JP3806973B2 - Dark current correction device for photoelectric converter - Google Patents

Dark current correction device for photoelectric converter Download PDF

Info

Publication number
JP3806973B2
JP3806973B2 JP16418496A JP16418496A JP3806973B2 JP 3806973 B2 JP3806973 B2 JP 3806973B2 JP 16418496 A JP16418496 A JP 16418496A JP 16418496 A JP16418496 A JP 16418496A JP 3806973 B2 JP3806973 B2 JP 3806973B2
Authority
JP
Japan
Prior art keywords
dark current
correction
pixel
photoelectric converter
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16418496A
Other languages
Japanese (ja)
Other versions
JPH1013749A (en
Inventor
英彦 青柳
重之 内山
省三 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP16418496A priority Critical patent/JP3806973B2/en
Publication of JPH1013749A publication Critical patent/JPH1013749A/en
Application granted granted Critical
Publication of JP3806973B2 publication Critical patent/JP3806973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光電変換器の出力に含まれる暗電流を補正する装置に関する。
【0002】
【従来の技術】
カメラなどの焦点検出装置にはイメージセンサーが用いられている。このイメージセンサーは、複数の電荷蓄積型光電変換画素が一次元状に配列されたものである。このイメージセンサーの出力は被写体の光輝度分布を反映しており、焦点検出装置はこのイメージセンサーの出力に基づいて撮影レンズの焦点調節状態を検出する。
【0003】
ところで、被写体が低輝度の場合には、所定レベル以上のイメージセンサー出力を得るために蓄積時間を長くするが、これにより暗電流も増えてしまい、S/N比が低下する。暗電流の大きさは光電変換画素ごとにばらつきがあり、ある画素の暗電流がその周辺の画素の暗電流よりも際立って大きい場合には、あたかも被写体に高いコントラストがあるかのように見えてしまう(図4(a)参照)。特に、低輝度時にはすべての光電変換画素の出力レベルが低く、相対的に暗電流成分が大きくなって焦点検出性能に大きな悪影響を与える。また、暗電流の大きさは蓄積時間だけでなく温度にも依存するので、高温下では暗電流が増加してS/N比が低下する。
【0004】
このような問題を解決するために、イメージセンサーの出力に含まれる暗電流を補正する方法が提案されている。例えば特開平3−10473号公報には、開口画素部の他に暗電流モニター用の遮光画素部を設けたイメージセンサーが開示されており、この装置では、予め開口画素と遮光画素の暗時出力を記憶しておき、焦点検出動作時の遮光画素出力と記憶しておいた遮光画素出力との比から暗電流の増減率を求め、記憶しておいた開口画素出力に比を掛けることによって、各画素ごとの暗電流を求めている。ここで、開口画素とは、焦点検出光学系によって被写体からの光束が照射されるイメージセンサー上の画素である。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の光電変換器の暗電流補正装置では、全画素の暗電流を記憶する必要があり、多点測距方式の焦点検出装置のように多くの光電変換器を用いる場合には大容量のメモリが必要となり、また補正時間も長くなるという問題がある。
また、暗電流モニター用の遮光画素出力はイメージセンサーの構成によっては必ずしも温度を反映していない場合もある。例えば周辺回路の熱の影響を受けてイメージセンサーの環境温度が約50℃以下では温度に対して遮光画素出力がほぼ一定になる。このため、温度に依存する暗電流成分を含む開口画素の出力に対して最適な補正ができないという問題もある。
【0006】
本発明の目的は、大容量のメモリを必要とせず、短時間に正確に暗電流を補正する光電変換器の暗電流補正装置を提供することにある。
【0007】
【課題を解決するための手段】
(1) 請求項1の発明は、暗電流測定時において、複数の画素から成る光電変換器の特定の画素の暗電流とそれら特定の画素以外の画素の平均暗電流との差分を遮光画素の出力で除した値を暗電流測定時の暗電流補正値として予め記憶しておき、使用時において、遮光画素の出力と暗電流測定時の暗電流補正値とに基づいて使用時の暗電流補正値を求め、光電変換器の特定の画素の出力電流から上記使用時の暗電流補正値を減算して暗電流を補正するものである。
(2) 請求項2の光電変換器の暗電流補正装置は、暗電流測定時の温度情報を記憶しておき、暗電流測定時の温度情報と使用時の温度情報とに基づいて上記使用時の暗電流補正値の温度補正を行ない、光電変換器の上記特定の画素の出力電流から温度補正後の使用時の暗電流補正値を減算して暗電流を補正するようにしたものである。
(3) 請求項3の光電変換器の暗電流補正装置は、光電変換器の使用頻度の高い領域に含まれる画素に対して優先的に暗電流の補正を行なうようにしたものである。
(4) 請求項4の光電変換器の暗電流補正装置は、光電変換器の複数の画素の内の暗電流が大きいものから順に所定個数だけ抽出し、暗電流補正を行う特定の画素としたものである。
【0008】
【発明の実施の形態】
−発明の第1の実施の形態−
図1は本発明の第1の実施形態の構成を示す。
対物レンズ1を通過した被写体からの光束は、焦点検出光学系2によりイメージセンサー3へ導かれ、結像される。イメージセンサー3は、被写体像の光強度分布に応じて光電変換し、被写体像信号を出力する。この被写体像信号は、A/D変換回路4へ送られてディジタル信号に変換され、暗電流補正回路5へ出力される。補正データ記憶部6には暗電流補正に関するデータが記憶されており、その補正データは暗電流補正回路5へ送られる。温度モニター部10はイメージセンサー3の温度を測定し、温度データを暗電流補正回路5へ出力する。なお、温度モニター10でイメージセンサー3の周囲温度を測定するようにしてもよい。
暗電流補正回路5は、暗電流補正データおよび温度データに基づいてイメージセンサー3の被写体像信号に含まれる暗電流を補正し、演算部7へ送る。演算部7は、暗電流が補正された被写体像信号に基づいて焦点検出演算を行い、対物レンズ1のデフォーカス量を算出する。駆動制御部8は、算出されたデフォーカス量にしたがってモーター9を駆動制御し、対物レンズ1を移動させる。
【0009】
図2は、装置の製造過程における暗電流補正データの測定と記憶処理を示すフローチャートである。また、図3は、この実施形態の暗電流補正装置をカメラに応用した場合の暗電流補正処理を示すフローチャートである。
この実施形態では、100個の光電変換画素(光電変換素子)が一次元状に配列されたイメージセンサーを例に上げて説明する。そして、光電変換画素列の内の暗電流の大きい方からα個の画素を抽出し、暗電流の補正を行う。
【0010】
図4は画素ごとの暗電流を示す。
ここで、(a)に示すように、(i+1)番目の画素の暗電流が、i番目や(i+2)番目などの周辺画素の暗電流に対して大きい場合を考える。暗電流が大きい(i+1)番目の画素に対して、単純にその暗電流分を補正すると、(b)に示すように、(i+1)番目の画素の暗電流だけがほぼ0になり、周辺画素の暗電流との差が大きくなる。この状態は、あたかも(i+1)番目の画素の部分で被写体のコントラストが大きいかのように誤認されてしまい、焦点検出精度を低下させるおそれがある。
そこで、この実施形態では、(c)に示すように、暗電流が大きな(i+1)番目の画素に対して、その暗電流を周辺画素の平均的な暗電流レベル(図中に破線で示す)まで補正する。このようにすれば、暗電流補正後の全画素の暗電流レベルが平均化され、高い焦点検出精度を維持できる。
【0011】
まず、図2により装置の製造過程における暗電流補正データの測定と記憶処理を説明する。
暗電流補正データの測定と記憶処理に先だって、暗黒、常温の環境下にカメラを設置する。ステップ100において、イメージセンサー3の蓄積時間およびゲインなどのパラメータを、暗電流データ測定用の所定値に設定する。この時、画素間の暗電流差がある程度はっきりと現れるようにするために、蓄積時間を長く、ゲインを高くするとよい。ステップ101で、暗電流データ測定用のパラメータによりイメージセンサー3の電荷蓄積動作を行い、イメージセンサー3の出力をA/D変換回路4でA/D変換し、外部コンピュータへ出力する。
【0012】
外部コンピュータにおける補正値算出動作は、まずステップ102で、補正画素番号xを初期化する。次にステップ103で、100個の画素の内、暗電流が最大である画素を検出し、その暗電流値をD(x)に、画素番号をP(x)にそれぞれ記憶する。なお、i番目の画素出力をY(i)、100個の画素出力中の最大値をMax(Y(i))と表記する。また、暗電流が最大であるとして暗電流D(x)と画素番号P(x)が記憶された画素がふたたび検出されないようにするため、出力Y(i)を0に書き換える。ステップ104および105では、補正画素番号xがα個になるまでステップ103の処理を繰り返し、100個の画素の内の暗電流が大きいものから順にα個の画素の暗電流D(x)と画素番号P(x)を記憶する。
【0013】
暗電流が大きいα個の画素の暗電流データを測定したらステップ106へ進み、α個以外の画素の暗電流の平均値Avを演算する。ステップ107でふたたびxを初期化する。続くステップ108で、x番目の暗電流D(x)と平均暗電流Avとの差を取り、その差を遮光画素出力OPBで除して暗電流補正値H(x)を演算する。ステップ109および110では、補正画素番号xがα個になるまでステップ108の処理を繰り返し、100個の画素の内の暗電流が大きいものから順にα個の画素の暗電流補正値H(x)を演算する。ステップ111で、α個の画素の暗電流補正値H(x)、画素番号P(x)および補正データ測定時の温度Tを補正データ記憶部6に記憶する。
【0014】
ここで、ステップ101における電荷蓄積動作はランダムノイズの影響を避けるために複数回行い、その平均データを取得してステップ102以降の処理を行うようにしてもよい。
【0015】
次に、温度補正データを求める。
温度tを変えながら例えば画素番号1の画素の暗電流D(1)を測定すると、図6に示すような暗電流の温度特性が得られる。この温度特性の関数を求めて温度補正データf(t)とする。記憶容量が大きくなったり、演算時間が長くなるのを避けるために、温度補正データf(t)を二次関数や一次関数に近似してもよい。この温度補正データf(t)を補正データ記憶部6に記憶する。
なお、温度補正データf(t)は、1個のイメージセンサーに含まれるα個の画素の暗電流D(1)〜D(α)の温度特性を測定して平均をとったり、数個の画素の暗電流の温度特性を測定して平均をとってもよい。いずれにしても個々のイメージセンサーに対して求める必要はない。
【0016】
図3により、この実施形態の暗電流補正装置をカメラに応用した場合の暗電流補正処理を説明をする。
ステップ200において、イメージセンサー3の電荷蓄積動作を行い、その出力をA/D変換回路4でA/D変換し、暗電流補正回路5へ出力する。暗電流補正回路5では、まずステップ201で補正画素番号xを初期化する。続くステップ202で、補正データ記憶部6から暗電流補正値H(x)、補正画素番号P(x)、補正データ測定時の温度Tおよび温度補正データf(t)を読み出すとともに、温度モニター部10から使用時の温度tを入力し、これらのデータと使用時の遮光画素出力OPBとに基づいて使用環境下における暗電流補正値DK(x)を算出する。ここで、補正データ測定時の温度T℃の時に温度補正係数が1になるためには、温度補正係数はf(t)/f(T)になる。ステップ203で、出力Y(P(x))から暗電流補正値DK(x)を差し引いて補正処理を行ない、暗電流補正画素出力YH(P(x))を求める。ステップ204と205で、画素番号xがα個になるまでステップ202と203の処理を繰り返し行ない、α個の画素の暗電流補正処理を行なう。
【0017】
−発明の第2の実施の形態−
焦点検出に際しては、イメージセンサー上の全光電変換画素の出力を用いず、一部の光電変換画素の出力に基づいて焦点検出を行なう場合がある。対物レンズ、焦点検出光学系およびイメージセンサーの相対的な配置によっては、イメージセンサーの端にある光電変換画素には光束が届かない場合があり、そのような光束の届かない画素に対しては暗電流が大きくても補正の必要はない。
また、1個のイメージセンサーの中で焦点検出を行なう領域を切り換えて使用する場合に、狭い焦点検出領域に含まれる光電変換画素は使用頻度が高い。例えば、図5(a)に示すように撮影画面内に狭い焦点検出領域Nと広い焦点検出領域Wを設定した場合に、狭い焦点検出領域Nは図5(b)に示すイメージセンサー上の狭い領域N’に対応し、広い焦点検出領域Wは図5(b)に示すイメージセンサー上の広い領域W’に対応する。この場合、イメージセンサー上の狭い領域N’に含まれる光電変換画素は、焦点検出領域が狭い場合でも広い場合でも焦点検出に用いられることになる。
このような場合に、使用頻度の高い光電変換画素から優先的に暗電流補正を行うようにした第2の実施形態を説明する。なお、この第2の実施形態の構成は図1に示す第1の実施形態の構成と同様であり、説明を省略する。
【0018】
図7〜図9は、装置の製造過程における暗電流補正データの測定と記憶処理を示すフローチャートである。
概要を説明すると、まずステップ300〜304で、イメージセンサー3上の狭い領域N’において、第1の実施形態と同様に暗電流D(x)と画素番号P(x)を求める。続くステップ305〜307で、イメージセンサー3上の狭い領域N’を除く広い領域W’において、暗電流D(x)と画素番号P(x)を求める。次にステップ308〜311で、狭い領域N’において暗電流D(x)が所定値β以上である画素に対する暗電流補正値H(x)を求める。この時、暗電流補正値D(x)がβ以上である補正対象の画素が所定のα個に満たない場合には、ステップ313〜314でα個に満たない不足分を狭い領域N’を除く広い領域W’の中から求める。
【0019】
図7〜図9を参照しながら詳しく説明する。
ステップ300、301において、図2に示す第1の実施形態と同様に電荷蓄積動作を行い、暗電流データを得る。ステップ302でイメージセンサー3上の狭い領域N’を所定範囲に設定し、続くステップ303で図8に示すサブルーチンAを実行する。
【0020】
図8のサブルーチンAでは、ステップ400〜403において、所定範囲N’に含まれる画素に対して第1の実施形態と同様に出力の大きい順にα個の暗電流D(x)と画素番号PL(x)を求める。ステップ404で所定範囲N’内の残りの画素についての平均暗電流Avを求め、ステップ405〜408でα個の暗電流D(x)と平均暗電流Avとの差分DL(x)を求める。
【0021】
図7のステップ304へ戻り、差分DL(x)と画素番号PL(x)をそれぞれDN(x)とPN(x)に退避する。次に、ステップ305〜307で、(W’−N’)を所定範囲に設定し、同様に差分DL(x)と画素番号PL(x)を得てそれぞれDW(x)とPW(X)に退避させる。ステップ308でα個の補正値H(x)と画素番号P(x)を0にリセットし、続くステップ309で補正対象画素のカウント数jを0にした後、ステップ310で先に退避させたDN(x)とPN(x)の値をふたたびDL(x)とPL(x)に戻す。そして、ステップ311で図9に示すサブルーチンBを実行する。
【0022】
図9のサブルーチンBにおいて、まずステップ500で補正画素番号xを初期化する。ステップ501で、周辺画素に対して突出した差分DL(x)が所定値βより大きい場合は、この画素は補正の対象になるとしてステップ502でjをインクリメントした後、ステップ503で暗電流補正値H(x)と画素番号P(x)を求める。なお、差分DL(x)が所定値β以下の場合はステップ502と503の処理を行わない。α個の差分DL(x)に対してステップ501の判定を行ってから、図7へ戻る。
【0023】
サブルーチンBで補正の対象であると判定された画素がα個に満たない場合は、j<αとなるので図7のステップ313〜314へ進み、今度は(W’−N’)の範囲で補正対象画素の判定を行う。退避させてあるDW(x)とPW(x)の値をそれぞれ差分DL(x)と画素番号PL(x)に戻してから、ふたたびサブルーチンBを実行し、上述した判定を行う。α個の差分DL(x)全てを判定する前に、補正対象の画素がα個に達すればj=αとなり、ステップ505から図7へ戻る。また、α個の差分DL(x)全てを判定すればx=αとなり、補正対象の画素がα個に達しなくてもステップ504から図7へ戻る。こうしてα個またはそれ以下の補正値H(x)と画素番号P(x)をN’の範囲から優先的に得ることができ、ステップ315で補正データ測定時の温度Tとともに補正データ記憶部6に記憶する。
【0024】
このように、イメージセンサー中の画素範囲や焦点検出領域に優先度を設定し、優先度が高く周辺画素よりも暗電流が突出した画素から順に補正することにより、光電変換器の端にある光束が届かない画素に対する不要な暗電流補正が避けられ、限られた記憶容量で適切な補正処理がなされる。
【0025】
なお、上述した実施形態では、補正対象画素がα個に満たない場合でも、差分DL(x)が所定値β以下であるような画素に対しては補正を行わないようにしたが、この方法に限定されるものではない。α個に満たない分は、所定値βを前回よりも小さく設定して再びステップ302へ戻り、補正対象画素がα個に達するまで補正データの測定動作を繰り返してもよい。
また、複数の焦点検出エリアを有する場合、各々のエリアの使用頻度などによって補正対象画素数αをエリアごとに変えるようにしてもよい。
【0026】
【発明の効果】
(1) 請求項1の発明によれば、暗電流測定時において、複数の画素から成る光電変換器の特定の画素の暗電流とそれら特定の画素以外の画素の平均暗電流との差分を遮光画素の出力で除した値を暗電流測定時の暗電流補正値として予め記憶しておき、使用時において、遮光画素の出力と暗電流測定時の暗電流補正値とに基づいて使用時の暗電流補正値を求め、光電変換器の特定の画素の出力電流から上記使用時の暗電流補正値を減算して暗電流を補正するようにしたので、暗電流補正データを記憶するためのメモリの記憶容量を低減でき、補正処理時間を短縮できる。また、暗電流が大きな特定の画素の暗電流を周辺画素の平均的な暗電流レベルまで低減するので、暗電流補正後の全画素の暗電流レベルが平均化され、この暗電流補正装置を焦点検出装置の光電変換器に用いれば焦点検出における精度と信頼性を向上させることができる。さらに、従来のように暗電流モニター用の遮光画素出力により暗電流補正を行なわないので、いかなる温度でも最適な補正を行なうことができる。
(2) 請求項2の発明によれば、暗電流測定時の温度情報を記憶しておき、暗電流測定時の温度情報と使用時の温度情報とに基づいて上記使用時の暗電流補正値の温度補正を行ない、光電変換器の上記特定の画素の出力電流から温度補正後の使用時の暗電流補正値を減算して暗電流を補正するようにしたので、請求項1の効果に加え、温度変化による暗電流の変動を除去することができる。
(3) 請求項3の発明によれば、光電変換器の使用頻度の高い領域に含まれる画素に対して優先的に暗電流の補正を行なうようにしたので、光電変換器の端にある光束が届かない画素に対する不要な暗電流補正が避けられ、適切な補正処理がなされる。
(4) 請求項4の発明によれば、光電変換器の複数の画素の内の暗電流が大きいものから順に所定個数だけ抽出し、暗電流補正を行なう特定の画素としたので、暗電流の補正精度を向上させることができる。
【0027】
【発明の効果】
(1) 請求項1の発明によれば、複数の画素から成る光電変換器の特定の画素の暗電流とそれら特定の画素以外の画素の平均暗電流との差分を記憶しておき、光電変換器の特定の画素の出力電流から上記差分を減算して暗電流を補正するようにしたので、暗電流補正データを記憶するためのメモリの記憶容量を低減でき、補正処理時間を短縮できる。また、暗電流が大きな特定の画素の暗電流を周辺画素の平均的な暗電流レベルまで低減するので、暗電流補正後の全画素の暗電流レベルが平均化され、この暗電流補正装置を焦点検出装置の光電変換器に用いれば焦点検出における精度と信頼性を向上させることができる。さらに、従来のように暗電流モニター用の遮光画素出力により暗電流補正を行なわないので、いかなる温度でも最適な補正を行なうことができる。
(2) 請求項2の発明によれば、複数の画素から成る光電変換器の特定の画素の暗電流とそれら特定の画素以外の画素の平均暗電流との差分と、暗電流測定時の温度情報とを記憶しておき、暗電流測定時の温度情報と暗電流補正時の温度情報とに基づいて上記差分の温度補正を行ない、光電変換器の上記特定の画素の出力電流から温度補正後の差分を減算して暗電流を補正するようにしたので、請求項1の効果に加え、温度変化による暗電流の変動を除去することができる。
(3) 請求項3の発明によれば、光電変換器の使用頻度の高い領域に含まれる画素に対して優先的に暗電流の補正を行なうようにしたので、光電変換器の端にある光束が届かない画素に対する不要な暗電流補正が避けられ、適切な補正処理がなされる。
(4) 請求項4の発明によれば、光電変換器の複数の画素の内の暗電流が大きいものから順に所定個数だけ抽出し、暗電流補正を行なう特定の画素としたので、暗電流の補正精度を向上させることができる。
【図面の簡単な説明】
【図1】 第1の実施形態の構成を示す図。
【図2】 第1の実施形態の補正データの測定と記憶処理を示すフローチャート。
【図3】 カメラに応用した光電変換器の暗電流補正装置の暗電流補正処理を示すフローチャート。
【図4】 補正前後の暗電流を示す図。
【図5】 狭い焦点検出領域と広い焦点検出領域を示す図。
【図6】 温度による暗電流変化を示す図。
【図7】 第2の実施例の補正データの測定と記憶処理を示すフローチャート。
【図8】 図7に続く、第2の実施例の補正データの測定と記憶処理を示すフローチャート。
【図9】 図8に続く、第2の実施例の補正データの測定と記憶処理を示すフローチャート。
【符号の説明】
1 対物レンズ
2 焦点検出光学系
3 イメージセンサー
4 A/D変換回路
5 暗電流補正回路
6 補正データ記憶部
7 演算部
8 駆動制御部
9 モーター
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for correcting dark current included in an output of a photoelectric converter.
[0002]
[Prior art]
An image sensor is used for a focus detection device such as a camera. This image sensor has a plurality of charge storage photoelectric conversion pixels arranged one-dimensionally. The output of the image sensor reflects the light luminance distribution of the subject, and the focus detection device detects the focus adjustment state of the photographing lens based on the output of the image sensor.
[0003]
By the way, when the subject has low luminance, the accumulation time is lengthened in order to obtain an image sensor output of a predetermined level or more, but this also increases the dark current and lowers the S / N ratio. The magnitude of the dark current varies from one photoelectric conversion pixel to another, and if the dark current of a certain pixel is significantly larger than the dark current of the surrounding pixels, it looks as if the subject has high contrast. (See FIG. 4A). In particular, when the luminance is low, the output level of all the photoelectric conversion pixels is low, the dark current component is relatively large, and the focus detection performance is greatly adversely affected. Further, since the magnitude of the dark current depends not only on the accumulation time but also on the temperature, the dark current increases and the S / N ratio decreases at high temperatures.
[0004]
In order to solve such a problem, a method of correcting a dark current included in the output of an image sensor has been proposed. For example, Japanese Patent Laid-Open No. 3-10473 discloses an image sensor provided with a light-shielding pixel portion for monitoring a dark current in addition to an aperture pixel portion. By calculating the dark current increase / decrease rate from the ratio of the shaded pixel output during the focus detection operation and the stored shaded pixel output, and multiplying the stored aperture pixel output by the ratio, The dark current for each pixel is obtained. Here, the aperture pixel is a pixel on the image sensor to which a light beam from a subject is irradiated by the focus detection optical system.
[0005]
[Problems to be solved by the invention]
However, the conventional dark current correction device for a photoelectric converter needs to store dark current of all pixels, and has a large capacity when many photoelectric converters are used like a multipoint ranging type focus detection device. Memory is required, and the correction time becomes long.
Further, the dark pixel output for dark current monitoring may not necessarily reflect the temperature depending on the configuration of the image sensor. For example, when the environmental temperature of the image sensor is about 50 ° C. or less due to the influence of the heat of the peripheral circuit, the light-shielded pixel output becomes substantially constant with respect to the temperature. For this reason, there is also a problem that optimum correction cannot be performed for the output of the aperture pixel including the dark current component depending on the temperature.
[0006]
An object of the present invention is to provide a dark current correction device for a photoelectric converter that does not require a large-capacity memory and corrects the dark current accurately in a short time.
[0007]
[Means for Solving the Problems]
(1) According to the first aspect of the present invention, at the time of dark current measurement , the difference between the dark current of a specific pixel of a photoelectric converter composed of a plurality of pixels and the average dark current of pixels other than the specific pixel is determined by the shading pixel. The value divided by the output is stored in advance as a dark current correction value during dark current measurement, and during use, the dark current correction during use is based on the output of the light-shielded pixels and the dark current correction value during dark current measurement. The value is obtained, and the dark current correction value is subtracted from the output current of a specific pixel of the photoelectric converter to correct the dark current.
(2) dark current correction apparatus of the photoelectric converter according to claim 2, stores the temperature information at the time of the dark current sensing, the use time based on the temperature information at the time of use and the temperature information at the time of the dark current measurement The dark current correction value is corrected for temperature , and the dark current correction value after use for temperature correction is subtracted from the output current of the specific pixel of the photoelectric converter to correct the dark current.
(3) The dark current correction device for a photoelectric converter according to claim 3 preferentially corrects the dark current for pixels included in a region where the photoelectric converter is frequently used.
(4) The dark current correction device for a photoelectric converter according to claim 4 is a specific pixel that performs dark current correction by extracting a predetermined number in order from the largest dark current among the plurality of pixels of the photoelectric converter. Is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
-First embodiment of the invention-
FIG. 1 shows the configuration of the first embodiment of the present invention.
The light beam from the subject that has passed through the objective lens 1 is guided to the image sensor 3 by the focus detection optical system 2 and imaged. The image sensor 3 performs photoelectric conversion according to the light intensity distribution of the subject image and outputs a subject image signal. This subject image signal is sent to the A / D conversion circuit 4, converted into a digital signal, and output to the dark current correction circuit 5. Data relating to dark current correction is stored in the correction data storage unit 6, and the correction data is sent to the dark current correction circuit 5. The temperature monitor unit 10 measures the temperature of the image sensor 3 and outputs temperature data to the dark current correction circuit 5. Note that the ambient temperature of the image sensor 3 may be measured by the temperature monitor 10.
The dark current correction circuit 5 corrects the dark current included in the subject image signal of the image sensor 3 based on the dark current correction data and the temperature data, and sends it to the calculation unit 7. The calculation unit 7 performs focus detection calculation based on the subject image signal with the dark current corrected, and calculates the defocus amount of the objective lens 1. The drive control unit 8 drives and controls the motor 9 according to the calculated defocus amount, and moves the objective lens 1.
[0009]
FIG. 2 is a flowchart showing dark current correction data measurement and storage processing in the manufacturing process of the apparatus. FIG. 3 is a flowchart showing dark current correction processing when the dark current correction apparatus of this embodiment is applied to a camera.
In this embodiment, an image sensor in which 100 photoelectric conversion pixels (photoelectric conversion elements) are arranged one-dimensionally will be described as an example. Then, α pixels are extracted from the photoelectric conversion pixel array having the larger dark current, and the dark current is corrected.
[0010]
FIG. 4 shows the dark current for each pixel.
Here, as shown in (a), a case is considered where the dark current of the (i + 1) th pixel is larger than the dark current of peripheral pixels such as the i-th and (i + 2) -th pixels. If the dark current is simply corrected for the (i + 1) -th pixel having a large dark current, only the dark current of the (i + 1) -th pixel becomes almost zero as shown in FIG. The difference from the dark current increases. This state may be mistaken as if the contrast of the subject is large at the (i + 1) th pixel portion, which may reduce the focus detection accuracy.
Therefore, in this embodiment, as shown in (c), for the (i + 1) th pixel having a large dark current, the dark current is an average dark current level of peripheral pixels (indicated by a broken line in the figure). Correct until. In this way, the dark current levels of all pixels after dark current correction are averaged, and high focus detection accuracy can be maintained.
[0011]
First, the measurement and storage processing of dark current correction data in the manufacturing process of the apparatus will be described with reference to FIG.
Prior to measuring and storing dark current correction data, the camera is installed in a dark, room temperature environment. In step 100, parameters such as the accumulation time and gain of the image sensor 3 are set to predetermined values for measuring dark current data. At this time, in order to make the dark current difference between the pixels clearly appear to some extent, it is preferable to lengthen the accumulation time and increase the gain. In step 101, the charge accumulation operation of the image sensor 3 is performed according to the dark current data measurement parameters, the output of the image sensor 3 is A / D converted by the A / D conversion circuit 4, and output to an external computer.
[0012]
In the correction value calculation operation in the external computer, first, in step 102, the correction pixel number x is initialized. Next, in step 103, a pixel having the maximum dark current among the 100 pixels is detected, and the dark current value is stored in D (x) and the pixel number is stored in P (x). The i-th pixel output is expressed as Y (i), and the maximum value among 100 pixel outputs is expressed as Max (Y (i)). Further, the output Y (i) is rewritten to 0 so that the pixel in which the dark current D (x) and the pixel number P (x) are stored is not detected again assuming that the dark current is the maximum. In steps 104 and 105, the process of step 103 is repeated until the corrected pixel number x reaches α, and the dark current D (x) of the α pixels and the pixels in order from the largest dark current among the 100 pixels. The number P (x) is stored.
[0013]
When the dark current data of α pixels having a large dark current is measured, the process proceeds to step 106, and an average value Av of dark currents of pixels other than α is calculated. In step 107, x is initialized again. In the next step 108, the difference between the x-th dark current D (x) and the average dark current Av is taken, and the difference is divided by the light-shielded pixel output OPB to calculate the dark current correction value H (x). In steps 109 and 110, the process of step 108 is repeated until the number of corrected pixel numbers x becomes α, and the dark current correction values H (x) of α pixels in order from the largest dark current among the 100 pixels. Is calculated. In step 111, the dark current correction value H (x) of the α pixels, the pixel number P (x), and the temperature T at the time of correction data measurement are stored in the correction data storage unit 6.
[0014]
Here, the charge accumulation operation in step 101 may be performed a plurality of times in order to avoid the influence of random noise, and the average data may be acquired to perform the processing after step 102.
[0015]
Next, temperature correction data is obtained.
For example, when the dark current D (1) of the pixel of pixel number 1 is measured while changing the temperature t, the dark current temperature characteristic as shown in FIG. 6 is obtained. A function of this temperature characteristic is obtained and used as temperature correction data f (t). In order to avoid an increase in storage capacity and an increase in calculation time, the temperature correction data f (t) may be approximated to a quadratic function or a linear function. The temperature correction data f (t) is stored in the correction data storage unit 6.
Note that the temperature correction data f (t) is obtained by measuring the temperature characteristics of the dark currents D (1) to D (α) of α pixels included in one image sensor and taking an average, or several pixels. The temperature characteristics of the dark current may be measured and averaged. In any case, it is not necessary to obtain for each image sensor.
[0016]
The dark current correction process when the dark current correction apparatus of this embodiment is applied to a camera will be described with reference to FIG.
In step 200, the charge accumulation operation of the image sensor 3 is performed, and the output is A / D converted by the A / D conversion circuit 4 and output to the dark current correction circuit 5. The dark current correction circuit 5 first initializes the correction pixel number x in step 201. In subsequent step 202, the dark current correction value H (x), the correction pixel number P (x), the temperature T at the time of correction data measurement, and the temperature correction data f (t) are read from the correction data storage unit 6 and the temperature monitor unit. The temperature t during use is input from 10 and the dark current correction value DK (x) under the use environment is calculated based on these data and the light-shielded pixel output OPB during use. Here, in order for the temperature correction coefficient to be 1 at the temperature T ° C. when the correction data is measured, the temperature correction coefficient is f (t) / f (T). In step 203, the dark current correction value DK (x) is subtracted from the output Y (P (x)) to perform correction processing to obtain the dark current correction pixel output YH (P (x)). In steps 204 and 205, the processing in steps 202 and 203 is repeated until the pixel number x reaches α, and dark current correction processing for α pixels is performed.
[0017]
-Second embodiment of the invention-
In focus detection, focus detection may be performed based on the output of some photoelectric conversion pixels without using the output of all photoelectric conversion pixels on the image sensor. Depending on the relative arrangement of the objective lens, focus detection optical system, and image sensor, the light beam may not reach the photoelectric conversion pixels at the edge of the image sensor. No correction is necessary even if the current is large.
In addition, when a focus detection region is switched and used in one image sensor, photoelectric conversion pixels included in a narrow focus detection region are frequently used. For example, when a narrow focus detection area N and a wide focus detection area W are set in the shooting screen as shown in FIG. 5A, the narrow focus detection area N is narrow on the image sensor shown in FIG. A wide focus detection area W corresponding to the area N ′ corresponds to a wide area W ′ on the image sensor shown in FIG. In this case, the photoelectric conversion pixels included in the narrow area N ′ on the image sensor are used for focus detection regardless of whether the focus detection area is narrow or wide.
In such a case, a second embodiment will be described in which dark current correction is performed preferentially from photoelectric conversion pixels that are frequently used. The configuration of the second embodiment is the same as that of the first embodiment shown in FIG.
[0018]
7 to 9 are flowcharts showing dark current correction data measurement and storage processing in the manufacturing process of the apparatus.
The outline will be described. First, in steps 300 to 304, a dark current D (x) and a pixel number P (x) are obtained in a narrow region N ′ on the image sensor 3 as in the first embodiment. In subsequent steps 305 to 307, the dark current D (x) and the pixel number P (x) are obtained in the wide area W ′ excluding the narrow area N ′ on the image sensor 3. Next, in steps 308 to 311, a dark current correction value H (x) is obtained for a pixel in which the dark current D (x) is equal to or greater than a predetermined value β in the narrow region N ′. At this time, when the number of pixels to be corrected whose dark current correction value D (x) is equal to or larger than β is less than a predetermined α, in Steps 313 to 314, the shortage that is less than α is reduced to a narrow region N ′. It is determined from the wide area W ′ that is excluded.
[0019]
This will be described in detail with reference to FIGS.
In steps 300 and 301, the charge accumulation operation is performed in the same manner as in the first embodiment shown in FIG. 2 to obtain dark current data. In step 302, the narrow area N ′ on the image sensor 3 is set to a predetermined range, and in step 303, the subroutine A shown in FIG. 8 is executed.
[0020]
In the subroutine A of FIG. 8, in steps 400 to 403, α dark currents D (x) and pixel numbers PL (in order of the output in the descending order as in the first embodiment for the pixels included in the predetermined range N ′. x). In step 404, the average dark current Av for the remaining pixels in the predetermined range N ′ is obtained, and in steps 405 to 408, the difference DL (x) between the α dark currents D (x) and the average dark current Av is obtained.
[0021]
Returning to step 304 in FIG. 7, the difference DL (x) and the pixel number PL (x) are saved to DN (x) and PN (x), respectively. Next, in steps 305 to 307, (W′−N ′) is set to a predetermined range, and similarly, a difference DL (x) and a pixel number PL (x) are obtained, and DW (x) and PW (X), respectively. Evacuate. In step 308, α correction values H (x) and pixel number P (x) are reset to 0, and in step 309, the count number j of the correction target pixel is set to 0, and then saved in step 310 first. The values of DN (x) and PN (x) are returned to DL (x) and PL (x) again. In step 311, subroutine B shown in FIG. 9 is executed.
[0022]
In subroutine B of FIG. 9, first, at step 500, the correction pixel number x is initialized. If the difference DL (x) protruding with respect to the peripheral pixel is larger than the predetermined value β in step 501, j is incremented in step 502 and the dark current correction value is determined in step 503. H (x) and pixel number P (x) are obtained. Note that if the difference DL (x) is equal to or smaller than the predetermined value β, the processing in steps 502 and 503 is not performed. After the determination in step 501 is performed on α differences DL (x), the process returns to FIG.
[0023]
If the number of pixels determined to be corrected in subroutine B is less than α, j <α, so the process proceeds to steps 313 to 314 in FIG. 7, and this time in the range of (W′−N ′). The correction target pixel is determined. After returning the saved values of DW (x) and PW (x) to the difference DL (x) and the pixel number PL (x), respectively, the subroutine B is executed again and the above-described determination is performed. Before determining all the α differences DL (x), if the number of correction target pixels reaches α, j = α, and the process returns from step 505 to FIG. If all the α differences DL (x) are determined, x = α, and the process returns from step 504 to FIG. 7 even if the correction target pixel does not reach α. In this way, α or less correction values H (x) and pixel numbers P (x) can be obtained preferentially from the range of N ′, and in step 315, the correction data storage unit 6 together with the temperature T at the time of correction data measurement. To remember.
[0024]
In this way, by setting priority to the pixel range and focus detection area in the image sensor, and correcting in order from the pixel with higher priority and the dark current protruding from the surrounding pixels, the light flux at the end of the photoelectric converter Unnecessary dark current correction for pixels that do not reach is avoided, and appropriate correction processing is performed with a limited storage capacity.
[0025]
In the above-described embodiment, correction is not performed for pixels whose difference DL (x) is equal to or less than the predetermined value β even when the number of correction target pixels is less than α. It is not limited to. If less than α, the predetermined value β may be set smaller than the previous time, and the process may return to step 302 again, and the correction data measurement operation may be repeated until the number of correction target pixels reaches α.
When a plurality of focus detection areas are provided, the correction target pixel number α may be changed for each area depending on the frequency of use of each area.
[0026]
【The invention's effect】
(1) According to the first aspect of the invention, during dark current measurement, the difference between the dark current of a specific pixel of a photoelectric converter composed of a plurality of pixels and the average dark current of pixels other than the specific pixel is shielded. The value divided by the pixel output is stored in advance as a dark current correction value at the time of dark current measurement, and at the time of use, based on the output of the light-shielded pixel and the dark current correction value at the time of dark current measurement, Since the current correction value is obtained and the dark current correction value is subtracted from the output current of a specific pixel of the photoelectric converter to correct the dark current, the memory for storing the dark current correction data is stored. The storage capacity can be reduced and the correction processing time can be shortened. In addition, since the dark current of a specific pixel having a large dark current is reduced to the average dark current level of surrounding pixels, the dark current level of all pixels after dark current correction is averaged, and this dark current correction device is focused. If used in the photoelectric converter of the detection device, the accuracy and reliability in focus detection can be improved. Further, since the dark current correction is not performed by the dark pixel output for monitoring the dark current as in the prior art, the optimum correction can be performed at any temperature.
(2) According to the invention of claim 2, temperature information at the time of dark current measurement is stored, and the dark current correction value at the time of use is based on the temperature information at the time of dark current measurement and the temperature information at the time of use. In addition to the effect of claim 1, the dark current is corrected by subtracting the dark current correction value at the time of use after temperature correction from the output current of the specific pixel of the photoelectric converter. The fluctuation of the dark current due to the temperature change can be removed.
(3) According to the invention of claim 3, since the dark current correction is preferentially performed on the pixels included in the region where the photoelectric converter is frequently used, the light flux at the end of the photoelectric converter. Unnecessary dark current correction for pixels that do not reach is avoided, and appropriate correction processing is performed.
(4) According to the invention of claim 4, since a predetermined number is extracted in order from the largest dark current among the plurality of pixels of the photoelectric converter and dark current correction is performed, the dark current correction is performed. Correction accuracy can be improved.
[0027]
【The invention's effect】
(1) According to the invention of claim 1, the difference between the dark current of a specific pixel of a photoelectric converter composed of a plurality of pixels and the average dark current of pixels other than the specific pixel is stored, and photoelectric conversion is performed. Since the dark current is corrected by subtracting the difference from the output current of a specific pixel of the device, the storage capacity of the memory for storing the dark current correction data can be reduced, and the correction processing time can be shortened. In addition, since the dark current of a specific pixel having a large dark current is reduced to the average dark current level of surrounding pixels, the dark current level of all pixels after dark current correction is averaged, and this dark current correction device is focused. If used in the photoelectric converter of the detection device, the accuracy and reliability in focus detection can be improved. Further, since the dark current correction is not performed by the dark pixel output for monitoring the dark current as in the prior art, the optimum correction can be performed at any temperature.
(2) According to the invention of claim 2, the difference between the dark current of a specific pixel of the photoelectric converter composed of a plurality of pixels and the average dark current of pixels other than the specific pixel, and the temperature at the time of dark current measurement Information is stored, the temperature of the difference is corrected based on the temperature information at the time of dark current measurement and the temperature information at the time of dark current correction, and after temperature correction from the output current of the specific pixel of the photoelectric converter Since the dark current is corrected by subtracting the difference between the two, in addition to the effect of the first aspect, the fluctuation of the dark current due to the temperature change can be eliminated.
(3) According to the invention of claim 3, since dark current correction is preferentially performed on pixels included in a region where the photoelectric converter is frequently used, the light flux at the end of the photoelectric converter. Unnecessary dark current correction for pixels that do not reach is avoided, and appropriate correction processing is performed.
(4) According to the invention of claim 4, since a predetermined number is extracted in order from the largest dark current among the plurality of pixels of the photoelectric converter and the dark current correction is performed, the dark current correction is performed. Correction accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first embodiment.
FIG. 2 is a flowchart showing correction data measurement and storage processing according to the first embodiment;
FIG. 3 is a flowchart showing dark current correction processing of a dark current correction device for a photoelectric converter applied to a camera.
FIG. 4 is a diagram showing dark current before and after correction.
FIG. 5 is a diagram showing a narrow focus detection area and a wide focus detection area.
FIG. 6 is a diagram showing changes in dark current due to temperature.
FIG. 7 is a flowchart showing correction data measurement and storage processing according to the second embodiment;
FIG. 8 is a flowchart illustrating correction data measurement and storage processing according to the second embodiment, following FIG. 7;
FIG. 9 is a flowchart showing correction data measurement and storage processing of the second embodiment, following FIG. 8;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Objective lens 2 Focus detection optical system 3 Image sensor 4 A / D conversion circuit 5 Dark current correction circuit 6 Correction data storage part 7 Calculation part 8 Drive control part 9 Motor

Claims (4)

暗電流測定時において、複数の画素から成る光電変換器の特定の画素の暗電流と前記特定の画素以外の画素の平均暗電流との差分を遮光画素の出力で除した値を暗電流測定時の暗電流補正値として予め記憶する記憶手段と、
使用時において、前記遮光画素の出力と前記暗電流測定時の暗電流補正値とに基づいて使用時の暗電流補正値を求め、前記光電変換器の前記特定の画素の出力電流から前記使用時の暗電流補正値を減算して暗電流を補正する補正手段とを備えることを特徴とする光電変換器の暗電流補正装置。
During dark current measurement, a value obtained by dividing the difference between the dark current of a specific pixel of a photoelectric converter composed of a plurality of pixels and the average dark current of pixels other than the specific pixel by the output of the light-shielded pixel is measured. Storage means for storing in advance as a dark current correction value of
In use, the calculated dark current correction value at the time of use on the basis of the output of light-shielded pixel and the dark current correction value when the dark current measurement, when the use of the output current of the particular pixel of said photoelectric converter And a correction means for correcting the dark current by subtracting the dark current correction value .
請求項1に記載の光電変換器の暗電流補正装置において、
前記記憶手段は暗電流測定時の温度情報を記憶し、
前記補正手段は、前記記憶手段に記憶されている暗電流測定時の温度情報と、使用時の温度情報とに基づいて前記使用時の暗電流補正値の温度補正を行ない、前記光電変換器の前記特定の画素の出力電流から前記温度補正後の使用時の暗電流補正値を減算して暗電流を補正することを特徴とする光電変換器の暗電流補正装置。
In the dark current correction device for a photoelectric converter according to claim 1,
The storage means stores temperature information at the time of dark current measurement,
The correction means performs temperature correction of the dark current correction value at the time of use based on temperature information at the time of dark current measurement stored in the storage means and temperature information at the time of use, and the photoelectric converter A dark current correction device for a photoelectric converter, wherein a dark current is corrected by subtracting a dark current correction value in use after temperature correction from an output current of the specific pixel.
請求項1または請求項2に記載の光電変換器の暗電流補正装置において、
前記補正手段は、前記光電変換器の使用頻度の高い領域に含まれる画素に対して優先的に暗電流の補正を行なうことを特徴とする光電変換器の暗電流補正装置。
In the dark current correction device for a photoelectric converter according to claim 1 or 2,
The dark current correction device for a photoelectric converter, wherein the correction means preferentially corrects dark current for pixels included in a region where the photoelectric converter is frequently used.
請求項1〜3のいずれかの項に記載の光電変換器の暗電流補正装置において、
前記特定の画素は、前記光電変換器の複数の画素の内の暗電流が大きいものから順に所定個数だけ抽出した画素であることを特徴とする光電変換器の暗電流補正装置。
In the dark current correction device for a photoelectric converter according to any one of claims 1 to 3,
The specific current pixel is a dark current correction device for a photoelectric converter, wherein a predetermined number of pixels are extracted in descending order of the dark current among the plurality of pixels of the photoelectric converter.
JP16418496A 1996-06-25 1996-06-25 Dark current correction device for photoelectric converter Expired - Lifetime JP3806973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16418496A JP3806973B2 (en) 1996-06-25 1996-06-25 Dark current correction device for photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16418496A JP3806973B2 (en) 1996-06-25 1996-06-25 Dark current correction device for photoelectric converter

Publications (2)

Publication Number Publication Date
JPH1013749A JPH1013749A (en) 1998-01-16
JP3806973B2 true JP3806973B2 (en) 2006-08-09

Family

ID=15788304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16418496A Expired - Lifetime JP3806973B2 (en) 1996-06-25 1996-06-25 Dark current correction device for photoelectric converter

Country Status (1)

Country Link
JP (1) JP3806973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125609A1 (en) * 2009-04-30 2010-11-04 株式会社島津製作所 Light or radiation imaging device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803082B1 (en) * 1999-12-28 2002-03-22 Trixell Sas METHOD FOR TEMPERATURE COMPENSATION OF THE SENSITIVITY OF AN IMAGE DETECTOR
JP2003015022A (en) * 2001-06-29 2003-01-15 Canon Inc Range-finding device, range-finding method and control program
US7372484B2 (en) * 2003-06-26 2008-05-13 Micron Technology, Inc. Method and apparatus for reducing effects of dark current and defective pixels in an imaging device
JP4534715B2 (en) * 2004-10-22 2010-09-01 株式会社ニコン Imaging apparatus and image processing program
JP4789245B2 (en) * 2006-01-13 2011-10-12 株式会社日立メディコ X-ray diagnostic imaging equipment
WO2010109539A1 (en) * 2009-03-27 2010-09-30 株式会社島津製作所 Image pickup apparatus
JP5413280B2 (en) * 2010-04-05 2014-02-12 株式会社島津製作所 Imaging device
WO2015072006A1 (en) * 2013-11-15 2015-05-21 富士通株式会社 Infrared ray detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125609A1 (en) * 2009-04-30 2010-11-04 株式会社島津製作所 Light or radiation imaging device

Also Published As

Publication number Publication date
JPH1013749A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
US7474352B2 (en) Focus detection based on an opening pupil ratio
US7796176B2 (en) Phase adjusting device, phase adjusting method, and digital camera
US7995133B2 (en) Method, apparatus for correcting image signal from image sensor, and imaging system with apparatus
US9838625B2 (en) Image processing apparatus and control method for image processing apparatus for controlling correction of a black level in a combined image signal
US7907194B2 (en) Imaging apparatus and gain adjusting method for the same
US11363219B2 (en) Information processing apparatus, image sensor, image capturing apparatus, and information processing method
CN104333680A (en) Image capturing apparatus and image processing method
US6973262B2 (en) Camera and wide-angle field distance-measuring camera
JP3806973B2 (en) Dark current correction device for photoelectric converter
US11159740B2 (en) Image capturing device and control method thereof and medium
US9961255B2 (en) Image capturing apparatus, control method thereof, and storage medium
KR20060063724A (en) Imaging apparatus, imaging method and imaging processing program
JP6334976B2 (en) Digital camera with focus detection pixels used for photometry
JP5701942B2 (en) Imaging apparatus, camera system, and image processing method
US8436923B2 (en) Imaging apparatus having a function for estimating a dark current amount
US7801429B2 (en) Image taking apparatus
JP2021063976A (en) Focus detector and method for controlling the same, program, and storage medium
CN101616254B (en) Image processing apparatus and image processing method
JP6118133B2 (en) Signal processing apparatus and imaging apparatus
JP4662343B2 (en) Imaging apparatus and correction method
US11917300B2 (en) Image pickup apparatus and image pickup element, which are capable of performing appropriate correction processing that suppresses influence of high luminance light, control method for image pickup apparatus, and storage medium
JP3955144B2 (en) Ranging device
JP4321317B2 (en) Electronic camera, camera system, and black spot correction method for electronic camera
JP2008028634A (en) Imaging apparatus
JP6590585B2 (en) Imaging apparatus and exposure control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term