は表面から深さ方向に漸次減少するように傾斜している。
【0025】
また、熱処理によって表面のヌープ硬さは高くなり、また処理温度が高くなる程ヌープ硬さは高くなり、耐摩耗性が向上する。また、同じ熱処理温度でも処理時間が増す程、ヌープ硬さは高くなる。但し、過剰に長時間の熱処理を行なった場合、層厚が厚くなり、耐摩耗性には優れるが、表面粗さが急激に悪化するため、サブミクロンオーダーの表面粗度が必要な成形品には適用困難である。
従って、Zr基非晶質合金の調色と表面硬化を効果的に行なうための好ましい処理温度と処理時間は、図2に斜線で囲まれている領域、すなわち(1)処理温度350℃−処理時間10分、(2)処理温度350℃−処理時間120分、(3)処理温度420℃−処理時間120分、(4)処理温度450℃−処理時間10分の(1)〜(4)により囲まれる範囲内である。
【0026】
図2中、符号Aで示した条件で酸化処理したZr基非晶質合金(Zr55Ni5Al10Cu30)のX線回折データを図3に示す。
図3に示されるX線回折図から、正方晶系ジルコニアに基づくピークが存在することがわかる。これは、処理膜の組成はZr基非晶質合金を構成する元素の酸化物の生成自由エネルギーの低いものが優先的に変化(酸化)するため、ジルコニアがリッチな傾斜膜を生成するためである。
【0027】
ジルコニアは、低温型(単斜晶系)と高温型(正方晶系)があり、1000℃付近で相転移する。単斜晶系ジルコニアは、低温(100℃程度)でも水分に弱く不安定である。そのため、フェルール等の光コネクタ部品では、ジルコニアにイットリア等の添加剤を数%添加することで強度が高い部分安定化ジルコニア(正方晶系)を使用している。前記Zr基非晶質合金の酸化処理の場合、図3から、その他の構成元素がジルコニアに固溶し、主に安定な部分安定化ジルコニア(正方晶ZrO2)の膜が表面に生成していることがわかる。また、表面に厚い膜を生成させることで従来の金属色とは異なる黒色になった。
【0028】
図2中、符号Aで示した条件で酸化処理したZr基非晶質合金(Zr55Ni5Al10Cu30)、未処理のZr基非晶質合金、及びSUS304をそれぞれ1規定の塩酸中に浸漬した場合の腐蝕速度を表1に示す。
【表1】

Figure 0003808354
表1に示される結果から、Zr基非晶質合金はSUS304に比べ高耐食性を示すが、酸化処理を行なっても耐食性は劣化しないのが分かる。
【0029】
次に、Zr基非晶質合金(Zr55Ni5Al10Cu30)について、各種熱処理温度で処理時間を種々変化させて酸化処理したときに形成される膜厚変化を図4に示す。
図4から明らかなように、同一処理温度でも処理時間を変えることによって膜厚、従って表面の色調を制御できることがわかる。
【0030】
【発明の効果】
以上のように、本発明によれば、Zr基非晶質合金に熱処理を施し、その表面に形成される皮膜の膜厚を制御することにより、比較的簡単にかつ均一に茶系、グレー系又は黒色系の任意の色調に調色でき、それによって高級感を持ち、意匠性にも優れる非晶質合金製品を提供できる。
また、本発明の方法は熱処理法であるため、簡易な装置を用い、低コストで非晶質合金製成形品の表面に一体的な強固な不動態膜を形成できると同時に調色を行なうことができる。また、熱処理による不動態化法であるため、被処理物を固定していても均一に不動態膜を容易に生成でき、従来の硬質膜のコーティングのように被コーティング物を回転させたりしなくてもよく、処理装置も複雑でなく、簡単な構成とすることができる。さらに、形成される膜は母材と一体的な強固な硬質層であり、コーティング膜のような剥離が問題となることはない。特に酸化処理の場合、大気中で行なえるため、高価な真空装置を必要とせず、より経済的に調色と不動態化を同時に行なうことができる。
【0031】
本発明の方法を適用して得られるZr基非晶質合金製成形品は、任意の色調に調色できると共に、優れた機械的強度や化学的性質に加えて耐摩耗性に優れるため、様々な分野の部品や製品として適用可能であり、例えばセンサー部品、ダイヤフラム等の機械部品、ゴルフクラブヘッド構成部品(フェース、クラウン、ソール等)などのスポーツ用品分野、化学プラント、髄内釘や歯科部品(義歯等)などの医療生体部品、薬品容器、医療器具部品、時計、腕輪、バックル等の装飾部品、触媒反応層等の化学分野、建築部品、光コネクタ構成部品(キャピラリー、フェルール、スリーブ、V溝基板等)などの光学部品などの部品や製品として適している。
【図面の簡単な説明】
【図1】Zr基非晶質合金(Zr55Ni5Al10Cu30)のTTT曲線と熱処理条件を示すグラフである。
【図2】Zr基非晶質合金(Zr55Ni5Al10Cu30)のTTT曲線と好ましい熱処理条件を示すグラフである。
【図3】Zr基非晶質合金(Zr55Ni5Al10Cu30)を図2の符号Aで示す条件で熱処理したときに得られた皮膜のX線回折図である。
【図4】Zr基非晶質合金(Zr55Ni5Al10Cu30)を種々の条件で熱処理したときの熱処理条件と膜厚の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for toning a zirconium-based amorphous alloy to brown, gray or black. The method of the present invention is applied to various amorphous alloy molded articles, for example, sports parts such as sensor parts, mechanical parts such as diaphragms, golf club head components (faces, crowns, soles, etc.), chemical plants, intramedullary nails. And medical parts such as dental parts (dentures, etc.), chemical containers, medical equipment parts, watches, bracelets, buckles and other decorative parts, catalytic reaction layers and other chemical fields, building parts, optical connector components (capillaries, ferrules, The present invention can be applied to a surface treatment that performs toning at the same time as a passivation treatment is performed on the surface of a component such as an optical component such as a sleeve or a V-groove substrate) or a product.
[0002]
[Prior art]
In many cases, a molded product made of a metal material is unnecessary or easy to process, compared to a ceramic molded product. Among metal materials, amorphous alloys (metal glasses) reproduce the shape and dimensions of the mold very faithfully, both by mold casting from molten metal and by molding by viscous flow using the glass transition region. Further, there is an advantage that a highly accurate molded product can be manufactured at a low cost without performing subsequent processing. In addition, since amorphous alloys are excellent in mechanical strength and chemical properties, they are applied to various parts and products. For example, Japanese Patent Application Laid-Open No. 10-186176 and Japanese Patent Application Laid-Open No. 10-311923 are made of amorphous alloys. Japanese Patent Application Laid-Open No. 11-104281 discloses a golf club head in which at least a face portion is made of an amorphous alloy, such as ferrules, capillaries, and sleeves.
[0003]
An amorphous alloy having an amorphous structure is known to have high corrosion resistance because it has no crystal grain boundaries. Utilizing the high corrosion resistance of this amorphous alloy, it can be applied to various products. For example, Japanese Patent Laid-Open No. 52-84461 has proposed that a watch metal band is made of an amorphous metal, and Japanese Patent Laid-Open No. 54-122614, etc. It has been proposed to use amorphous metal for watch exterior parts such as lids, battery covers, crowns, switch buttons, and rotating bezels. In addition, stainless steel and Ti alloy having high corrosion resistance are widely used for watches, medical bio parts, and the like, and it can be expected that an amorphous alloy is applied to such applications.
[0004]
[Problems to be solved by the invention]
As described above, there are a wide variety of fields in which amorphous alloys can be applied. However, the color tone of the amorphous alloy is determined by its composition, so it cannot meet the current diverse demands such as not only corrosion resistance and mechanical properties, but also a high-class feeling and excellent design. Is the current situation.
For this reason, it is conceivable to coat a decorative film of various colors, but the simple characteristic of the amorphous alloy, which is high corrosion resistance, is diminished. In addition, there are applications where it is inappropriate to coat a normal film such as a medical biopart, a chemical container, a medical instrument part, and an optical connector component.
[0005]
Therefore, the basic object of the present invention is to provide a method for toning the tea, gray or black color relatively easily and uniformly while maintaining the excellent characteristics inherent in the zirconium-based amorphous alloy. Therefore, it is to provide an amorphous alloy product that has a high-class feeling and is excellent in design, to meet the current various demands.
Furthermore, the object of the present invention is to passivate only the surface portion of a molded article without changing the amorphous structure of the base material and without changing the dimensions at a lower processing cost than the conventional surface hardening method. An object of the present invention is to provide a method capable of adjusting the color to brown, gray or black.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the film thickness of a film formed on the surface of a zirconium-based amorphous alloy containing an amorphous phase having a volume ratio of at least 50% by performing heat treatment is reduced. In the L * a * b * color system (CIE 1976) (JIS Z8729), L * <35, −20 <a * <20, −20 <b * <20, and the film thickness is 0.00 . 1-8 μm black system, 35 ≦ L * ≦ 70, −20 <a * <20, −20 <b * <20 and the film thickness exceeds 8 μm (gray system), or 35 ≦ L * , -20 <a * <20, 20 ≦ b * , and a toning method for a zirconium-based amorphous alloy, characterized in that the toning is performed for a tea system having a film thickness of less than 0.1 μm. The
[0007]
Preferably, the heat treatment is performed in an air atmosphere to form a film containing an alloy element oxide, particularly a tetragonal zirconia film, preferably a partially stabilized zirconia film in which other constituent elements of the alloy are dissolved. In another aspect, the heat treatment is performed in an atmosphere containing oxygen or / and nitrogen or in an air atmosphere, and the film formed on the surface of the zirconium-based amorphous alloy is a film containing an oxide or nitride of an alloy element. There is formed a film whose content continuously decreases in the depth direction from the surface portion.
[0008]
In a more specific and preferred embodiment, the heat treatment is performed at a temperature equal to or higher than the minimum temperature of the oxidation reaction or nitridation reaction of at least one constituent element of the base material itself, particularly Zr, and more preferably, the heat treatment is performed as (1) treatment. 350 ° C.-treatment time 10 minutes, (2) treatment temperature 350 ° C.-treatment time 120 minutes, (3) treatment temperature 420 ° C.-treatment time 120 minutes, (4) treatment temperature 450 ° C.-treatment time 10 minutes (1 ) To (4).
Particularly preferably, a black film having a film thickness of 0.1 to 8 μm is formed by the heat treatment.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor can adjust the color tone of the brown, gray or black color to any color tone by controlling the film thickness of the film formed on the surface of the Zr-based amorphous alloy by heat treatment. The headline and the present invention have been completed.
Here, the relationship between the film thickness and the color tone will be described. When the film to be formed is a tetragonal zirconia film, the film is brown when the film thickness is less than 0.1 μm, and black when it is 0.1 to 8 μm. If it exceeds 8 μm, it will be gray.
[0010]
This film thickness can be controlled by heat treatment conditions such as heat treatment temperature and treatment time. When the heat treatment temperature is increased, the film formation rate is increased, so that a high-temperature treatment can form a thick film in a short time. However, since it is necessary to perform heat treatment at the temperature and time in the amorphous region of the isothermal transformation curve (TTT curve) of the material to be used, the maximum processing time at each processing temperature is determined from the TTT curve of the material.
In general, the relationship between the film thickness and the heat treatment conditions is as follows.
Tea system (<0.1 μm): heat treatment temperature of 400 ° C. or less and heat treatment time of 10 minutes or less,
Black type (0.1 to 8 μm): heat treatment time of 10 ° C. or more at a heat treatment temperature of 400 ° C. or less, heat treatment time of 2 hours or less at a heat treatment temperature of 400 ° C. or more,
Gray system (> 8 μm): heat treatment temperature of 400 ° C. or more, heat treatment time of 2 hours or more, less than maximum time of TTT curve range.
[0011]
The preferred embodiment of the heat treatment method of the present invention will be described. An amorphous alloy molded article is heat-treated in an atmosphere containing oxygen (or nitrogen) at a temperature and time within an amorphous region of the TTT curve of the material. A passive film (ceramic hard layer) having a desired film thickness (color tone) is formed on the surface of the molded product. As described above, an arbitrary color tone of brown, gray or black can be obtained according to the film thickness at this time, but basically an atmosphere containing oxygen since it is a heat treatment method of a Zr-based amorphous alloy. When heat treatment is performed below, a tetragonal zirconia film or a partially stabilized zirconia film in which other constituent elements are dissolved is formed.
[0012]
Further, since the method of the present invention is a heat treatment method of a Zr-based amorphous alloy, a simple passive device can be used to produce a strong passive film integrated with the surface of the base material at a low cost. Simultaneously with the toning, surface hardening is performed, and the corrosion resistance and wear resistance are further improved. In addition, because it is a heat treatment, a uniform passive film can be easily generated even if the workpiece is fixed, and it is not necessary to rotate the coating as in the case of conventional hard film coating. The apparatus is not complicated and can be configured simply. Usually, peeling of a film is a major problem in the coating of a hard film, but in the method of the present invention, oxides or nitrides are generated by ceramization of at least one constituent element of the base material itself, for example, oxidation reaction or nitridation reaction In addition, in order to form a ceramic-based hard film having an inclined structure in which the generation ratio of these ceramic fine particles, and hence the content ratio in the base material, is higher on the surface in contact with the processing atmosphere and gradually decreases in the depth direction. It is an integral and strong hard layer, and peeling such as a coating film does not cause a problem, and surface roughness and size change hardly occur. In particular, in the case of oxidation treatment, since it can be performed in the atmosphere, an expensive vacuum apparatus is not required and it can be said to be a more economical method. Also, the processing operation can be performed more easily than the conventional steel oxidation and nitriding techniques.
[0013]
As the reactive gas used in the toning method of the Zr-based amorphous alloy according to the present invention, oxygen, air, nitrogen, ammonia or the like is used. Oxygen and nitrogen are concentrations that cause oxidation and nitriding, and can be used as an atmosphere containing 1 ppm or more of each, for example, an inert gas atmosphere such as Ar or a vacuum atmosphere. It is also possible to mix and H 2 in order to accelerate the reaction. When air is used, the surface of the amorphous alloy molded article can be easily oxidized by heat treatment in the atmosphere. The heat treatment is performed at a temperature and time at which at least one constituent element of the base metal itself, in particular, Zr oxidation reaction or nitridation reaction occurs, and the base metal itself does not crystallize, that is, an isothermal transformation curve (TTT) of the material. Curve) in the amorphous region. The thickness (depth) and structural gradient of the passive film formed on the alloy surface change by changing the temperature and time of the heat treatment, but also by changing the concentration (partial pressure) of the reactive gas, A ceramic hard layer having a structure gradient can be formed by increasing the content of the ceramic component continuously or stepwise toward the surface. Even when such a passive film is formed, the surface roughness and size change hardly occur.
[0014]
The Zr-based amorphous alloy to which the present invention is applied may be a part or product made of a substantially amorphous alloy containing an amorphous phase with a volume ratio of 50% or more, and a specific material It is not limited to those. For example, various conventionally known Zr-based amorphous materials such as amorphous alloys described in JP-A-10-186176, JP-A-10-311923, JP-A-11-104281, JP-A-11-189855, etc. Alloys can be used. More preferably, it can be suitably applied to an amorphous alloy molded product having a composition represented by the following general formula (1).
[0015]
Formula (1): Zr a M 1 b Ln c M 2 d M 3 e M 4 f
Where M 1 is at least one element selected from the group consisting of Ni, Cu, Fe, Co, Mn, Nb, Ti, V, Cr, Zn, Al, and Ga, and Ln is Y, La, Ce, Nd, At least one element selected from the group consisting of Sm, Gd, Tb, Dy, Ho, Yb, and Mm (Misch metal, which is an aggregate of rare earth elements), M 2 is composed of Be, B, C, N, and O At least one element selected from the group, M 3 is at least one element selected from the group consisting of Ta, W and Mo, and M 4 is at least one element selected from the group consisting of Au, Pt, Pd and Ag The elements a, b, c, d, e and f are atomic%, 25 ≦ a ≦ 85, 15 ≦ b ≦ 75, 0 ≦ c ≦ 30, 0 ≦ d ≦ 30, 0 ≦ e ≦ 15, 0 ≦ f ≦ 15.
[0016]
The amorphous alloy includes amorphous alloys represented by the following general formulas (1-a) to (1-p).
Formula (1-a): Zr a M 1 b
In this amorphous alloy, the M 1 element coexists with Zr, so the mixing enthalpy is negative and large, and the amorphous forming ability is good.
Formula (1-b): Zr a M 1 b Ln c
Like this amorphous alloy, the thermal stability of amorphous is improved by adding a rare earth element to the alloy of the general formula (1-a).
[0017]
General formula (1-c): Zr a M 1 b M 2 d
Formula (1-d): Zr a M 1 b Ln c M 2 d
Like these amorphous alloys, filling the gaps in the amorphous structure with the element M 2 (Be, B, C, N, O) having a small atomic radius stabilizes the structure and improves the amorphous forming ability. To do.
[0018]
Formula (1-e): Zr a M 1 b M 3 e
Formula (1-f): Zr a M 1 b Ln c M 3 e
General formula (1-g): Zr a M 1 b M 2 d M 3 e
Formula (1-h): Zr a M 1 b Ln c M 2 d M 3 e
When these refractory metals M 3 (Ta, W, Mo) are added like these amorphous alloys, heat resistance and corrosion resistance are improved without affecting the amorphous forming ability.
[0019]
Formula (1-i): Zr a M 1 b M 4 f
Formula (1-j): Zr a M 1 b Ln c M 4 f
Formula (1-k): Zr a M 1 b M 2 d M 4 f
General formula (1-l): Zr a M 1 b Ln c M 2 d M 4 f
Formula (1-m): Zr a M 1 b M 3 e M 4 f
Formula (1-n): Zr a M 1 b Ln c M 3 e M 4 f
Formula (1-o): Zr a M 1 b M 2 d M 3 e M 4 f
Formula (1-p): Zr a M 1 b Ln c M 2 d M 3 e M 4 f
In the case of an amorphous alloy containing these noble metals M 4 (Au, Pt, Pd, Ag), it does not become brittle even if crystallization occurs.
[0020]
Among the amorphous alloys described above, a Zr-TM-Al-based (TM: transition metal) amorphous alloy having a very wide temperature difference between the glass transition temperature (Tg) and the crystallization temperature (Tx) has high strength and high strength. In addition to being corrosion resistant, the supercooled liquid region (glass transition region) ΔTx = Tx−Tg is extremely wide as 60 K or more, and in this temperature region, very good workability is exhibited even at low stress of several tens of MPa or less due to viscous flow. In addition, the amorphous bulk material can be obtained even by a casting method with a cooling rate of about several tens of K / s. These alloys can form amorphous materials both at the same time by casting from a molten metal and by forming by viscous flow using a glass transition region, and at the same time reproduce the mold shape and dimensions very faithfully.
[0021]
These Zr-TM-Al-based amorphous alloys used in the present invention have a very large ΔTx range, although they vary depending on the alloy composition and measurement method. For example, ΔTx of Zr 60 Al 15 Co 2.5 Ni 7.5 Cu 15 alloy (Tg: 652K, Tx: 768K) is as extremely wide as 116K. The hardness is 460 (DPN) in Vickers hardness (Hv) from room temperature to around Tg, the tensile strength reaches 1,600 MPa, and the bending strength reaches 3,000 MPa. The thermal expansion coefficient α is as small as 1 × 10 −5 / K from room temperature to around Tg, the Young's modulus is 91 GPa, and the elastic limit during compression exceeds 4 to 5%. Further, the toughness is high, and the Charpy impact value is 60 to 70 kJ / m 2 . As described above, when the glass transition region is heated while exhibiting very high strength characteristics, the flow stress is reduced to about 10 MPa. For this reason, it is extremely easy to process, and it is a feature of this alloy that it can be formed into a minute part having a complicated shape and a high precision part with low stress. In addition, because of the properties of so-called glass (amorphous), the processed (deformed) surface is extremely smooth, and there is virtually no occurrence of a step where a slip band appears on the surface like when a crystalline alloy is deformed. have.
[0022]
In general, when an amorphous alloy is heated to the glass transition region, crystallization starts by holding for a long time. However, an alloy having a wide ΔTx like this alloy has a stable amorphous phase, and the temperature in ΔTx is appropriately set. If selected, crystals are not generated for up to about 2 hours, and there is no need to worry about crystallization in a normal molding process.
In addition, this alloy exhibits this characteristic even when solidified from the molten metal. In general, rapid cooling is required for the production of an amorphous alloy, but this alloy can easily obtain a bulk material composed of an amorphous single phase from a molten metal by cooling at a cooling rate of about 10 K / s. The solidified surface is still very smooth, and has a transfer property that faithfully reproduces even micron-order polishing scratches on the mold surface.
Therefore, if this alloy is applied as a casting material, if the mold surface has surface quality that satisfies the required characteristics of the molded product, molding that satisfies the predetermined shape, dimensional accuracy, and surface quality by the mold casting method. The product can be manufactured with high productivity by a single process, and the steps of dimension adjustment and surface roughness adjustment can be omitted or shortened.
[0023]
【Example】
In the following, some examples for specifically confirming the effects of the present invention will be shown, but the present invention is not limited to the following examples.
FIG. 1 shows an example of a heat treatment condition according to the present invention for a Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ). Since the TTT curve of this alloy is as shown in FIG. 1, the conditions of the amorphous regions (1) and (2) in the figure (however, 180 ° C. or higher (generally referred to as Zr oxidation minimum temperature), 1 minute or longer) ), The amorphous alloy surface can be easily oxidized. In the case of nitriding, since the reaction temperature of Zr and N is 400 ° C. or higher, processing is performed in the region (2) in FIG.
[0024]
By performing the heat treatment under such conditions, a strong passive film (ceramic hard layer) having high wear resistance is formed on the amorphous alloy surface. At this time, since the oxides and nitrides with low formation free energy of the elements constituting the amorphous alloy change preferentially, the composition of the passive film corresponds to that. In the case of the Zr-based amorphous alloy, a ceramic hard layer containing an oxide mainly composed of ZrO 2 is formed on the surface of the Zr-based amorphous alloy (base material) by heat treatment in the atmosphere, and The content ratio of the oxide is inclined so as to gradually decrease in the depth direction from the surface.
[0025]
Further, the Knoop hardness of the surface is increased by the heat treatment, and the Knoop hardness is increased as the processing temperature is increased, and the wear resistance is improved. Further, the Knoop hardness increases as the treatment time increases even at the same heat treatment temperature. However, if the heat treatment is performed for an excessively long time, the layer thickness will be thick and the wear resistance will be excellent, but the surface roughness will deteriorate rapidly, so that the molded product will require a surface roughness on the order of submicrons. Is difficult to apply.
Therefore, the preferable processing temperature and processing time for effectively performing the toning and surface hardening of the Zr-based amorphous alloy are the regions surrounded by hatching in FIG. 2, that is, (1) processing temperature 350 ° C.-processing. 10 minutes, (2) treatment temperature 350 ° C.—treatment time 120 minutes, (3) treatment temperature 420 ° C.—treatment time 120 minutes, (4) treatment temperature 450 ° C.—treatment time 10 minutes (1) to (4) It is within the range surrounded by.
[0026]
FIG. 3 shows X-ray diffraction data of a Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ) oxidized under the conditions indicated by symbol A in FIG.
From the X-ray diffraction diagram shown in FIG. 3, it can be seen that there is a peak based on tetragonal zirconia. This is because the composition of the treatment film is preferentially changed (oxidized) when the formation energy of the element constituting the Zr-based amorphous alloy is low, so that zirconia forms a rich gradient film. is there.
[0027]
Zirconia has a low-temperature type (monoclinic system) and a high-temperature type (tetragonal system), and phase transitions around 1000 ° C. Monoclinic zirconia is weak and unstable even at low temperatures (about 100 ° C.). Therefore, in optical connector parts such as ferrules, partially stabilized zirconia (tetragonal system) having high strength is used by adding several percent of an additive such as yttria to zirconia. In the case of the oxidation treatment of the Zr-based amorphous alloy, from FIG. 3, other constituent elements are dissolved in zirconia, and a stable partially stabilized zirconia (tetragonal ZrO 2 ) film is formed on the surface. I understand that. Moreover, it became black different from the conventional metal color by producing | generating a thick film | membrane on the surface.
[0028]
In FIG. 2, a Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ) oxidized under the conditions indicated by symbol A, an untreated Zr-based amorphous alloy, and SUS304 are each contained in 1 N hydrochloric acid. Table 1 shows the corrosion rate when immersed in the substrate.
[Table 1]
Figure 0003808354
From the results shown in Table 1, it can be seen that the Zr-based amorphous alloy exhibits higher corrosion resistance than SUS304, but the corrosion resistance is not deteriorated even when oxidation treatment is performed.
[0029]
Next, FIG. 4 shows changes in film thickness formed when the Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ) is oxidized by variously changing the treatment time at various heat treatment temperatures.
As is apparent from FIG. 4, it can be seen that the film thickness and hence the color tone of the surface can be controlled by changing the processing time even at the same processing temperature.
[0030]
【The invention's effect】
As described above, according to the present invention, the heat treatment is performed on the Zr-based amorphous alloy, and the film thickness of the film formed on the surface is controlled, so that the tea system and the gray system can be relatively easily and uniformly performed. Alternatively, it is possible to provide an amorphous alloy product that can be adjusted to an arbitrary color tone of black color, thereby having a high-class feeling and excellent in design.
In addition, since the method of the present invention is a heat treatment method, a simple apparatus can be used to form a strong solid passive film on the surface of an amorphous alloy molded product at a low cost, and at the same time to perform color matching. Can do. In addition, since it is a passivation method by heat treatment, even if the workpiece is fixed, it is possible to easily generate a uniform passive film without rotating the coating like conventional hard film coating. In addition, the processing apparatus is not complicated and can have a simple configuration. Furthermore, the film to be formed is a strong hard layer integrated with the base material, and peeling like a coating film does not cause a problem. In particular, in the case of oxidation treatment, since it can be performed in the atmosphere, an expensive vacuum apparatus is not required, and toning and passivation can be simultaneously performed more economically.
[0031]
The Zr-based amorphous alloy molded product obtained by applying the method of the present invention can be adjusted to an arbitrary color tone and has excellent mechanical strength and chemical properties, as well as excellent wear resistance. It can be applied as parts and products in various fields, for example, sports parts such as sensor parts, mechanical parts such as diaphragms, golf club head components (faces, crowns, soles, etc.), chemical plants, intramedullary nails and dental parts. Biomedical parts such as dentures, chemical containers, medical instrument parts, watches, bracelets, buckles and other decorative parts, catalytic reaction layer and other chemical fields, building parts, optical connector components (capillaries, ferrules, sleeves, V Suitable as parts and products such as optical parts such as groove substrates).
[Brief description of the drawings]
FIG. 1 is a graph showing a TTT curve and heat treatment conditions of a Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ).
FIG. 2 is a graph showing a TTT curve of Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ) and preferable heat treatment conditions.
3 is an X-ray diffraction pattern of a film obtained when a Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ) is heat-treated under the conditions indicated by symbol A in FIG.
FIG. 4 is a graph showing the relationship between heat treatment conditions and film thickness when a Zr-based amorphous alloy (Zr 55 Ni 5 Al 10 Cu 30 ) is heat-treated under various conditions.

Claims (9)

少なくとも体積率50%以上の非晶質相を含むジルコニウム基非晶質合金に熱処理を施すことによりその表面に形成される皮膜の膜厚を制御し、 表色系(CIE 1976)(JIS Z8729)でL <35、−20<a <20、−20<b <20であり、かつ膜厚が0.1〜8μmの黒色系、35≦L ≦70、−20<a <20、−20<b <20であり、かつ膜厚が8μmを超えるグレー系、又は35≦L 、−20<a <20、20≦b であり、かつ膜厚が0.1μm未満の茶系に調色することを特徴とするジルコニウム系非晶質合金の調色方法。A heat treatment is applied to a zirconium-based amorphous alloy containing an amorphous phase with a volume ratio of at least 50% to control the film thickness of the film formed on the surface, and the L * a * b * color system (CIE) 1976) (JIS Z8729), L * <35, −20 <a * <20, −20 <b * <20, and a film thickness of 0.1 to 8 μm, a black system, 35 ≦ L * ≦ 70, -20 <a * <20, −20 <b * <20, and a gray system having a film thickness exceeding 8 μm, or 35 ≦ L * , −20 <a * <20, 20 ≦ b * , and A method for toning a zirconium-based amorphous alloy, characterized in that the color is adjusted to a brown system having a film thickness of less than 0.1 μm . 前記熱処理を大気雰囲気下で行なうことを特徴とする請求項1に記載の調色方法。  The toning method according to claim 1, wherein the heat treatment is performed in an air atmosphere. 前記ジルコニウム基非晶質合金表面に形成される皮膜が、合金元素の酸化物を含む膜であることを特徴とする請求項1又は2に記載の調色方法。  The toning method according to claim 1 or 2, wherein the film formed on the surface of the zirconium-based amorphous alloy is a film containing an oxide of an alloy element. 前記ジルコニウム基非晶質合金表面に形成される皮膜が、正方晶系ジルコニア膜であることを特徴とする請求項1乃至3のいずれか一項に記載の調色方法。  The toning method according to any one of claims 1 to 3, wherein the coating film formed on the surface of the zirconium-based amorphous alloy is a tetragonal zirconia film. 前記正方晶系ジルコニア膜が、合金の他の構成元素を固溶した部分安定化ジルコニア膜であることを特徴とする請求項4に記載の調色方法。  The toning method according to claim 4, wherein the tetragonal zirconia film is a partially stabilized zirconia film in which other constituent elements of the alloy are dissolved. 前記ジルコニウム基非晶質合金表面に形成される皮膜が、合金元素の酸化物又は窒化物を含む膜であり、その含有割合が表面部から深さ方向に連続的に減少していることを特徴とする請求項1に記載の調色方法。  The film formed on the surface of the zirconium-based amorphous alloy is a film containing an oxide or nitride of an alloy element, and the content ratio is continuously reduced from the surface portion in the depth direction. The toning method according to claim 1. 前記熱処理を、(1)処理温度350℃−処理時間10分、(2)処理温度350℃−処理時間120分、(3)処理温度420℃−処理時間120分、(4)処理温度450℃−処理時間10分の(1)〜(4)により囲まれる範囲内で行なうことを特徴とする請求項1乃至のいずれか一項に記載の調色方法。The heat treatment includes (1) treatment temperature 350 ° C.—treatment time 10 minutes, (2) treatment temperature 350 ° C.—treatment time 120 minutes, (3) treatment temperature 420 ° C.—treatment time 120 minutes, and (4) treatment temperature 450 ° C. The toning method according to any one of claims 1 to 6 , wherein the toning method is performed within a range surrounded by (1) to (4) of a processing time of 10 minutes. 前記熱処理により、膜厚0.1〜8μmの黒色皮膜を形成することを特徴とする請求項1乃至のいずれか一項に記載の調色方法。By the heat treatment method toning according to any one of claims 1 to 7, characterized in that to form a black coating of a thickness 0.1~8Myuemu. 前記ジルコニウム基非晶質合金が、センサー部品、機械部品、ゴルフクラブヘッド構成部品、医療生体部品、薬品容器、医療器具部品、装飾部品、触媒反応層、建築部品、又は光学部品であることを特徴とする請求項1乃至のいずれか一項に記載の調色方法。The zirconium-based amorphous alloy is a sensor component, a mechanical component, a golf club head component, a medical biocomponent, a chemical container, a medical instrument component, a decorative component, a catalytic reaction layer, a building component, or an optical component. The toning method according to any one of claims 1 to 8 .
JP2001364559A 2001-11-29 2001-11-29 Toning method for zirconium-based amorphous alloys Expired - Fee Related JP3808354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364559A JP3808354B2 (en) 2001-11-29 2001-11-29 Toning method for zirconium-based amorphous alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364559A JP3808354B2 (en) 2001-11-29 2001-11-29 Toning method for zirconium-based amorphous alloys

Publications (2)

Publication Number Publication Date
JP2003166044A JP2003166044A (en) 2003-06-13
JP3808354B2 true JP3808354B2 (en) 2006-08-09

Family

ID=19174729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364559A Expired - Fee Related JP3808354B2 (en) 2001-11-29 2001-11-29 Toning method for zirconium-based amorphous alloys

Country Status (1)

Country Link
JP (1) JP3808354B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144400A (en) * 2010-01-12 2011-07-28 Olympus Corp Transition metal particle-dispersed alloy and method for producing the same, and transition metal particle-dispersed amorphous alloy and method for producing the same
CN105886963A (en) * 2009-02-13 2016-08-24 加州理工学院 Amorphous platinum-rich alloys
US10036087B2 (en) 2014-03-24 2018-07-31 Glassimetal Technology, Inc. Bulk platinum-copper-phosphorus glasses bearing boron, silver, and gold
US10161018B2 (en) 2015-05-19 2018-12-25 Glassimetal Technology, Inc. Bulk platinum-phosphorus glasses bearing nickel, palladium, silver, and gold
US10801093B2 (en) 2017-02-08 2020-10-13 Glassimetal Technology, Inc. Bulk palladium-copper-phosphorus glasses bearing silver, gold, and iron
US10895004B2 (en) 2016-02-23 2021-01-19 Glassimetal Technology, Inc. Gold-based metallic glass matrix composites

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184521B1 (en) * 2004-05-28 2012-09-19 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Method for coloring surface of zirconium-based metallic glass component
JP4448131B2 (en) * 2004-05-28 2010-04-07 日本碍子株式会社 Zirconium-based metallic glass surface film forming method and zirconium-based metallic glass component
JP4640222B2 (en) * 2006-03-15 2011-03-02 セイコーエプソン株式会社 Inkjet head manufacturing method
US9175406B2 (en) 2007-03-13 2015-11-03 Tokoku University Method of surface treatment for metal glass part, and metal glass part with its surface treated by the method
JP5392703B2 (en) * 2009-02-18 2014-01-22 国立大学法人東北大学 Cu-based metallic glass alloy
US10190932B2 (en) 2013-10-28 2019-01-29 Inficon Gmbh Method for preventing gases and fluids to penetrate a surface of an object
EP2881488B1 (en) * 2013-12-06 2017-04-19 The Swatch Group Research and Development Ltd. Bulk amorphous alloy made of beryllium-free zirconium
JP6364642B2 (en) * 2014-03-27 2018-08-01 福井県 Coloring method of coloring material
US20170087691A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Methods for color and texture control of metallic glasses by the combination of blasting and oxidization
CN113174557B (en) * 2021-03-29 2022-06-14 天津大学 Surface treatment method of zirconium-based ternary amorphous alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886963A (en) * 2009-02-13 2016-08-24 加州理工学院 Amorphous platinum-rich alloys
JP2011144400A (en) * 2010-01-12 2011-07-28 Olympus Corp Transition metal particle-dispersed alloy and method for producing the same, and transition metal particle-dispersed amorphous alloy and method for producing the same
US10036087B2 (en) 2014-03-24 2018-07-31 Glassimetal Technology, Inc. Bulk platinum-copper-phosphorus glasses bearing boron, silver, and gold
US10161018B2 (en) 2015-05-19 2018-12-25 Glassimetal Technology, Inc. Bulk platinum-phosphorus glasses bearing nickel, palladium, silver, and gold
US10895004B2 (en) 2016-02-23 2021-01-19 Glassimetal Technology, Inc. Gold-based metallic glass matrix composites
US10801093B2 (en) 2017-02-08 2020-10-13 Glassimetal Technology, Inc. Bulk palladium-copper-phosphorus glasses bearing silver, gold, and iron

Also Published As

Publication number Publication date
JP2003166044A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3808354B2 (en) Toning method for zirconium-based amorphous alloys
TWI221485B (en) Formed article of amorphous alloy having hardened surface and method for production thereof
US6508296B2 (en) Method and apparatus for production of cast article having small hole
JP6469444B2 (en) Method for producing titanium alloys for biomedical devices
KR101718562B1 (en) Tough iron-based bulk metallic glass alloys
Inoue et al. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials
CA2725206C (en) Iron-nickel alloy
US9782242B2 (en) Objects made of bulk-solidifying amorphous alloys and method of making same
JP4610822B2 (en) Austenitic steel with low nickel content
JP2005502788A (en) A high-strength, beryllium-free compact that can be plastically deformed at room temperature.
CN106493363B (en) Titanium sintered compact and ornament
JPH1171625A (en) Self-compensated hair spring and its production
JP6451064B2 (en) Decorative article, skin contact material, metal powder for powder metallurgy, and method for producing decorative article
US7988281B2 (en) Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
CN110662851A (en) Low thermal expansion alloy
JP6884994B2 (en) Titanium sintered body and ornaments
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
US6270907B1 (en) Zirconia based article, use of such an article as a wear resistant exterior part for a wristwatch and method for obtaining such an article
JPH10265917A (en) High hardness glassy alloy, and high hardness tool using same
JP2007092106A (en) Noble-metal-based metallic glass alloy for member to be used in living body
JPH07331379A (en) Production of high density stainless steel sintered product
JPH1171626A (en) Gold sintered body
JPH05311202A (en) Production of soft magnetic sintered article
TW200821270A (en) Stripping method of die for press-molding glass
JPH0723529B2 (en) Decorative Au alloy member having surface hardened layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3808354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees