JP3806832B2 - Subsurface landfill method and subsurface landfill - Google Patents

Subsurface landfill method and subsurface landfill Download PDF

Info

Publication number
JP3806832B2
JP3806832B2 JP2000034598A JP2000034598A JP3806832B2 JP 3806832 B2 JP3806832 B2 JP 3806832B2 JP 2000034598 A JP2000034598 A JP 2000034598A JP 2000034598 A JP2000034598 A JP 2000034598A JP 3806832 B2 JP3806832 B2 JP 3806832B2
Authority
JP
Japan
Prior art keywords
subsurface
landfill
cake
dredged soil
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000034598A
Other languages
Japanese (ja)
Other versions
JP2001226940A5 (en
JP2001226940A (en
Inventor
省吾 角田
Original Assignee
社団法人底質浄化協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 社団法人底質浄化協会 filed Critical 社団法人底質浄化協会
Priority to JP2000034598A priority Critical patent/JP3806832B2/en
Publication of JP2001226940A publication Critical patent/JP2001226940A/en
Publication of JP2001226940A5 publication Critical patent/JP2001226940A5/ja
Application granted granted Critical
Publication of JP3806832B2 publication Critical patent/JP3806832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、湖沼、海域等の一部を仕切り、造成した埋立地に浚渫土を投入して埋め立てる水面下埋立工法および埋立用の土に関するものである。
【0002】
【従来の技術】
従来、湖沼や海域等の一部を仕切って埋立地を造成する場合、ポンプ浚渫船やグラブ浚渫船等を使用して水底に自然に堆積している土砂(通常は底質または地山と称している)を汲み上げ、埋立地に投入して埋め立てる工法が採用されている。
【0003】
【発明が解決しようとする課題】
しかし、沿岸水域の自然環境保護、また、魚類や鳥類等の生育環境保護のために湖沼や海域を仕切って埋立地を造成することが困難な状況にあり、広大な埋立用地を確保することができないものであった。
【0004】
例えば、ポンプ浚渫による場合、水底土砂Vm3 に対して5〜10Vm3 の水を同時に吸い込み、揚水するので、水底土砂の5〜10倍の浚渫土(水底土砂と水との混合物)が埋立地に投入され、ほぼ同じ量の余水が発生する。水底土砂は埋立地で沈降、堆積するが、水底土砂と同じ含水比まで圧密するためには長期間を要していた。実際には水底土砂の投入によって埋立地容積は1.2〜1.3倍程度に膨らむので、埋立地容積をVとするとV/0.7〜0.8程度の水底土砂しか埋立できないものであった。
即ち、従来の水面下埋立工法では浚渫土を有効に利用することができない、という問題点を有していた。
【0005】
陸上の埋立工法には土をダイヤフラム式フィルタープレスやベルトプレス式フィルタープレス等の加圧脱水機を使用し、高圧密で強度の高い土質を突き固め、高圧密で容積を小さくした土を埋立用として使用している。即ち、土の自重は、約1.8ton/m3 (1.8ton/10000cm2 =0.18Kg/cm2 )0.018Mpaの圧力であるから圧力の高い脱水機を使用することで前記の土が得られる。
【0006】
本発明者は、この高圧密の土を水面下埋立に使用できないかどうかの実験をしたが、高圧脱水したケーキは、高密度の高強度土質になるが、これを水中に投入するとケーキ間に空隙が生じ、水中では突き固め等の圧密操作ができないので、この空隙が減容化の障害になることを見いだした。
【0007】
表1は、二種類の土質A、Bの性状を示し、表2はそれぞれの土質A、Bの脱水後のケーキのフィルタープレスの処理能力と減容化率を求めたものである。
【表1】

Figure 0003806832
【表2】
Figure 0003806832
【0008】
以上の結果、砂や砂利等の空隙率は30〜35%であるので、脱水ケーキを10mm程度に破砕したケーキの空隙率を30%とすると、脱水ケーキの減容化率が30%以上でないと埋立地の減容化にならないことが判明した。
【0009】
本発明は、上記する従来の埋立工法に鑑み、浚渫土を高圧で脱水させあるいは高圧で脱水したケーキを乾燥させることにより浚渫土を減容化させ、埋立土量の増大を図る水面下埋立工法を提供することを目的とするものである。
また、本発明は、水面下埋立工法に最適な土を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
上記する目的を達成するために本発明は、湖沼、海域等の水面下埋立において、浚渫土を高圧脱水して形成した脱水ケーキと含泥率が高濃度の浚渫土とを混合し、この混合物を水面下埋立地に投入する水面下埋立工法である。
また、本発明は、湖沼、海域等の水面下埋立において、浚渫土を高圧脱水して形成した脱水ケーキを乾燥させて得られた乾燥ケーキと含泥率が高濃度の浚渫土とを混合し、この混合物を水面下埋立地に投入する水面下埋立工法である。
本発明における水面下埋立用土は、浚渫土を高圧脱水して形成した脱水ケーキと含泥率が高濃度の浚渫土との混合物からなり、また、浚渫土を高圧脱水して形成した脱水ケーキを乾燥させて得られた乾燥ケーキと含泥率が高濃度の浚渫土との混合物からなるものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
本発明における第一の実施形態としては、ポンプ浚渫船あるいはグラブ浚渫船によって浚渫した浚渫土(水底土砂と水との混合物)を高圧脱水することにより浚渫土中の水分を排除し、排除した水分量だけ容積を減少させた脱水ケーキを形成する。このようにして得られた脱水ケーキと、脱水ケーキ容量の空隙相当分の浚渫土とを混合することにより、脱水ケーキの空隙部分を浚渫土で埋め、埋立土量を増加させた混合物を水面埋立地に投入する。
【0012】
尚、脱水ケーキの含水比を低下させる必要があるので、浚渫土を脱水する高圧脱水装置としては、従来公知のダイヤフラム式フィルタープレスやベルトプレス式フィルタープレス等の加圧脱水機を使用することができるが、脱水ケーキ容積の減容化率が30%以上と大きいので、脱水圧力は0.7Mpa以上望ましくは1.5Mpa以上の高圧タイプ(高圧薄層、高圧フィルタープレス等)のフィルタープレスが望ましい。
【0013】
本発明における第二の実施形態としては、ポンプ浚渫船あるいはグラブ浚渫船によって浚渫した浚渫土(水底土砂と水との混合物)を高圧脱水することにより浚渫土中の水分を排除し、排除した水分量だけ容積を減少させた脱水ケーキを乾燥させ、乾燥ケーキを形成する。脱水ケーキを乾燥すると、乾燥ケーキは、粒子同士が接触するまで乾燥収縮する。このようにして得られた乾燥ケーキと浚渫土とを混合させ、埋立土量を増加させた混合物を水面埋立地に投入する。
【0014】
乾燥ケーキと浚渫土とを混合すると、浚渫土の水分が乾燥ケーキに吸収されるため、脱水ケーキ混合時と比較すると乾燥水分量に相当する分減容化するので、減容化容量に相当する分の多量の浚渫土を混合することができる。
上記の各実施形態において、脱水ケーキあるいは乾燥ケーキと混合する浚渫土は、少なくとも含泥率が50%以上の高濃度の浚渫土であることが望ましく、更には、50%〜80%の範囲内の高濃度の含泥率の浚渫土を使用することにより脱水ケーキや乾燥ケーキとの減容化の効率が良くなる。
【0015】
尚、脱水ケーキを乾燥させるには、脱水ケーキを破砕して細分化したものを乾燥させるが、乾燥手段としては機械乾燥、天日乾燥等があるが、コストの面からは天日乾燥が望ましい。また、この実施形態における脱水ケーキの形成工程は、前記の実施形態と同じである。
【0016】
ポンプ浚渫の場合とグラブ浚渫の場合とでは、浚渫土の水分含有量が相違している。また、同じ装置を使用した浚渫の場合でも浚渫土の含有量は相違するものである。例えば、従来の浚渫の平均値では、ポンプ浚渫の場合には水底土砂10〜20%に対して水分は90〜80%であり、グラブ浚渫の場合には水底土砂80%に対して水分は20%である。
【0017】
従って、浚渫土の含有水分量が異なる場合や浚渫土の性状が異なる時、同じ高圧機械脱水によって脱水しても脱水ケーキの水分量に相違を生ずることがある。このように浚渫土の水分量や性状に応じて浚渫土に脱水助剤を添加することにより脱水機の能力を増強させ、脱水速度を速めるとともに得られたケーキの強度を高めることができる。
尚、脱水機の能力の増強と脱水ケーキの含水比の低下とは相反するので、能力を増加させて含水比を増加させない助剤の選定が必要である。このため、高圧脱水機の脱水助剤としては、凝集性の弱い消石灰やセメント系の固化材が適切である。
【0018】
前記の各実施形態において脱水ケーキあるいは乾燥ケーキと浚渫土とを混合するに際し、浚渫土が高濃度であればあるほど十分な混合は技術的に難しくなる。例えば、浚渫土が水底土砂のように含水比が少ないほど流動性が無くなるので、流動性が無い場合でも混合が可能な公知の回転ドラムを使用することが有効である。特に、脱水ケーキの混合は、脱水ケーキの間隙に浚渫土を覆うことができれば、間隙部を埋めることができる。機械的な混合方法には回転ドラム型のセメントミキサーのような混合が有効である。また、土木的な混合方法としては、野積み脱水ケーキに浚渫土を振りかけ、ブルドーザーやバックホーのような土木機械で混合する方法も考えられる。
また、浚渫土の含水比が高含水である場合には、強度が弱いので、このような場合には浚渫土にセメント等の固化材を添加し浚渫土の強度の増強を図ることも可能である。
【0019】
【実施例】
含水比150%(乾燥固形物当たりの水分の百分率)、液性限界含水比170%の水底土砂を、ポンプ浚渫し、それぞれ高圧薄層機械脱水、高圧機械脱水して形成した脱水ケーキC、脱水ケーキDおよび脱水・乾燥ケーキEとして埋立実験を行い、次のような結果が得られた。
【0020】
C:高圧薄層機械脱水ケーキを埋め立て。
含水比150%の水底土砂を1.5Mpaの高圧薄層フィルタープレスで脱水したところ、脱水ケーキの含水比は58%、実ケーキ率は51.2%、減容化率48.8%になった。このケーキを埋め立てると空隙率が30%形成された。
脱水ケーキは、水底土砂換算で1.36V投入でき、従来法の埋め立てよりも多く埋め立てることができた。そして、形成される空隙に0.237V多く埋め立てられ、合計埋立量は1.604Vになった。
【0021】
D:高圧機械脱水ケーキを埋め立て。
含水比150%の水底土砂を4.0Mpaの高圧フィルタープレスで脱水したところ、脱水ケーキの含水比は50%、実ケーキ率は46.9%、減容化率53.1%になった。このケーキを埋め立てると、水底土砂換算で1.493V埋め立てることができた。そして、形成される空隙に0.237V多く埋め立てられ、合計埋立量は1.730Vになった。
【0022】
E:高圧機械脱水・乾燥ケーキを埋め立て。
高圧機械脱水ケーキを30%まで自然乾燥すると、水底土砂換算で0.164Vの水分が蒸発するので、蒸発分を含水比200%の浚渫土で置換すると、1.894Vに増加した。
【0023】
含水比150%(乾燥固形物当たりの水分の百分率)、液性限界含水比170%の水底土砂を、グラブ浚渫して得られた脱水ケーキと浚渫土との混合物含水比を100%として、埋立容積を求めた結果は表3に示す通りである。ケーキ埋立の空隙率を最小に見積もってこの程度の効果があるので、空隙率が更に大きくなると効果は大となるものである。
【表3】
Figure 0003806832
【0024】
【発明の効果】
以上、説明した本発明によれば、浚渫土を高圧機械脱水によって脱水し、得られた脱水ケーキと浚渫土とを混合することにより、脱水ケーキ間の空隙部を浚渫土で埋めることができ、浚渫土を少なくして埋立土量を増大させることができ、埋立地の有効利用を図り、自然環境をも保護できるものである。
また、脱水ケーキを乾燥させた乾燥ケーキと浚渫土とを混合することにより、乾燥ケーキは浚渫土中の水分を吸って膨潤化するので、浚渫土を少なくして埋立土量を増大させることができ、埋立地の有効利用を図り、自然環境をも保護できるものである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a subsurface landfill method for partitioning a part of a lake, a marine area, etc. and putting dredged soil into a reclaimed landfill and a soil for landfill.
[0002]
[Prior art]
Conventionally, when a landfill is created by partitioning a part of a lake or marine area, earth and sand naturally deposited on the bottom of the water using a pump dredger or grab dredger (usually referred to as sediment or ground) ), And then put into landfills and landfilled.
[0003]
[Problems to be solved by the invention]
However, in order to protect the natural environment of coastal waters, and to protect the growth environment of fish and birds, it is difficult to create landfills by partitioning lakes and seas. It was impossible.
[0004]
For example, in the case of the pump dredging suction simultaneously water 5~10Vm 3 relative seabed sediment Vm 3, since the pumping, 5-10 times the dredged soil water bottom sediment (mixture of water bottom sediment and water) landfill The same amount of sewage is generated. Submarine sediments settle and settle in landfills, but it took a long time to consolidate to the same water content as the bottom sediments. Actually, the landfill volume expands to about 1.2 to 1.3 times by the injection of submarine soil, so if the landfill volume is V, only V / 0.7 to 0.8 submarine soil can be landfilled. there were.
That is, the conventional underwater landfill method has a problem that the clay cannot be used effectively.
[0005]
The landfill method on land uses a pressure dehydrator such as a diaphragm type filter press or belt press type filter press to squeeze high-pressure dense and high-strength soil, and then fill the soil with high-pressure dense and small volume. It is used as That is, the self-weight of the soil, the soil by the use of about 1.8ton / m 3 (1.8ton / 10000cm 2 = 0.18Kg / cm 2) higher because the pressure of 0.018Mpa-pressure dehydrator Is obtained.
[0006]
The present inventor conducted an experiment on whether or not this high-pressure dense soil could not be used for landfill underwater, but a cake dehydrated under high pressure becomes a high-density, high-strength soil. Since voids are formed and compaction operations such as tamping cannot be performed in water, it has been found that these voids hinder volume reduction.
[0007]
Table 1 shows the properties of two types of soils A and B, and Table 2 shows the processing capacity and volume reduction rate of cake presses after dehydration of the respective soils A and B.
[Table 1]
Figure 0003806832
[Table 2]
Figure 0003806832
[0008]
As a result, the porosity of sand or gravel is 30 to 35%. Therefore, when the porosity of a cake obtained by crushing a dehydrated cake to about 10 mm is 30%, the volume reduction rate of the dehydrated cake is not 30% or more. And it turned out not to reduce the volume of landfills.
[0009]
In view of the above-mentioned conventional landfill construction method, the present invention is a subsurface landfill method for reducing the volume of dredged soil by drying the cake dehydrated at high pressure or drying the cake at high pressure to increase the amount of landfill soil. Is intended to provide.
Another object of the present invention is to provide an optimum soil for a subsurface landfill method.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention mixes a dewatered cake formed by high-pressure dewatering of dredged soil and dredged soil having a high mud content in subsurface landfill such as lakes and marine areas. It is a subsurface landfill method that throws the wastewater into the subsurface landfill.
In addition, the present invention mixes a dried cake obtained by drying a dewatered cake formed by high-pressure dewatering of dredged soil and dredged soil with a high mud content in subsurface landfills such as lakes and marine areas. This is a subsurface landfill method in which this mixture is introduced into a subsurface landfill.
The subsurface landfill in the present invention comprises a mixture of a dewatered cake formed by high-pressure dewatering of dredged soil and a dredged cake with a high mud content, and a dehydrated cake formed by high-pressure dewatering of dredged soil. It consists of a mixture of a dried cake obtained by drying and clay with a high mud content.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
As a first embodiment of the present invention, water in the dredged soil is eliminated by high-pressure dewatering of dredged soil (a mixture of bottom sediment and water) dredged by a pump dredger or grab dredger. A dehydrated cake with a reduced volume is formed. By mixing the dewatered cake thus obtained and the clay equivalent to the void of the dewatered cake capacity, the void portion of the dewatered cake was filled with dredged soil, and the mixture with an increased amount of landfill was filled into the water surface. Throw it into the ground.
[0012]
In addition, since it is necessary to reduce the moisture content of the dewatered cake, it is possible to use a pressure dehydrator such as a conventionally known diaphragm type filter press or belt press type filter press as the high pressure dewatering device for dewatering the clay. However, since the volume reduction rate of the dehydrated cake volume is as large as 30% or more, a high pressure type (high pressure thin layer, high pressure filter press, etc.) filter press with a dehydration pressure of 0.7 Mpa or more, preferably 1.5 Mpa or more is desirable. .
[0013]
As a second embodiment of the present invention, water in the dredged soil is eliminated by high-pressure dewatering of dredged soil (a mixture of bottom sediment and water) dredged by a pump dredger or grab dredger. The dehydrated cake with the reduced volume is dried to form a dry cake. When the dehydrated cake is dried, the dried cake shrinks by drying until the particles come into contact with each other. The dry cake and dredged soil thus obtained are mixed, and the mixture in which the amount of landfill is increased is put into the water surface landfill.
[0014]
When the dried cake and clay are mixed, the moisture of the clay is absorbed by the dried cake, so the volume is reduced by an amount corresponding to the amount of dry moisture compared to when the dehydrated cake is mixed. A large amount of clay can be mixed.
In each of the above embodiments, the clay to be mixed with the dewatered cake or the dried cake is preferably a high-concentration clay having a mud content of 50% or more, and more preferably in the range of 50% to 80%. The efficiency of volume reduction with a dehydrated cake or a dried cake is improved by using a clay with a high concentration of mud.
[0015]
In addition, in order to dry the dehydrated cake, the dehydrated cake is crushed and subdivided, and dried, but there are mechanical drying, sun drying, etc. as drying means, but sun drying is desirable from the viewpoint of cost. . Moreover, the formation process of the dewatering cake in this embodiment is the same as that of the said embodiment.
[0016]
The water content of the clay is different between the case of the pump dredging and the case of the grab dredging. In addition, even in the case of dredging using the same apparatus, the content of dredged soil is different. For example, in the average value of the conventional dredging, in the case of the pump dredge, the moisture is 90 to 80% with respect to the bottom sediment 10-20%, and in the case of the grab dredge, the moisture is 20 relative to 80% of the bottom sediment. %.
[0017]
Therefore, when the moisture content of the clay is different or when the properties of the clay are different, the moisture content of the dewatered cake may be different even when dewatering by the same high-pressure mechanical dewatering. In this way, by adding a dehydrating aid to the kneaded clay according to the water content and properties of the kneaded clay, the capacity of the dehydrator can be enhanced, the dehydrating speed can be increased, and the strength of the obtained cake can be increased.
In addition, since the increase in the capacity of the dehydrator and the decrease in the water content of the dewatered cake are contradictory, it is necessary to select an auxiliary agent that increases the capacity and does not increase the water content. For this reason, slaked lime or cement-based solidified material with low cohesiveness is suitable as a dehydrating aid for the high-pressure dehydrator.
[0018]
In mixing the dehydrated cake or the dried cake with the clay in each of the above-described embodiments, the higher the concentration of the clay, the more technically difficult the mixing becomes. For example, as the dredged soil has a lower water content such as bottom sediment, the fluidity is lost. Therefore, it is effective to use a known rotating drum that can be mixed even when there is no fluidity. In particular, the mixing of the dehydrated cake can fill the gap if the clay can be covered in the gap of the dehydrated cake. As a mechanical mixing method, mixing such as a rotary drum type cement mixer is effective. In addition, as a civil engineering mixing method, a method is also conceivable in which dredged clay is sprinkled on the piled dehydrated cake and mixed by a civil engineering machine such as a bulldozer or a backhoe.
In addition, when the moisture content of the clay is high, the strength is weak. In this case, it is possible to increase the strength of the clay by adding a solidifying material such as cement to the clay. is there.
[0019]
【Example】
Dehydrated cake C, dehydrated by high pressure thin layer mechanical dehydration and high pressure mechanical dewatering, respectively, by pumping the bottom sediment with a water content of 150% (percentage of moisture per dry solid) and liquid limit moisture content of 170% The landfill experiment was conducted as cake D and dehydrated / dried cake E, and the following results were obtained.
[0020]
C: Reclaimed high-pressure thin-layer mechanical dehydrated cake.
When the bottom sediment with a water content of 150% was dehydrated with a 1.5 Mpa high-pressure thin-layer filter press, the water content of the dehydrated cake was 58%, the actual cake rate was 51.2%, and the volume reduction rate was 48.8%. It was. When this cake was reclaimed, a porosity of 30% was formed.
The dehydrated cake could be charged at 1.36 V in terms of bottom sediment, and could be reclaimed more than the conventional landfill. Then, 0.237V more was buried in the formed gap, and the total landfill amount was 1.604V.
[0021]
D: Reclaimed high-pressure mechanical dehydrated cake.
When the bottom sediment with a water content of 150% was dehydrated with a 4.0 Mpa high pressure filter press, the water content of the dehydrated cake was 50%, the actual cake rate was 46.9%, and the volume reduction rate was 53.1%. When this cake was reclaimed, 1.493 V was reclaimed in terms of bottom sediment. Then, 0.237V more was buried in the formed gap, and the total landfill amount was 1.730V.
[0022]
E: Reclaimed high-pressure mechanical dehydrated and dried cake.
When the high-pressure mechanical dewatered cake was naturally dried to 30%, water of 0.164V was evaporated in terms of bottom sediment, and when the evaporated content was replaced with dredged soil having a water content ratio of 200%, it increased to 1.894V.
[0023]
Landfill with a water content ratio of 100% as a mixture of dehydrated cake and dredged soil obtained by grabbing 150% of water content (percentage of water per dry solid) and 170% of liquid limit water content of gravel. The results of determining the volume are as shown in Table 3. Since the void ratio of the cake landfill is estimated to the minimum, there is an effect of this level. Therefore, the effect increases as the void ratio further increases.
[Table 3]
Figure 0003806832
[0024]
【The invention's effect】
As described above, according to the present invention described above, the clay can be dehydrated by high-pressure mechanical dehydration, and by mixing the obtained dehydrated cake and clay, the gap between the dehydrated cakes can be filled with clay. It can reduce dredged soil and increase the amount of landfill, effectively use landfills and protect the natural environment.
In addition, by mixing the dried cake obtained by drying the dehydrated cake and the clay, the dried cake absorbs the moisture in the clay and swells, so it is possible to reduce the clay and increase the amount of landfilled soil. It is possible to use landfills effectively and protect the natural environment.

Claims (5)

湖沼、海域等の水面下埋立において、浚渫土を高圧脱水して形成した脱水ケーキと含泥率が高濃度の浚渫土とを混合し、この混合物を水面下埋立地に投入するようにしたことを特徴とする水面下埋立工法。In subsurface reclamation in lakes, marshes, etc., dewatered cake formed by high-pressure dewatering of dredged soil and dredged soil with high mud content were mixed, and this mixture was put into the subsurface landfill. A subsurface landfill method characterized by 湖沼、海域等の水面下埋立において、浚渫土を高圧脱水して形成した脱水ケーキを乾燥させて得られた乾燥ケーキと含泥率が高濃度の浚渫土とを混合し、この混合物を水面下埋立地に投入するようにしたことを特徴とする水面下埋立工法。In subsurface reclamation in lakes, marshes, etc., a dry cake obtained by drying a dewatered cake formed by high-pressure dewatering of dredged soil is mixed with dredged soil with a high mud content, and this mixture is submerged under water. A subsurface landfill method characterized by being put into landfills. 浚渫土に脱水助剤を添加して高圧脱水するようにしたことを特徴とする請求項1、2に記載する水面下埋立工法。The subsurface landfill method according to claim 1 or 2, wherein a dehydration aid is added to the clay to perform high pressure dehydration. 湖沼、海域等の水面下埋立において、浚渫土を高圧脱水して形成した脱水ケーキと含泥率が高濃度の浚渫土との混合物からなることを特徴とする水面下埋立用土。Subsurface landfill, which consists of a mixture of dewatered cake formed by high-pressure dewatering of dredged soil and dredged soil with a high mud content in subsurface landfills such as lakes and marine areas. 湖沼、海域等の水面下埋立において、浚渫土を高圧脱水して形成した脱水ケーキを乾燥させて得られた乾燥ケーキと含泥率が高濃度の浚渫土との混合物からなることを特徴とする水面下埋立用土。It consists of a mixture of dry cake obtained by drying dewatered cake formed by high pressure dewatering of dredged soil and dredged soil with high mud content in subsurface landfills such as lakes and marine areas. Subsurface landfill.
JP2000034598A 2000-02-14 2000-02-14 Subsurface landfill method and subsurface landfill Expired - Lifetime JP3806832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000034598A JP3806832B2 (en) 2000-02-14 2000-02-14 Subsurface landfill method and subsurface landfill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000034598A JP3806832B2 (en) 2000-02-14 2000-02-14 Subsurface landfill method and subsurface landfill

Publications (3)

Publication Number Publication Date
JP2001226940A JP2001226940A (en) 2001-08-24
JP2001226940A5 JP2001226940A5 (en) 2005-03-10
JP3806832B2 true JP3806832B2 (en) 2006-08-09

Family

ID=18558911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000034598A Expired - Lifetime JP3806832B2 (en) 2000-02-14 2000-02-14 Subsurface landfill method and subsurface landfill

Country Status (1)

Country Link
JP (1) JP3806832B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101666074B1 (en) * 2016-01-15 2016-10-14 한국경량혼합토 주식회사 System that allow for high-speed site renovation using high water content dredged sediment and dredging work at the same time and method for hihg-speed site renovation

Also Published As

Publication number Publication date
JP2001226940A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP3723625B2 (en) Treatment method for high water content sludge
WO2018022900A1 (en) Method for dewatering coal combustion residuals
US20100175283A1 (en) Submergible densification cell, sediment separator and sediment densification method
JP3806832B2 (en) Subsurface landfill method and subsurface landfill
CN104086070A (en) Sludge curing agent with high water content
JP4207479B2 (en) How to treat dredged mud
RU2275461C2 (en) Method for dam and other fill structure construction
JP3800375B2 (en) Mud disposal method
JP2994493B2 (en) How to improve soft soil
JPS6012120B2 (en) Sludge consolidation dewatering treatment method
JPH05192695A (en) Soil quality improvement of construction surplus soil
Kita et al. Several solidified sediment examples
JP2002143894A (en) Treatment method for dredged mud
Lam Land reclamation & soil improvement using dredged slurry as fill
JP3793502B2 (en) Treatment method for low water content mud
JP2003082650A (en) Use for soil coming out from offshore ground improvement work
JPS6145010A (en) Formation of reclamation site
JP2640616B2 (en) Solidification method of submerged sludge
RU2201949C2 (en) Drilling reject burial method
JP2023028522A (en) Block production method and block
JP2002030652A (en) Method for insoluble improved soil
JP2007132160A (en) Artificial tideland material utilizing dredged viscous soil and artificial tideland making method using the artificial tideland material
Kog Rehabilitation of abandoned non-hazardous tailings ponds
JPH0135032B2 (en)
JP2022041360A (en) Sea surface landfill method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Ref document number: 3806832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term