JP3808032B2 - Three-dimensional sheet material - Google Patents

Three-dimensional sheet material Download PDF

Info

Publication number
JP3808032B2
JP3808032B2 JP2002375378A JP2002375378A JP3808032B2 JP 3808032 B2 JP3808032 B2 JP 3808032B2 JP 2002375378 A JP2002375378 A JP 2002375378A JP 2002375378 A JP2002375378 A JP 2002375378A JP 3808032 B2 JP3808032 B2 JP 3808032B2
Authority
JP
Japan
Prior art keywords
fiber
sheet material
dimensional sheet
fibers
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002375378A
Other languages
Japanese (ja)
Other versions
JP2004202890A (en
Inventor
浩司 浅野
学 金田
渉 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002375378A priority Critical patent/JP3808032B2/en
Priority to CNB2003101131702A priority patent/CN1331661C/en
Publication of JP2004202890A publication Critical patent/JP2004202890A/en
Application granted granted Critical
Publication of JP3808032B2 publication Critical patent/JP3808032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一面に多数の凸部を有し嵩高な構造を有する不織布からなる立体シート材料に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
本出願人は先に、第1層とこれに隣接する第2層とを有し、第1層と第2層とが所定パターンの接合部によって部分的に接合されており、該接合部間で第1層が三次元的立体形状をなし、第2層がエラストマー的挙動を示す材料で構成されており、シート全体がエラストマー的挙動を示すと共に通気性を有する立体シート材料を提案した(特許文献1参照)。この立体シート材料は、平面方向へ伸張させたときの回復性及び厚み方向へ圧縮させたときの回復性が高く、使い捨て吸収性物品の構成材料や、対人・対物用のワイパーとして好適に使用される。しかし、伸張回復性及び圧縮回復性に対する要求はますます高くなっている。
【0003】
捲縮発現した潜在捲縮繊維と、この潜在捲縮繊維の繊維間を接着する熱融着繊維とからなる一方向性カードウエブで構成され、その露出表面が平滑な第一層と、前記潜在捲縮繊維の捲縮発現温度では実質的に熱収縮しない繊維からなる交差性カードウエブで構成され、その露出表面には互いに略平行な凸部が形成されている第二層とからなり、これらの第一層及び第二層が互いに積層一体化されているダストクロスが知られている(特許文献2参照)。このダストクロスにおいては、第一層と第二層とがそれらの全面において接合されているので、凸部を高くすることが容易ではない。また凸部による柄(デザイン)の自由度を大きくすることが容易でない。
【0004】
少なくとも一層の親水性繊維ウエブと、少なくとも一層の熱捲縮性の疎水性繊維ウエブとからなる積層体を得る工程と、連続した平面部と、間欠的かつ独立して分布する多数の凸部および/または凹部と、多数の微細排水孔とを備えた支持体表面上において、前記積層体に微細孔ノズルから高圧水を噴射し、前記両ウエブの繊維を交絡させるとともに再配列して前記積層体の面方向に繊維の分布密度にむらを有する不織布を得る工程と、前記不織布を脱水および/または乾燥したのち、熱処理して前記合成繊維を捲縮させる工程とからなる方法によって製造され、少なくとも片面に多数の起伏を有している不織布製ワイパーも知られている(特許文献3参照)。このワイパーも2つの繊維ウエブがそれらの全面で接合されていることから、先に述べた特許文献2に記載のダストクロスと同様の欠点を有する。
【0005】
【特許文献1】
特開2002−187228号公報
【特許文献2】
特開2001−89961号公報
【特許文献3】
特開平8−60509号公報
【0006】
従って、本発明は、平面方向へ伸張させたときの回復性及び厚み方向へ圧縮させたときの回復性が高く、嵩高なシート材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、立体捲縮した繊維を30重量%以上含む第1繊維層と、該繊維と同種又は異種の立体捲縮した繊維を含む第2繊維層とが積層されてなり、前記両繊維層は多数の接合部において部分的に接合されて厚さ方向に一体化されており、各接合部の間において第1繊維層が突出して該第1繊維層側に多数の凸部を形成している立体シート材料を提供することにより前記目的を達成したものである。
【0008】
【発明の実施の形態】
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には本発明の立体シート材料の一実施形態の斜視図が示されており、図2には図1におけるII−II線断面図が示されている。
【0009】
図1に示す立体シート材料10は、第1繊維層1及びこれに隣接する第2繊維層2を備えている不織布からなる。第1繊維層1は、繊維の集合体から構成されている。一方、第2繊維層2は、第1繊維層1を構成する繊維と異なる種類及び/又は配合の繊維の集合体から構成されている。第1繊維層1と第2繊維層2とは、多数の接合部3によって部分的に接合されている。逆に言えば、第1繊維層1と第2繊維層2とはそれらの全面において接合されていない。本実施形態においては、接合部3は小円形で離散的に不連続に形成されており、全体として菱形格子状の配置パターンを形成している。接合部3は圧密化されており、立体シート材料10における他の部分に比して厚みが小さく且つ密度が大きくなっている。
【0010】
接合部3は、第1繊維層1と第2繊維層2とが熱融着されて形成されたものである。この接合部3によって両繊維層は厚さ方向に一体化されている。本実施形態における接合部3は円形のものであるが、接合部3の形状は、楕円形、三角形若しくは矩形又はこれらの組み合わせ等であってもよい。また接合部を連続した形状、例えば直線や曲線などの線状に形成してもよい。
【0011】
立体シート材料10の面積に対する接合部3の面積率(立体シート材料10単位面積当りの接合部3の面積)は、立体シート材料10の具体的な用途等にもよるが、第1繊維層1と第2繊維層2との接合を十分に高くする点、及び凸状の立体的な形状を十分に形成して嵩高さを発現させる点から、6〜90%、特に10〜70%であることが好ましい。
【0012】
立体シート材料10は、接合部3の間において第1繊維層1が突出して多数の凸部4を形成している。本実施形態においては、立体シート材料10が、菱形格子状の配列パターンからなる接合部3によって取り囲まれて形成された閉じた領域を多数有しており、この閉じた領域において第1繊維層1は、図2に示すように突出して凸部4を形成している。本実施形態における凸部4は、ドーム状の形状をなしている。その内部は第1繊維層1を構成する繊維で満たされている。接合部3は、凸部4に対して相対的に凹部となっている。一方、第2繊維層2においては、接合部3間はほぼ平坦面を保っているか、若干突出している(図2参照)。立体シート材料10全体として見ると、その第2繊維層2側が平坦ないし若干突出しており、且つ第1繊維層1側に多数の凹凸部を有している構造となっている。
【0013】
第1繊維層1は立体捲縮した繊維を含んでいる。前述した通り、凸部4は第1繊維層1から構成されているから、第1繊維層1は立体捲縮した繊維を含んでいるということは、凸部4が立体捲縮した繊維を含んでいることを意味する。凸部4が立体捲縮した繊維を含んでいることによって、凸部4を圧縮したときの回復性が高くなる。また、立体シート材料10に液体が含浸されたときの凸部4のへたりが小さくなる。従って、立体シート材料10は使い捨て吸収性物品の構成材料や、対人・対物用の湿式ワイパーとして好適に使用される。更に、立体捲縮した繊維はその捲縮部位に繊維状のダストを挟んで保持することが可能であるから、立体シート材料10をワイパーとして用いた場合に、繊維状のダストの捕集性が高くなる。また凸部4間の凹部においてはパン粉などの比較的大きなダストが保持され易いので、この点からも立体シート材料10をワイパーとして用いることが好適である。その上、第1繊維層1はそれを平面方向へ伸張させたときの回復性が高くなる。
【0014】
立体捲縮した繊維としては、捲縮が発現した潜在捲縮性繊維や、機械捲縮加工された繊維が挙げられる。特に、凸部4の圧縮回復性や第1繊維層1の伸張回復性が高い点から、立体捲縮した繊維は、捲縮が発現した潜在捲縮性繊維からなることが好ましい。捲縮が発現した潜在捲縮性繊維はコイル状の捲縮状態となっている。潜在捲縮性繊維としてはその繊度が1〜7dtex程度であることが好適である。潜在捲縮性繊維は、例えば収縮率の異なる2種類の熱可塑性ポリマー材料を成分とする偏心芯鞘型複合繊維又はサイド・バイ・サイド型複合繊維からなる。その例としては、特開平9−296325号公報や特許2759331号公報に記載のものが挙げられる。収縮率の異なる2種類の熱可塑性ポリマー材料の例としては、例えばエチレン−プロピレンランダム共重合体(EP)とポリプロピレン(PP)との組み合わせが、立体シート材料10の柔らかさの点で好適である。
【0015】
第1繊維層1は、立体捲縮した繊維100%から構成されていてもよく、その他の繊維を含んでいてもよい。その他の繊維としては、例えば前記潜在捲縮性繊維の捲縮開始温度では実質的に熱収縮しない繊維が挙げられる。具体的には、熱収縮性を有するが、前記潜在捲縮性繊維の捲縮開始温度では実質的に熱収縮しない繊維や、熱収縮性を実質的に有さない繊維が挙げられる。特に熱融着性繊維が含まれていることが好ましい。これによって凸部4の表面強度が高まり、毛羽立ちが効果的に防止される。第1繊維層1に立体捲縮した繊維以外の繊維が含まれる場合、立体捲縮した繊維の量は、第1繊維層1の重量に対して30重量%以上であり、好ましくは50〜90重量%である。
【0016】
第1繊維層1と同様に、第2繊維層2も立体捲縮した繊維を含んでいる。第2繊維層2に含まれる立体捲縮した繊維としては、捲縮が発現した潜在捲縮性繊維が好適に用いられる。この潜在捲縮性繊維は、第1繊維層1に含まれる潜在捲縮性繊維と同種及び異種の何れのものでもよい。第2繊維層2に含まれる潜在捲縮性繊維の詳細については、第1繊維層1に含まれる潜在捲縮性繊維に関する説明が適宜適用される。第2繊維層4が立体捲縮した繊維を含んでいることによって、第2繊維層2はそれを平面方向へ伸張させたときの回復性が高くなる。
【0017】
第2繊維層2は、立体捲縮した繊維100%から構成されていてもよく、その他の繊維を含んでいてもよい。その他の繊維としては、第1繊維層1に含まれるその他の繊維と同様のものが挙げられる。第2繊維層2に立体捲縮した繊維以外の繊維が含まれる場合、立体捲縮した繊維の量は、第2繊維層2の重量に対して50重量%以上、特に70〜90重量%であることが好ましい。
【0018】
前述した通り、第1繊維層1及び第2繊維層2の何れにも立体捲縮した繊維が含まれているので、これらの層は何れも平面方向へ伸長させたときの回復性が高いものとなる。その結果、立体シート材料10全体としても、これを平面方向へ伸長させたときの回復性が高くなる。従って、立体シート材料10を例えばワイパーとして用いた場合に、対象面の凹凸に対する追従性が良好になる。また立体シート材料10を例えば吸収性物品の構成部材として用いた場合に、着用者の動作に対する追従性が良好となり、吸収性物品のフィット性が向上し、液漏れが効果的に防止される。
【0019】
立体シート材料10は、低密度な構造を有し、厚み方向に圧縮させたときの圧縮変形性が十分に大きい。更に詳しくは、立体シート材料10の具体的な用途にもよるが、立体シート材料10は、0.49cN/cm2圧力下での見掛け密度が5〜50kg/m3、特に10〜30kg/m3であることが、立体シート材料10に嵩高感を付与し、また圧縮変形性、ひいては柔軟性を高くする点から好ましい。更に立体シート材料10は、49.0cN/cm2圧力下での見掛け密度が20〜130kg/m3、特に30〜120kg/m3であることが、立体シート材料10に十分な強度が付与されて凸状の三次元的な立体形状の保形性が高まる点から好ましい。0.49cN/cm2の圧力は、吸収性物品の装着中の圧力にほぼ等しく、49.0cN/cm2の圧力は、吸収性物品の装着中に体圧がかかった場合の圧力にほぼ等しい。
【0020】
立体シート材料10の0.49cN/cm2圧力下及び49.0cN/cm2圧力下の見掛け密度は、その坪量を、後述する0.49cN/cm2圧力下及び49.0cN/cm2圧力下の厚みでそれぞれ除すことで算出される。
【0021】
立体シート材料10の厚みは、その具体的な用途にもよるが、0.49cN/cm2圧力下の厚みが、1.5〜10mm、特に2〜6mmであり、49.0cN/cm2圧力下の厚みが0.5〜5mm、特に1.0〜2.5mmであることが、嵩高性および圧縮変形性の点から好ましい。
【0022】
加圧下における厚みは圧縮変化率測定方法(KES法)を用いて測定する。測定装置としては、カトーテック株式会社製のKES FB3-AUTO-A 自動化圧縮試験装置を用いる。初期厚みは、加圧板荷重を0.49cN/cm2に設定し測定する。圧力測定は、初期厚みT1(0.49cN/cm2)から荷重時厚みT2(49cN/cm2)までの間を一定速度(1mm/sec)で変化させて測定する。圧縮荷重の検出は高感度ロードセルにより行う。このロードセルは0.1cN/cm2まで検出することができる。
【0023】
0.49cN/cm2圧力下での厚みは以下の方法で測定することもできる。先ず、測定台上に、この測定片よりも小さなサイズ(直径5.6cmの円板、12.4g)のプレートを載置する。この状態でのプレートの上面の位置を測定の基準点Aとする。次にプレートを取り除き、測定台上に測定片(10cm×10cm)を載置し、その上にプレートを再び載置する。この状態でのプレート上面の位置をBとする。AとBの差から立体シート材料10の厚みを求める。測定機器にはレーザー変位計〔(株)キーエンス製、CCDレーザ変位センサ LK−080〕を用いるが、ダイヤルゲージ式の厚み計を用いてもよい。但し厚み計を用いる場合は測定機器の測定力とプレートの重さを、0.49cN/cm2圧力下に調節する。
【0024】
立体シート材料10は、前述した0.49cN/cm2圧力下の厚みT1及び49.0cN/cm2圧力下の厚みT2に関し、以下の式(2)で定義される圧縮率が30〜85%、特に40〜70%であることが、例えば立体シート材料10をワイパーとして用いる場合に対象面への追従性が高くなり清掃効率が高くなる点から好ましい。また、立体シート材料10を吸収性物品の構成部材として用いる場合に、着用者の体形や動きに対する追従性や感触が向上する点から好ましい。
圧縮率(%)=(T1−T2)/T1×100 (2)
【0025】
立体シート材料10に十分な圧縮変形性および嵩高感を発現させる観点から、立体シート材料10はその坪量が20〜200g/m2、特に40〜150g/m2であることが好ましい。坪量は、立体シート材料10を50mm×50mm以上の大きさに裁断して測定片を採取し、この測定片の重量を最小表示1mgの電子天秤を用いて測定し坪量に換算することで求める。
【0026】
次に本実施形態の立体シート材料10の好ましい製造方法について説明する。立体シート材料10は、潜在捲縮性繊維を含む第1繊維集合体と、該潜在捲縮繊維と同種又は異種の潜在捲縮繊維を含む第2繊維集合体とを積層し、両繊維集合体を部分的に熱融着させて積層体となし、次いで該積層体を熱処理して各繊維集合体に含まれる前記潜在捲縮性繊維を捲縮させて各繊維集合体をその面内方向に熱収縮させ第1繊維集合体及び第2繊維集合体からそれぞれ第1繊維層及び第2繊維層を形成することで得られる。そして、その熱収縮に際して第2繊維集合体の面積収縮率を第1繊維集合体の面積収縮率よりも大きくすることで、第1繊維層を突出させて凸部4を形成する。
【0027】
各繊維集合体は好適にはカード機を用いて製造されたカードウエブからなる。両繊維集合体を部分的に熱融着させて積層体を得るには、例えば超音波エンボス加工や熱エンボス加工が用いられる。積層体の熱処理の温度は、各繊維集合体に含まれる潜在捲縮性繊維の捲縮開始温度以上とする。熱処理には例えば熱風の吹き付け(エアスルー加工)や赤外線の照射などが用いられる。各繊維集合体の面積収縮率は、収縮前の基準面積をS0とし、基準面積の収縮後の面積をS1とすると、以下の式(3)で表される。
面積収縮率(%)=(S0−S1)/S0×100 (3)
【0028】
第2繊維集合体の面積収縮率を第1繊維集合体の面積収縮率よりも大きくするためには、例えば次の(1)〜(4)の方法が挙げられる。
【0029】
(1)第1繊維集合体に、前記積層体の熱処理の温度では実質的に熱収縮しない繊維(以下、非熱収縮繊維ともいう)を含有させておく。一方、第2繊維集合体には非熱収縮繊維を含有させず、第2繊維集合体を潜在捲縮性繊維のみから構成する。第1繊維集合体に非熱収縮繊維が含有されていることで、第1繊維集合体に含まれる潜在捲縮性繊維の捲縮が妨げられる。従って、前記積層体の熱処理時に、第1繊維集合体における潜在捲縮性繊維の捲縮の程度が、第2繊維繊維集合体における潜在捲縮性繊維の捲縮の程度に比べて相対的に低くなる。その結果、第2繊維集合体の面積収縮率が第1繊維集合体の面積収縮率よりも大きくなる。
【0030】
(2)第1繊維集合体及び第2繊維集合体のそれぞれに非熱収縮繊維を含有させておき、第1繊維集合体における非熱収縮繊維の含有割合を、第2繊維集合体における非熱収縮繊維の含有割合よりも高くする。この場合には、各繊維集合体においては、それに含まれる潜在捲縮性繊維の捲縮が妨げられる。その妨げの程度は、非熱収縮繊維の含有割合が高い第1繊維集合体の方が大きい。従って、前記積層体の熱処理時に、第1繊維集合体における潜在捲縮性繊維の捲縮の程度が、第2繊維集合体における潜在捲縮性繊維の捲縮の程度に比べて相対的に低くなる。その結果、第2繊維集合体の面積収縮率が第1繊維集合体の面積収縮率よりも大きくなる。
【0031】
(3)第1繊維集合体と第2繊維集合体をと積層するに先立ち、第1繊維集合体にのみ予め熱エンボス加工を施しておく。これによって、第1繊維集合体に含まれている潜在捲縮性繊維の動きが、エンボス加工によって形成された融着点によって制限される。従って、前記積層体の熱処理時に、第1繊維集合体における潜在捲縮性繊維の捲縮の程度が、第2繊維集合体における潜在捲縮性繊維の捲縮の程度に比べて相対的に低くなる。その結果、第2繊維集合体の面積収縮率が第1繊維集合体の面積収縮率よりも大きくなる。
【0032】
(4)第1繊維集合体に含まれる潜在捲縮性繊維としてその捲縮開始温度が、第2繊維集合体に含まれる潜在捲縮性繊維の捲縮開始温度よりも高いものを用いる。捲縮開始温度が高い繊維と、該繊維よりも捲縮開始温度が低い繊維とでは、同温度で熱処理する場合、捲縮開始温度が高い繊維の方が捲縮が起こりづらい。従って、前記積層体の熱処理時に、第1繊維集合体における潜在捲縮性繊維の捲縮の程度が、第2繊維集合体における潜在捲縮性繊維の捲縮の程度に比べて相対的に低くなる。その結果、第2繊維集合体の面積収縮率が第1繊維集合体の面積収縮率よりも大きくなる。
【0033】
以上の(1)〜(4)の方法においては、(1)の方法を(3)及び/又は(4)の方法と組み合わせることができる。また(2)の方法を(3)及び/又は(4)の方法と組み合わせることもできる。
【0034】
このようにして得られた立体シート材料は、これをワイパーとして用いた場合、凸部4に立体捲縮した繊維を含むので、細かい繊維状のダストの捕集性に優れ、また凸部4間の凹部によってパン粉などの比較的大きなダストも捕集することができる。更に、平面方向に伸張させたときの回復性及び厚み方向へ圧縮させたときの回復性が高いので、清掃対象面への追従性が高く清掃効率が向上する。その上、清掃具への装着性も向上する。しかも、第2繊維層2にも立体捲縮した繊維が含まれていることから、目的に応じて第2繊維層2の側も清掃に供することができる。つまり両面タイプのワイパーとして用いることができる。
【0035】
また立体シート材料は、凸部4に立体捲縮した繊維を含むのでその剛性が高く、その結果水や洗浄剤などの液体を含浸させた場合でも凸状のドーム構造を確実に維持でき、ウエットワイパーとなした場合でも清掃性が低下することがない。更に吸収性物品の構成部材(例えば表面シート)として用いた場合でも、体液の透過あるいは吸収後に凸部4のドーム構造を維持できるので、肌への不快感、ムレ、カブレを防止することができる。
【0036】
本発明は前記実施形態に制限されない。例えば前記実施形態の立体シート材料10における凸部4の内部は第1繊維層1を構成する繊維で満たされているが、これに代えて、凸部4を内部が中空となっている状態となしてもよい。
【0037】
【実施例】
以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲はかかる実施例に制限されない。
【0038】
〔実施例1〕
(1)第1繊維集合体の製造
大和紡績(株)製の潜在捲縮性繊維CPP(商品名、2.2dtex×51mm、鞘成分樹脂の融解温度(融点):145℃)を原料としてカード法によって坪量15g/m2のウエブを製造した。熱エンボスロール(145℃±10℃)を用いてウエブを熱エンボス加工し、第1繊維集合体を製造した。エンボス面積率は28%であった。
【0039】
(2)第2繊維集合体の製造
大和紡績(株)製の潜在捲縮性繊維CPP(商品名、2.2dtex×51mm、鞘成分樹脂の融解温度(融点):135℃)を原料としてカード法によって坪量30g/m2の第2繊維集合体を製造した。
【0040】
(3)立体シート材料の製造
第1繊維集合体と第2繊維集合体とを重ね合わせ、超音波エンボス法によって両繊維集合体を部分的に接合し積層体を得た。エンボスによる各接合部の形状は円形であり、その配列パターンは図1に示す菱形格子状であった。熱風炉において積層体に130℃±10℃の熱風を5〜10秒間エアスルー方式で吹き付けた。これによって各繊維集合体に含まれる潜在捲縮性繊維を捲縮させて各繊維集合体をその面内方向に収縮させた。このとき、第1繊維集合体に含まれている潜在捲縮性繊維は、先に行った熱エンボス加工によってその捲縮が妨げられているので、第2繊維集合体の面積収縮率の方が第1繊維集合体の面積収縮率よりも高くなった。その結果、第1繊維集合体から形成される第1繊維層においては接合点間において凸部が多数形成された。このようにして得られた立体シート材料はその坪量が96.0g/m2であり、接合点の面積率は立体シート材料の面積の7%であった。
【0041】
〔実施例2〕
第1繊維集合体として、大和紡績(株)製の潜在捲縮性繊維CPP(商品名、2.2dtex×51mm、鞘成分樹脂の融解温度(融点):135℃)を50重量%含み、且つ大和紡績(株)製の芯鞘型熱融着繊維NBF(SH)(商品名、2.2dtex×51mm)を50重量%含み、坪量が15g/m2のものを用いた。この繊維集合体は熱エンボス加工されていない。これ以外は実施例1と同様にして立体シート材料を得た。積層体の熱処理においては、第1繊維集合体に含まれている潜在捲縮性繊維は、熱融着繊維が存在することによってその捲縮が妨げられているので、第2繊維集合体の面積収縮率の方が第1繊維集合体の面積収縮率よりも高くなった。このようにして得られた立体シート材料はその坪量が93.8g/m2であり、接合点の面積率は立体シート材料の面積の7%であった。
【0042】
〔比較例1〕
第1繊維集合体として、Toray Saehan Inc.製の親水性スパンボンド不織布(主成分:ポリプロピレン、坪量13g/m2)を用いる以外は実施例1と同様にして立体シート材料を得た。積層体の熱処理においては、第1繊維集合体であるスパンボンド不織布は収縮しなかった。このようにして得られた立体シート材料はその坪量が86.2g/m2であり、接合点の面積率は立体シート材料の面積の7%であった。
【0043】
〔比較例2〕
第1繊維集合体として、Toray Saehan Inc.製の撥水性スパンボンド不織布JB20R(商品名、主成分:ポリプロピレン、坪量20g/m2)を用いる以外は実施例1と同様にして立体シート材料を得た。積層体の熱処理においては、第1繊維集合体であるスパンボンド不織布は収縮しなかった。このようにして得られた立体シート材料はその坪量が100.4g/m2であり、接合点の面積率は立体シート材料の面積の7%であった。
【0044】
〔比較例3〕
第1繊維集合体として、大和紡績(株)製の芯鞘型熱融着繊維NBF(SH)(商品名、2.2dtex×51mm)を原料とするカードウエブにエアスルー方式で熱処理を施したエアスルー不織布(坪量14g/m2)を用いる以外は実施例1と同様にして立体シート材料を得た。積層体の熱処理においては、第1繊維集合体であるエアスルー不織布は収縮しなかった。このようにして得られた立体シート材料はその坪量が91.3g/m2であり、接合点の面積率は立体シート材料の面積の7%であった。
【0045】
〔性能評価〕
実施例及び比較例で得られた立体シート材料について次の方法で、ダストの捕集率、ウエットバック量、液広がり面積、湿潤時厚みを測定した。これらの結果を以下の表1に示す。
【0046】
〔ダストの捕集率〕
1m×1mのフローリング上に以下のダストA〜Cを別個に所定量散布した。花王(株)製のクイックルワイパー(商品名)に各立体シート材料を装着させてフローリング上を5往復清拭した。その後、立体シート材料に付着したダストの重量(ダストBについては本数)を測定し、捕集率(%)を算出した。
ダストA:パン粉(粒径1〜1.4mm)を0.2g
ダストB:髪の毛(長さ10cm、直径約100μm)を10本×5回
ダストC:JIS試験用ダスト7種を0.3g
【0047】
〔ウエットバック量〕
花王(株)製の生理用ナプキンであるロリエ(商品名)から吸収体を取り出し、その上に各立体シート材料を載せ、更にその上に穴の開いたアクリル板(荷重4.9cN/cm2)を載せた。アクリル板の穴を通じて脱繊維馬血(日本バイオテスト製)を6g注入した。血が完全に吸収された時点から1分経過後アクリル板を取り除いた。次いで立体シート材料上に20枚の濾紙を重ね、更に約65cN/cm2の荷重を加え、逆戻りする血を濾紙に吸収させた。5分経過後荷重を取り除き、20枚の濾紙の重量を測定した。血の吸収前の濾紙の重量との差を求め、その値をウエットバック量とした。
【0048】
〔液広がり面積〕
花王(株)製の生理用ナプキンであるロリエ(商品名)から吸収体を取り出し、その上に各立体シート材料を載せ、更にその上に穴の開いたアクリル板(荷重5g/cm2)を載せた。アクリル板の穴を通じて脱繊維馬血(日本バイオテスト製)を6g注入した。血が完全に吸収された時点から1分経過後アクリル板を取り除いた。次いで立体シート材料上に約65cN/cm2の荷重を加えた。5分経過後荷重を取り除き、立体シート材料表面の血の広がり面積を画像解析装置を用いて測定した。
【0049】
〔湿潤時厚み〕
立体シート材料をイオン交換水中に浸漬させ、引き上げた後に5枚重ねの濾紙上に載せた。立体シート材料に65.3cN/cm2の荷重を加えて余分な水を濾紙に吸収させた。1分経過後荷重を取り除き、0.49cN/cm2荷重下での厚みを前述のKES法によって測定した。イオン交換水に浸漬させる前の厚みについても同様の条件で測定した。
【0050】
【表1】

Figure 0003808032
【0051】
表1に示す結果から明らかなように、各実施例の立体シート材料(本発明品)は、比較例のシート材料に比べて髪の毛のような繊維状のダスト及びパン粉のような比較的大きなダストの捕集性に優れていることが判る。また、各実施例の立体シート材料は、液戻り量が少なく、液広がり面積も小さいことが判る。更に、各実施例の立体シート材料は、湿潤時の厚み減少率が小さく、湿潤時でも凸部の形状をしっかり維持できることが判る。
【0052】
【発明の効果】
本発明の立体シート材料は、平面方向に引き伸ばしたときの回復性及び厚み方向へ圧縮したときの回復性に優れたものである。また凸部の剛性が高く、湿潤しても凸形状をしっかりと維持する。凸部は繊維状のダストの捕集性に優れ、また凸部間はパン粉のような比較的大きなダストの捕集性に優れる。更に本発明の立体シート材料は、液戻り量が少なく、液広がり面積が小さいので、これを吸収性物品の表面シートとして用いた場合に、排泄された液が着用者の肌へ逆戻りすることが防止され、また肌へのベタつきが抑えられる。
【図面の簡単な説明】
【図1】本発明の立体シート材料の一実施形態を示す斜視図である。
【図2】図1におけるII−II線断面図である。
【符号の説明】
1 第1繊維層
2 第2繊維層
3 熱融着部
4 凸部
10 立体シート材料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional sheet material made of a nonwoven fabric having a large volume and having a large number of convex portions on one surface.
[0002]
[Prior art and problems to be solved by the invention]
The applicant first has a first layer and a second layer adjacent to the first layer, and the first layer and the second layer are partially joined by a joint portion having a predetermined pattern. The first layer has a three-dimensional solid shape, and the second layer is made of a material exhibiting an elastomeric behavior, and the whole sheet has an elastomeric behavior and has a breathable three-dimensional sheet material (patented) Reference 1). This three-dimensional sheet material is highly recoverable when stretched in the plane direction and highly recoverable when compressed in the thickness direction, and is suitably used as a constituent material for disposable absorbent articles and as a wiper for humans and objectives. The However, there is an increasing demand for stretch recovery and compression recovery.
[0003]
A unidirectional card web composed of a crimped latent crimped fiber and a heat-sealing fiber that bonds the fibers of the latent crimped fiber, and has a first layer with a smooth exposed surface; Consists of a crossed card web composed of fibers that do not substantially heat shrink at the crimping temperature of the crimped fiber, and the exposed surface is formed of a second layer in which convex portions substantially parallel to each other are formed. There is known a dust cloth in which a first layer and a second layer are laminated and integrated with each other (see Patent Document 2). In this dust cloth, since the first layer and the second layer are bonded on the entire surface thereof, it is not easy to raise the convex portion. Moreover, it is not easy to increase the degree of freedom of the design (design) by the convex portions.
[0004]
A step of obtaining a laminate comprising at least one hydrophilic fiber web and at least one heat-crimpable hydrophobic fiber web, a continuous plane portion, and a plurality of convex portions distributed intermittently and independently; / Or on the surface of the support provided with recesses and a large number of fine drainage holes, the laminate is sprayed with high-pressure water from the fine hole nozzles to entangle the fibers of both webs and rearrange the laminate. Produced by a method comprising the steps of: obtaining a non-woven fabric having uneven fiber distribution density in the surface direction; and dehydrating and / or drying the non-woven fabric and then heat-treating the synthetic fiber, at least on one side A non-woven wiper having many undulations is also known (see Patent Document 3). This wiper also has the same disadvantages as the dust cloth described in Patent Document 2 described above, because two fiber webs are joined on the entire surface thereof.
[0005]
[Patent Document 1]
JP 2002-187228 A
[Patent Document 2]
JP 2001-89961 A
[Patent Document 3]
JP-A-8-60509
[0006]
Accordingly, an object of the present invention is to provide a bulky sheet material having high recoverability when stretched in the plane direction and high recoverability when compressed in the thickness direction.
[0007]
[Means for Solving the Problems]
  The present invention provides a three-dimensional crimped fiber30% by weight or moreAnd a first fiber layer including a second fiber layer including a three-dimensionally crimped fiber of the same type or different from the fiber, and the two fiber layers are partially bonded at a number of bonding portions to have a thickness. The first fiber layer protrudes between the joints.On the first fiber layer sideThe object is achieved by providing a three-dimensional sheet material having a large number of convex portions.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on preferred embodiments with reference to the drawings. FIG. 1 shows a perspective view of an embodiment of the three-dimensional sheet material of the present invention, and FIG. 2 shows a cross-sectional view taken along line II-II in FIG.
[0009]
The three-dimensional sheet material 10 shown in FIG. 1 consists of a nonwoven fabric provided with the 1st fiber layer 1 and the 2nd fiber layer 2 adjacent to this. The first fiber layer 1 is composed of an aggregate of fibers. On the other hand, the second fiber layer 2 is composed of an aggregate of fibers of a different type and / or blend from the fibers constituting the first fiber layer 1. The first fiber layer 1 and the second fiber layer 2 are partially bonded by a large number of bonding portions 3. In other words, the first fiber layer 1 and the second fiber layer 2 are not joined on the entire surface. In the present embodiment, the joint portions 3 are small and discretely formed discontinuously, and form a rhombus lattice-like arrangement pattern as a whole. The joint portion 3 is consolidated, and has a smaller thickness and a higher density than other portions of the three-dimensional sheet material 10.
[0010]
The joint portion 3 is formed by heat-sealing the first fiber layer 1 and the second fiber layer 2. Both fiber layers are integrated in the thickness direction by the joint portion 3. The joint 3 in the present embodiment is circular, but the shape of the joint 3 may be elliptical, triangular, rectangular, or a combination thereof. Moreover, you may form a junction part in continuous shape, for example, linear form, such as a straight line and a curve.
[0011]
The area ratio of the joint portion 3 with respect to the area of the three-dimensional sheet material 10 (the area of the joint portion 3 per unit area of the three-dimensional sheet material 10) depends on the specific use of the three-dimensional sheet material 10, but the first fiber layer 1 6 to 90%, particularly 10 to 70% from the viewpoint of sufficiently increasing the bonding between the first fiber layer 2 and the second fiber layer 2 and sufficiently forming a convex three-dimensional shape to express the bulkiness. It is preferable.
[0012]
In the three-dimensional sheet material 10, the first fiber layer 1 protrudes between the joint portions 3 to form a large number of convex portions 4. In the present embodiment, the three-dimensional sheet material 10 has a number of closed regions formed by being surrounded by the joint portions 3 each having a rhombus-like array pattern, and the first fiber layer 1 is formed in the closed regions. Projecting as shown in FIG. The convex part 4 in the present embodiment has a dome shape. The inside is filled with fibers constituting the first fiber layer 1. The joint portion 3 is a concave portion relative to the convex portion 4. On the other hand, in the 2nd fiber layer 2, between the junction parts 3, the substantially flat surface is maintained, or it protrudes a little (refer FIG. 2). When viewed as a whole of the three-dimensional sheet material 10, the second fiber layer 2 side is flat or slightly protruding, and has a structure having a large number of irregularities on the first fiber layer 1 side.
[0013]
The first fiber layer 1 includes three-dimensionally crimped fibers. As described above, since the convex portion 4 is composed of the first fiber layer 1, the fact that the first fiber layer 1 includes a three-dimensional crimped fiber means that the convex portion 4 includes a three-dimensional crimped fiber. Means that When the convex part 4 contains the three-dimensional crimped fiber, the recoverability when the convex part 4 is compressed becomes high. Moreover, the sag of the convex part 4 when the solid sheet material 10 is impregnated with a liquid becomes small. Therefore, the three-dimensional sheet material 10 is suitably used as a constituent material of a disposable absorbent article or a wet wiper for interpersonal / objective purposes. Furthermore, since the three-dimensional crimped fiber can be held with the fibrous dust sandwiched between the crimped portions, when the three-dimensional sheet material 10 is used as a wiper, the fibrous dust can be collected. Get higher. In addition, since relatively large dust such as bread crumbs is easily held in the concave portions between the convex portions 4, it is preferable to use the three-dimensional sheet material 10 as a wiper from this point. In addition, the first fiber layer 1 is highly recoverable when it is stretched in the plane direction.
[0014]
Examples of the three-dimensionally crimped fibers include latent crimpable fibers in which crimps are expressed and fibers that have been mechanically crimped. In particular, the three-dimensionally crimped fibers are preferably made of latent crimpable fibers in which crimps are manifested from the viewpoint that the compression recovery properties of the protrusions 4 and the stretch recovery properties of the first fiber layer 1 are high. The latent crimpable fiber in which crimps are expressed is in a coiled crimped state. The latent crimpable fiber preferably has a fineness of about 1 to 7 dtex. The latent crimpable fiber includes, for example, an eccentric core-sheath type composite fiber or a side-by-side type composite fiber containing two types of thermoplastic polymer materials having different shrinkage rates as components. Examples thereof include those described in JP-A-9-296325 and JP2759331A. For example, a combination of an ethylene-propylene random copolymer (EP) and polypropylene (PP) is preferable in terms of the softness of the three-dimensional sheet material 10 as an example of two types of thermoplastic polymer materials having different shrinkage rates. .
[0015]
  The 1st fiber layer 1 may be comprised from 100% of the three-dimensional crimped fiber, and may contain the other fiber. Examples of other fibers include fibers that do not substantially heat shrink at the crimp start temperature of the latent crimpable fibers. Specific examples include fibers that have heat shrinkage but do not substantially heat shrink at the crimp start temperature of the latent crimpable fiber, and fibers that do not substantially have heat shrinkability. In particular, it is preferable that a heat-fusible fiber is included. As a result, the surface strength of the convex portion 4 is increased and fuzzing is effectively prevented. When fibers other than the three-dimensionally crimped fibers are included in the first fiber layer 1, the amount of the three-dimensionally crimped fibers is 30% by weight or more with respect to the weight of the first fiber layer 1.And preferably50-90% by weightThe
[0016]
Similar to the first fiber layer 1, the second fiber layer 2 also includes three-dimensionally crimped fibers. As the three-dimensional crimped fiber contained in the second fiber layer 2, a latent crimpable fiber in which crimp is developed is preferably used. The latent crimpable fiber may be the same type or different type of latent crimpable fiber contained in the first fiber layer 1. For details of the latent crimpable fibers contained in the second fiber layer 2, the description regarding the latent crimpable fibers contained in the first fiber layer 1 is applied as appropriate. When the second fiber layer 4 includes the three-dimensionally crimped fibers, the second fiber layer 2 has high recoverability when it is stretched in the plane direction.
[0017]
The second fiber layer 2 may be composed of 100% solidly crimped fibers and may contain other fibers. Examples of other fibers include the same fibers as the other fibers included in the first fiber layer 1. When fibers other than the three-dimensionally crimped fibers are included in the second fiber layer 2, the amount of the three-dimensionally crimped fibers is 50% by weight or more, particularly 70 to 90% by weight with respect to the weight of the second fiber layer 2. Preferably there is.
[0018]
As described above, since both the first fiber layer 1 and the second fiber layer 2 contain three-dimensionally crimped fibers, these layers have high recoverability when they are stretched in the plane direction. It becomes. As a result, the recoverability when the three-dimensional sheet material 10 as a whole is extended in the plane direction becomes high. Therefore, when the three-dimensional sheet material 10 is used as, for example, a wiper, the followability to the unevenness of the target surface is improved. Moreover, when the three-dimensional sheet material 10 is used as, for example, a constituent member of an absorbent article, the followability to the wearer's movement is improved, the fit of the absorbent article is improved, and liquid leakage is effectively prevented.
[0019]
The three-dimensional sheet material 10 has a low-density structure and has a sufficiently large compressive deformability when compressed in the thickness direction. More specifically, the three-dimensional sheet material 10 is 0.49 cN / cm depending on the specific application of the three-dimensional sheet material 10.2Apparent density under pressure is 5-50kg / mThree, Especially 10-30kg / mThreeIt is preferable from the viewpoint of imparting a bulky feeling to the three-dimensional sheet material 10 and increasing the compressive deformability and thus the flexibility. Furthermore, the three-dimensional sheet material 10 is 49.0 cN / cm.2Apparent density under pressure is 20-130kg / mThree, Especially 30-120kg / mThreeIt is preferable from the point that sufficient strength is imparted to the three-dimensional sheet material 10 and the shape retention of a convex three-dimensional solid shape is enhanced. 0.49 cN / cm2Is approximately equal to the pressure during mounting of the absorbent article, 49.0 cN / cm2The pressure is approximately equal to the pressure when body pressure is applied during the wearing of the absorbent article.
[0020]
0.49 cN / cm of the three-dimensional sheet material 102Under pressure and 49.0 cN / cm2The apparent density under pressure is the basis weight of 0.49 cN / cm, which will be described later.2Under pressure and 49.0 cN / cm2It is calculated by dividing by the thickness under pressure.
[0021]
The thickness of the three-dimensional sheet material 10 is 0.49 cN / cm, although it depends on the specific application.2The thickness under pressure is 1.5-10 mm, especially 2-6 mm, 49.0 cN / cm2The thickness under pressure is preferably 0.5 to 5 mm, particularly 1.0 to 2.5 mm from the viewpoint of bulkiness and compressive deformation.
[0022]
The thickness under pressure is measured using a compression change rate measuring method (KES method). As a measuring device, KES FB3-AUTO-A automated compression tester manufactured by Kato Tech Co., Ltd. is used. The initial thickness is a pressure plate load of 0.49 cN / cm.2Set to and measure. Pressure measurement is the initial thickness T1(0.49 cN / cm2) To load thickness T2(49 cN / cm2) At a constant speed (1 mm / sec). The detection of compressive load is performed with a high-sensitivity load cell. This load cell is 0.1 cN / cm2Can be detected.
[0023]
0.49 cN / cm2The thickness under pressure can also be measured by the following method. First, a plate having a size smaller than the measurement piece (a disk having a diameter of 5.6 cm, 12.4 g) is placed on the measurement table. The position of the upper surface of the plate in this state is set as a measurement reference point A. Next, the plate is removed, a measurement piece (10 cm × 10 cm) is placed on the measurement table, and the plate is placed again thereon. The position of the upper surface of the plate in this state is B. The thickness of the three-dimensional sheet material 10 is determined from the difference between A and B. A laser displacement meter [manufactured by Keyence Co., Ltd., CCD laser displacement sensor LK-080] is used as the measuring device, but a dial gauge type thickness meter may be used. However, when a thickness gauge is used, the measuring force of the measuring instrument and the weight of the plate should be 0.49 cN / cm.2Adjust under pressure.
[0024]
The three-dimensional sheet material 10 is 0.49 cN / cm described above.2Thickness T1 under pressure and 49.0 cN / cm2Regarding the thickness T2 under pressure, the compression rate defined by the following formula (2) is 30 to 85%, particularly 40 to 70%. For example, when the three-dimensional sheet material 10 is used as a wiper, This is preferable from the viewpoint that the followability becomes high and the cleaning efficiency becomes high. Moreover, when using the three-dimensional sheet material 10 as a structural member of an absorptive article, it is preferable from the point which the followability and feel with respect to a wearer's body shape and a motion improve.
Compression rate (%) = (T1-T2) / T1 × 100 (2)
[0025]
From the viewpoint of expressing sufficient compression deformability and bulkiness in the three-dimensional sheet material 10, the three-dimensional sheet material 10 has a basis weight of 20 to 200 g / m.2, Especially 40-150 g / m2It is preferable that The basis weight is obtained by cutting the three-dimensional sheet material 10 into a size of 50 mm × 50 mm or more, collecting a measurement piece, measuring the weight of the measurement piece using an electronic balance with a minimum display of 1 mg, and converting it to the basis weight. Ask.
[0026]
Next, the preferable manufacturing method of the three-dimensional sheet material 10 of this embodiment is demonstrated. The three-dimensional sheet material 10 is formed by laminating a first fiber aggregate containing latent crimped fibers and a second fiber aggregate containing latent crimped fibers of the same type or different from the latent crimped fibers, and both fiber aggregates. Is partially heat-sealed to form a laminate, and then the laminate is heat-treated to crimp the latent crimpable fibers contained in each fiber assembly so that each fiber assembly is oriented in the in-plane direction. It is obtained by heat shrinking to form a first fiber layer and a second fiber layer from the first fiber aggregate and the second fiber aggregate, respectively. And the convex part 4 is made to project the 1st fiber layer by making the area shrinkage rate of a 2nd fiber assembly larger than the area shrinkage rate of a 1st fiber assembly in the case of the heat shrink.
[0027]
Each fiber assembly preferably comprises a card web manufactured using a card machine. For example, ultrasonic embossing or heat embossing is used to partially heat-bond both fiber assemblies to obtain a laminate. The heat treatment temperature of the laminate is set to be equal to or higher than the crimp start temperature of the latent crimpable fiber included in each fiber assembly. For example, hot air blowing (air-through processing) or infrared irradiation is used for the heat treatment. The area shrinkage rate of each fiber assembly is the standard area before shrinkage, S0And the area after contraction of the reference area is S1Then, it is represented by the following formula (3).
Area shrinkage rate (%) = (S0-S1) / S0× 100 (3)
[0028]
In order to make the area shrinkage rate of the second fiber assembly larger than the area shrinkage rate of the first fiber assembly, for example, the following methods (1) to (4) may be mentioned.
[0029]
(1) The first fiber aggregate is made to contain fibers that are not substantially thermally shrunk at the heat treatment temperature of the laminate (hereinafter also referred to as non-heat-shrinkable fibers). On the other hand, the second fiber aggregate does not contain non-heat-shrinkable fibers, and the second fiber aggregate is composed only of latent crimpable fibers. By containing the non-heat-shrinkable fibers in the first fiber aggregate, crimping of the latent crimpable fibers contained in the first fiber aggregate is prevented. Therefore, during the heat treatment of the laminate, the degree of crimp of the latent crimpable fiber in the first fiber assembly is relatively larger than the degree of crimp of the latent crimpable fiber in the second fiber fiber assembly. Lower. As a result, the area shrinkage rate of the second fiber assembly becomes larger than the area shrinkage rate of the first fiber assembly.
[0030]
(2) Non-heat-shrinkable fibers are contained in each of the first fiber aggregate and the second fiber aggregate, and the content ratio of non-heat-shrinkable fibers in the first fiber aggregate is determined as non-heat in the second fiber aggregate. Higher than the shrinkage fiber content. In this case, in each fiber assembly, the crimp of the latent crimpable fiber contained therein is prevented. The degree of the hindrance is larger in the first fiber aggregate having a higher content of non-heat-shrinkable fibers. Therefore, during the heat treatment of the laminate, the degree of crimp of the latent crimpable fiber in the first fiber assembly is relatively lower than the degree of crimp of the latent crimpable fiber in the second fiber assembly. Become. As a result, the area shrinkage rate of the second fiber assembly becomes larger than the area shrinkage rate of the first fiber assembly.
[0031]
(3) Prior to laminating the first fiber assembly and the second fiber assembly, only the first fiber assembly is preliminarily heat embossed. As a result, the movement of the latent crimpable fiber contained in the first fiber assembly is limited by the fusion point formed by embossing. Therefore, during the heat treatment of the laminate, the degree of crimp of the latent crimpable fiber in the first fiber assembly is relatively lower than the degree of crimp of the latent crimpable fiber in the second fiber assembly. Become. As a result, the area shrinkage rate of the second fiber assembly becomes larger than the area shrinkage rate of the first fiber assembly.
[0032]
(4) As the latent crimpable fiber contained in the first fiber assembly, one having a crimp start temperature higher than the crimp start temperature of the latent crimpable fiber contained in the second fiber assembly is used. When a fiber having a higher crimp start temperature and a fiber having a lower crimp start temperature than the fiber are heat-treated at the same temperature, the fiber having a higher crimp start temperature is less likely to be crimped. Therefore, during the heat treatment of the laminate, the degree of crimp of the latent crimpable fiber in the first fiber assembly is relatively lower than the degree of crimp of the latent crimpable fiber in the second fiber assembly. Become. As a result, the area shrinkage rate of the second fiber assembly becomes larger than the area shrinkage rate of the first fiber assembly.
[0033]
In the above methods (1) to (4), the method (1) can be combined with the methods (3) and / or (4). In addition, the method (2) can be combined with the method (3) and / or (4).
[0034]
When the three-dimensional sheet material obtained in this way is used as a wiper, it includes fibers that are three-dimensionally crimped on the convex portions 4, so that it is excellent in the collection of fine fibrous dust, and between the convex portions 4. A relatively large dust such as bread crumbs can also be collected by the recesses. Furthermore, since the recoverability when stretched in the plane direction and the recoverability when compressed in the thickness direction are high, the followability to the surface to be cleaned is high and the cleaning efficiency is improved. In addition, the mounting property to the cleaning tool is improved. In addition, since the second fiber layer 2 also contains three-dimensionally crimped fibers, the second fiber layer 2 side can also be used for cleaning depending on the purpose. That is, it can be used as a double-sided wiper.
[0035]
The three-dimensional sheet material has high rigidity because it includes three-dimensionally crimped fibers in the convex portion 4, and as a result, even when impregnated with water or a liquid such as a cleaning agent, the convex dome structure can be reliably maintained and wet. Even when it becomes a wiper, the cleaning property does not deteriorate. Furthermore, even when used as a constituent member of an absorbent article (for example, a surface sheet), the dome structure of the convex portion 4 can be maintained after the permeation or absorption of body fluid, so that discomfort, swelling and blurring of the skin can be prevented. .
[0036]
The present invention is not limited to the embodiment. For example, although the inside of the convex part 4 in the three-dimensional sheet material 10 of the said embodiment is filled with the fiber which comprises the 1st fiber layer 1, it replaces with this and the state in which the convex part 4 is hollow inside May be done.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
[0038]
[Example 1]
(1) Production of first fiber assembly
A latent crimpable fiber CPP (trade name, 2.2 dtex × 51 mm, melting temperature (melting point) of sheath component resin: 145 ° C.) made by Daiwa Boseki Co., Ltd. as a raw material by a card method and a basis weight of 15 g / m2The web was manufactured. The web was hot embossed using a hot embossing roll (145 ° C. ± 10 ° C.) to produce a first fiber assembly. The embossed area ratio was 28%.
[0039]
(2) Production of second fiber assembly
Latent crimped fiber CPP (trade name, 2.2 dtex × 51 mm, melting temperature (melting point) of sheath component resin: 135 ° C.) manufactured by Daiwa Boseki Co., Ltd.2A second fiber assembly was produced.
[0040]
(3) Manufacture of three-dimensional sheet material
The first fiber assembly and the second fiber assembly were overlapped, and both fiber assemblies were partially joined by an ultrasonic embossing method to obtain a laminate. The shape of each joint by embossing was circular, and the arrangement pattern was a rhombus lattice shown in FIG. In a hot air oven, hot air of 130 ° C. ± 10 ° C. was blown onto the laminate by an air-through method for 5 to 10 seconds. As a result, the latent crimpable fibers contained in each fiber assembly were crimped to shrink each fiber assembly in the in-plane direction. At this time, the latent crimpable fiber contained in the first fiber assembly is prevented from being crimped by the heat embossing performed earlier, so the area shrinkage rate of the second fiber assembly is more It became higher than the area shrinkage rate of the 1st fiber aggregate. As a result, in the 1st fiber layer formed from the 1st fiber aggregate, many convex parts were formed between joining points. The three-dimensional sheet material thus obtained has a basis weight of 96.0 g / m.2The area ratio of the joint points was 7% of the area of the three-dimensional sheet material.
[0041]
[Example 2]
As the first fiber aggregate, it contains 50% by weight of latent crimpable fiber CPP (trade name, 2.2 dtex × 51 mm, melting temperature (melting point) of sheath component resin: 135 ° C.) manufactured by Daiwa Spinning Co., Ltd. Contains 50% by weight of Daibabo Co., Ltd. core-sheath-type heat-sealing fiber NBF (SH) (trade name, 2.2 dtex × 51 mm), and has a basis weight of 15 g / m.2The ones used were used. This fiber assembly is not hot embossed. Except for this, a three-dimensional sheet material was obtained in the same manner as in Example 1. In the heat treatment of the laminated body, the latent crimpable fiber contained in the first fiber assembly is prevented from being crimped by the presence of the heat-fusible fiber, so the area of the second fiber assembly The shrinkage rate was higher than the area shrinkage rate of the first fiber assembly. The three-dimensional sheet material thus obtained has a basis weight of 93.8 g / m.2The area ratio of the joint points was 7% of the area of the three-dimensional sheet material.
[0042]
[Comparative Example 1]
As the first fiber aggregate, a hydrophilic spunbonded nonwoven fabric made by Toray Saehan Inc. (main component: polypropylene, basis weight 13 g / m)2) To obtain a three-dimensional sheet material in the same manner as in Example 1. In the heat treatment of the laminate, the spunbond nonwoven fabric as the first fiber aggregate did not shrink. The three-dimensional sheet material thus obtained has a basis weight of 86.2 g / m.2The area ratio of the joint points was 7% of the area of the three-dimensional sheet material.
[0043]
[Comparative Example 2]
As the first fiber assembly, a water-repellent spunbond nonwoven fabric JB20R (trade name, main component: polypropylene, basis weight 20 g / m, manufactured by Toray Saehan Inc.2) To obtain a three-dimensional sheet material in the same manner as in Example 1. In the heat treatment of the laminate, the spunbond nonwoven fabric as the first fiber aggregate did not shrink. The three-dimensional sheet material thus obtained has a basis weight of 100.4 g / m.2The area ratio of the joint points was 7% of the area of the three-dimensional sheet material.
[0044]
[Comparative Example 3]
An air-through heat-treated air-through card web made of Daiwa Boseki Co., Ltd. core-sheath fiber NBF (SH) (trade name, 2.2 dtex × 51 mm) as the first fiber assembly Nonwoven fabric (basis weight 14g / m2) To obtain a three-dimensional sheet material in the same manner as in Example 1. In the heat treatment of the laminate, the air-through nonwoven fabric as the first fiber aggregate did not shrink. The three-dimensional sheet material thus obtained has a basis weight of 91.3 g / m.2The area ratio of the joint points was 7% of the area of the three-dimensional sheet material.
[0045]
[Performance evaluation]
The three-dimensional sheet materials obtained in Examples and Comparative Examples were measured for dust collection rate, wetback amount, liquid spreading area, and wet thickness by the following methods. These results are shown in Table 1 below.
[0046]
[Dust collection rate]
The following dusts A to C were separately sprayed in predetermined amounts on a 1 m × 1 m flooring. Each three-dimensional sheet material was attached to a quick wiper (trade name) manufactured by Kao Corporation and wiped on the flooring 5 times. Thereafter, the weight of dust (the number of dust B) attached to the three-dimensional sheet material was measured, and the collection rate (%) was calculated.
Dust A: 0.2 g of bread crumbs (particle size 1 to 1.4 mm)
Dust B: 10 hairs (length: 10 cm, diameter: about 100 μm) x 5 times
Dust C: 0.3g of 7 kinds of dust for JIS test
[0047]
[Wetback amount]
An absorber is taken out from Laurie (trade name) which is a sanitary napkin manufactured by Kao Co., Ltd., and each three-dimensional sheet material is placed thereon, and further an acrylic plate with a hole on it (load 4.9 cN / cm)2). 6 g of defibrinated horse blood (manufactured by Nippon Biotest) was injected through a hole in the acrylic plate. After 1 minute from the time when blood was completely absorbed, the acrylic plate was removed. Next, 20 filter papers are stacked on the three-dimensional sheet material, and further about 65 cN / cm.2Then, the blood returning to was absorbed into the filter paper. After 5 minutes, the load was removed and the weight of 20 filter papers was measured. The difference from the weight of the filter paper before blood absorption was determined, and that value was taken as the wetback amount.
[0048]
[Liquid spreading area]
Take out the absorber from Laurie (trade name) which is a sanitary napkin made by Kao Co., Ltd., place each solid sheet material on it, and then place an acrylic plate with a hole on it (load 5 g / cm)2). 6 g of defibrinated horse blood (manufactured by Nippon Biotest) was injected through a hole in the acrylic plate. After 1 minute from the time when blood was completely absorbed, the acrylic plate was removed. Next, about 65 cN / cm on the three-dimensional sheet material2The load was applied. After 5 minutes, the load was removed, and the blood spread area on the surface of the three-dimensional sheet material was measured using an image analyzer.
[0049]
[Thickness when wet]
The three-dimensional sheet material was immersed in ion-exchanged water, pulled up, and then placed on five layers of filter paper. 35.3 cN / cm for 3D sheet material2The excess water was absorbed by the filter paper. Remove load after 1 minute, 0.49 cN / cm2The thickness under load was measured by the KES method described above. The thickness before immersion in ion-exchanged water was also measured under the same conditions.
[0050]
[Table 1]
Figure 0003808032
[0051]
As is clear from the results shown in Table 1, the three-dimensional sheet material of each example (the product of the present invention) is a fibrous dust like hair and a relatively large dust like bread crumb compared to the sheet material of the comparative example. It can be seen that it is excellent in trapping performance. Moreover, it turns out that the solid sheet material of each Example has little liquid return amount and a small liquid spreading area. Furthermore, it can be seen that the three-dimensional sheet material of each example has a small thickness reduction rate when wet and can maintain the shape of the convex portion even when wet.
[0052]
【The invention's effect】
The three-dimensional sheet material of the present invention is excellent in recoverability when stretched in the plane direction and recoverability when compressed in the thickness direction. In addition, the convex portion has high rigidity and maintains its convex shape even when wet. The convex portions are excellent in the collection property of fibrous dust, and the convex portions are excellent in the collection property of relatively large dust such as bread crumbs. Furthermore, since the three-dimensional sheet material of the present invention has a small liquid return amount and a small liquid spreading area, the excreted liquid may return to the wearer's skin when used as a top sheet of an absorbent article. Prevents stickiness to the skin.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a three-dimensional sheet material of the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
[Explanation of symbols]
1 First fiber layer
2 Second fiber layer
3 Heat fusion part
4 Convex
10 Three-dimensional sheet material

Claims (7)

立体捲縮した繊維を30重量%以上含む第1繊維層と、該繊維と同種又は異種の立体捲縮した繊維を含む第2繊維層とが積層されてなり、前記両繊維層は多数の接合部において部分的に接合されて厚さ方向に一体化されており、各接合部の間において第1繊維層が突出して該第1繊維層側に多数の凸部を形成している立体シート材料。The first fiber layer containing 30% by weight or more of the three-dimensionally crimped fiber and the second fiber layer containing the same or different kind of three-dimensionally crimped fiber are laminated. Three-dimensional sheet material that is partially joined at the part and integrated in the thickness direction, and the first fiber layer protrudes between the joined parts to form a plurality of convex parts on the first fiber layer side. . 第2繊維層に含まれる立体捲縮した前記繊維が、捲縮が発現した潜在捲縮性繊維からなり、第1繊維層に含まれる立体捲縮した前記繊維が、捲縮が発現した潜在捲縮性繊維又は機械捲縮加工された繊維からなる請求項1記載の立体シート材料。  The three-dimensionally crimped fibers contained in the second fiber layer are made of latent crimpable fibers in which crimps are developed, and the three-dimensionally crimped fibers contained in the first fiber layer are latent crimps in which crimps are developed. The three-dimensional sheet material according to claim 1, comprising a shrinkable fiber or a fiber that has been mechanically crimped. 潜在捲縮性繊維を含む第1繊維集合体と、該潜在捲縮繊維と同種又は異種の潜在捲縮繊維を含む第2繊維集合体とを積層し、両繊維集合体を部分的に熱融着させて積層体となし、次いで該積層体を熱処理して各繊維集合体に含まれる前記潜在捲縮性繊維を捲縮させて各繊維集合体をその面内方向に熱収縮させ第1繊維集合体及び第2繊維集合体からそれぞれ第1繊維層及び第2繊維層を形成することで得られたものであり、その熱収縮に際して第2繊維集合体の面積収縮率を第1繊維集合体の面積収縮率よりも大きくすることで、第1繊維層を突出させて前記凸部を多数形成した請求項2記載の立体シート材料。  The first fiber assembly including the latent crimped fiber and the second fiber assembly including the same or different type of latent crimped fiber are laminated, and both the fiber assemblies are partially heat-melted. First, the laminated body is heat treated to crimp the latent crimpable fibers contained in the fiber aggregates and heat-shrink the fiber aggregates in the in-plane direction. The first fiber aggregate is obtained by forming the first fiber layer and the second fiber layer from the aggregate and the second fiber aggregate, respectively. The three-dimensional sheet material according to claim 2, wherein the first fiber layer is protruded to form a large number of the protrusions by making the area shrinkage ratio larger than the above. 第1繊維集合体には前記熱処理の温度では実質的に熱収縮しない繊維が含まれており、第2繊維集合体には該繊維が含まれていない請求項3記載の立体シート材料。  The three-dimensional sheet material according to claim 3, wherein the first fiber aggregate includes fibers that are not substantially thermally contracted at the heat treatment temperature, and the second fiber aggregate does not include the fibers. 第1繊維集合体及び第2繊維集合体のそれぞれに、前記熱処理の温度では実質的に熱収縮しない繊維が含まれており、第1繊維集合体における該繊維の含有割合が、第2繊維集合体における該繊維の含有割合よりも高い請求項3記載の立体シート材料。  Each of the first fiber assembly and the second fiber assembly includes a fiber that does not substantially heat shrink at the temperature of the heat treatment, and the content ratio of the fiber in the first fiber assembly is the second fiber assembly. The three-dimensional sheet material according to claim 3, which is higher than a content ratio of the fibers in the body. 第1繊維集合体と第2繊維集合体とを積層するに先立ち、第1繊維集合体に予め熱エンボス加工を施しておく請求項3記載の立体シート材料。  The three-dimensional sheet material according to claim 3, wherein the first fiber aggregate is preliminarily heat embossed prior to laminating the first fiber aggregate and the second fiber aggregate. 第1繊維集合体に含まれる潜在捲縮性繊維の捲縮開始温度が、第2繊維集合体に含まれる潜在捲縮性繊維の捲縮開始温度よりも高い請求項3記載の立体シート材料。  The three-dimensional sheet material according to claim 3, wherein the crimp start temperature of the latent crimpable fiber contained in the first fiber assembly is higher than the crimp start temperature of the latent crimpable fiber contained in the second fiber assembly.
JP2002375378A 2002-12-25 2002-12-25 Three-dimensional sheet material Expired - Lifetime JP3808032B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002375378A JP3808032B2 (en) 2002-12-25 2002-12-25 Three-dimensional sheet material
CNB2003101131702A CN1331661C (en) 2002-12-25 2003-12-25 Three-dimensional sheet materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375378A JP3808032B2 (en) 2002-12-25 2002-12-25 Three-dimensional sheet material

Publications (2)

Publication Number Publication Date
JP2004202890A JP2004202890A (en) 2004-07-22
JP3808032B2 true JP3808032B2 (en) 2006-08-09

Family

ID=32813150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375378A Expired - Lifetime JP3808032B2 (en) 2002-12-25 2002-12-25 Three-dimensional sheet material

Country Status (1)

Country Link
JP (1) JP3808032B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195092B2 (en) 2014-03-06 2019-02-05 The Procter & Gamble Company Multi-component topsheets
US10206826B2 (en) 2014-03-06 2019-02-19 The Procter & Gamble Company Three-dimensional substrates
US10285874B2 (en) 2014-03-06 2019-05-14 The Procter & Gamble Company Multi-component topsheets
US10973702B2 (en) 2015-08-26 2021-04-13 The Procter & Gamble Company Absorbent articles having three dimensional substrates and indicia
US11202723B2 (en) 2016-07-01 2021-12-21 The Procter & Gamble Company Absorbent articles with improved topsheet dryness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842353B2 (en) 2010-04-13 2016-01-13 Jnc株式会社 Bulky nonwoven fabric
JP5961972B2 (en) 2011-10-12 2016-08-03 Jnc株式会社 Elastic bulky nonwoven fabric and method for producing the same
CZ2016612A3 (en) * 2016-09-30 2018-05-16 Pegas Nonwovens S.R.O. A spunbonded non-woven fabric for the acquisition distribution layer and an absorbent product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195092B2 (en) 2014-03-06 2019-02-05 The Procter & Gamble Company Multi-component topsheets
US10206826B2 (en) 2014-03-06 2019-02-19 The Procter & Gamble Company Three-dimensional substrates
US10285874B2 (en) 2014-03-06 2019-05-14 The Procter & Gamble Company Multi-component topsheets
US11033440B2 (en) 2014-03-06 2021-06-15 The Procter & Gamble Company Three-dimensional substrates
US10973702B2 (en) 2015-08-26 2021-04-13 The Procter & Gamble Company Absorbent articles having three dimensional substrates and indicia
US11202723B2 (en) 2016-07-01 2021-12-21 The Procter & Gamble Company Absorbent articles with improved topsheet dryness

Also Published As

Publication number Publication date
JP2004202890A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
KR101083231B1 (en) Topsheet of absorbent article
JP4895710B2 (en) Nonwoven manufacturing method
JP3609361B2 (en) Three-dimensional sheet material
JP3625804B2 (en) Three-dimensional sheet material
TWI555517B (en) Absorbent items
CN106794082B (en) Absorbent article
WO2010074205A1 (en) Surface sheet for absorbent article
JP3877682B2 (en) Top sheet for absorbent articles
JP4889273B2 (en) Surface sheet
JP5449056B2 (en) Absorbent article surface sheet
JP4219223B2 (en) Sheet material
JP3808032B2 (en) Three-dimensional sheet material
JP6338850B2 (en) Absorbent articles
JP2015110846A (en) Non-woven fabric
JP6108599B2 (en) Disposable diapers
JP4212526B2 (en) Three-dimensional sheet material
JP4274809B2 (en) Cleaning sheet
KR102566980B1 (en) Laminated nonwoven fabric for liquid-permeable sheet of absorbent article, and use of the laminated nonwoven fabric as liquid-permeable sheet of absorbent article
JP3883460B2 (en) 3D sheet
RU2735657C1 (en) Absorbent product
JP2008231619A (en) Fiber sheet
JP5225449B2 (en) Nonwoven fabric and method for producing the same
JP4549254B2 (en) Absorbent articles
JP4545182B2 (en) Cleaning sheet
WO2022259551A1 (en) Nonwoven fabric for absorbent articles and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060516

R151 Written notification of patent or utility model registration

Ref document number: 3808032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term