JP3806813B2 - Building and its construction method - Google Patents

Building and its construction method Download PDF

Info

Publication number
JP3806813B2
JP3806813B2 JP12523998A JP12523998A JP3806813B2 JP 3806813 B2 JP3806813 B2 JP 3806813B2 JP 12523998 A JP12523998 A JP 12523998A JP 12523998 A JP12523998 A JP 12523998A JP 3806813 B2 JP3806813 B2 JP 3806813B2
Authority
JP
Japan
Prior art keywords
building
constructed
wall
ground
ground surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12523998A
Other languages
Japanese (ja)
Other versions
JPH11303110A (en
Inventor
真 根本
進 金田
雅路 青木
恭幸 柴田
英二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP12523998A priority Critical patent/JP3806813B2/en
Publication of JPH11303110A publication Critical patent/JPH11303110A/en
Application granted granted Critical
Publication of JP3806813B2 publication Critical patent/JP3806813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、建物及びその構築方法、特に、建物の周囲の少なくとも一部に傾斜山留壁を備えた建物及びその構築方法に関する。
【0002】
【従来の技術】
従来の山留壁の施工方法には、例えば、図13に示されているように、軟弱地盤1の地表面2から地下構造体の構築に必要な深度Dまで、地下構造体の平面形状の外周に自立山止壁として必要な壁厚Tを加えた領域の全面に及ぶ土壌の部分3を深層混合処理手段7により地盤改良を施し、その後に地盤改良が施された部分3のうち地下構造体の構築に必要な2点鎖線で囲まれた部分4について場内進入の重機(例えば、油圧ショベル)によるオープンカツト方式によりドライワークとしの掘削を行い、地表面が壁厚Tの台形状の傾斜山留壁3a及び壁厚Tの垂直山留壁3bを構築する方法(例えば、特開平6−73722号公報参照)がある。
【0003】
【発明が解決しようとする課題】
従来の上記山留壁の施工方法は、地下構造体の平面形状の外周に自立山止壁の壁厚Tを加えた領域の全面について、地表面2から地下構造体の構築に必要な深度Dまで、深層混合処理手段7により地盤改良を行なってから、地下構造体の構築を行なう部分4を場内進入の重機(例えば、油圧ショベル)によるオープンカツト方式によりドライワークとして掘削を行なうものであるため、掘削が容易になるが、台形の傾斜山留壁の部分3aの壁厚Tが地表面2から離れるに従って順次厚くなり、地盤改良をすべき土壌の体積が増大し、地盤改良の費用が嵩んでしまう欠点がある。
この発明の解決しようとする課題は、従来技術の上記のような欠点を有しない建物及びその構築方法を提供すること、換言すると、施工が容易で、山留壁を厚くしなくてすむ建物及びその構築方法を提供することにある。
【0004】
【課題を解決するための手段】
この発明の建物は、建物が構築される箇所の地表面から所定の深度のところにコンクリート造の基盤、フーチング等の基礎が構築され、前記基礎の上側に地表面より下方に位置する下部分と地表面より上方に位置する上部分を備えた建物躯体が構築されて、地表面より下方に位置する建物躯体の下部分の周囲に該下部分に対して間隔をおいて山留壁が形成されている建物において、前記山留壁の一部又は全部がソイルセメント造の柱列式傾斜連続壁で構成され、該柱列式傾斜連続壁が鉛直線に対して建物躯体の下部分の外側に傾斜し、前記柱列式傾斜連続壁の柱列の隣接する柱同士が互いに一体化されていることを特徴とするものである。免震機能を備えた建物の場合には、前記基礎の上側に多数の免震装置が配置され、前記免震装置の上側に地表面より下方に位置する下部分と地表面より上方に位置する上部分とを備えた建物躯体が構築されて、免震装置が設置される部分を含む建物躯体の下部分の周囲に山留壁が形成されるようにする。
ソイルセメント造の柱列式傾斜連続壁の傾斜角度は、地盤の軟弱度によって決められるが、例えば、鉛直線に対して建物躯体の下部分の外側に8゜〜16゜傾斜させるようにする。
必要に応じて、建物躯体の下部分に面する柱列式傾斜連続壁の面に接して本設のコンクリート造又はモルタル造の傾斜壁を構築する。
【0005】
この発明の建物の構築方法は、建物を構築すべき地盤の部分の一部又は全部を囲むように山留壁を構築し、かつ建物を構築すべき地盤の部分に多数のコンクリート造の杭を設け、山留壁で囲まれた地盤を所定の深度まで掘削し、地表面から所定深度の所に杭頭と一体にコンクリート造の基盤、フーチング等の基礎を構築し、該基礎の上側に、地表面より下方に位置する下部分と地表面より上方に位置する上部分とを備えた建物躯体を構築する建物の構築方法において、前記山留壁の一部又は全部として、地表面より下方に位置する建物躯体の下部分の外側となる地盤中に、鉛直線に対して建物躯体の下部分の外側に略同じ角度傾斜した多数のソイルセメント造の柱からなる柱列式傾斜連続壁を構築した後に、前記柱列式傾斜連続壁を含む山留壁で囲まれた地盤部分を所定の深度まで掘削して前記基礎を構築することを特徴とするものである。
免震機能を備えた建物を構築する場合には、前記基礎の上側に、多数の免震装置を配置し、免震装置の上側に地表面より下方に位置する下部分と地表面より上方に位置する上部分とを備えた建物躯体を構築するようにする。そして、前記山留壁の一部又は全部として、免震装置が配置されている部分を含む建物躯体の地表面より下方に位置する下部分の外側となる地盤中に多数のソイルセメント造の柱を鉛直線に対して建物躯体の下部分の外側に略同じ角度傾斜させ、かつソイルセメント造の各柱の中心間の距離をその径よりも小さくし、隣接するソイルセメント造の柱同士を互いに一体化させてソイルセメント造の柱列式傾斜連続壁を構築した後に、前記柱列式傾斜連続壁を含む山留壁で囲まれた地盤部分を掘削して前記基礎を構築するものである。
なお、山留壁を構築してから杭を設け、または杭を設けてから山留壁を構築する。あるいは山留壁の構築と杭の造設とを並行して行なってもよい。
【0006】
【実施例】
実施例は、図1〜図12に示され、この発明を免震機能を備えた建物に適用した例である。
図1に示すよに、建物が構築される箇所の地盤中に多数のコンクリート造の現場打ち杭11が設けられ、地表面GLから深さD(例えば、2.8m〜3.5m)の所に杭頭と一体にコンクリート造の平らな基盤、フーチング等の基礎12が構築され、基礎12の上側に多数の積層ゴムからなる免震装置13が配設され、免震装置13の上側に建物躯体14の下部分の免震装置13の受け部14aが載設され、建物躯体14は梁14b、柱14c、床14d等から形成されており、建物躯体14の一階の床14dの床面FLが地表面GLよりも少々高くなるように、前記深さDが定められている。
建物の建物躯体14の地表より下方の受け部14aや免震装置13の収容空間Sp1の周囲には、間隔をおいて傾斜山留壁となる柱列式傾斜連続壁10が形成されている。柱列式傾斜連続壁10は地盤を掘削して得られた土壌を硬化剤で硬化させて形成されている。柱列式傾斜連続壁10は鉛直線に対して収容空間Sp1の外側に傾斜(例えば、10゜)している。柱列式傾斜連続壁10は、その下方の部分が建物の周囲部の下方に位置する杭11の近傍まで達する程度の長さになっている。
なお、建物躯体14の周囲にはこれと一体に庇状の床14eが構築され、この庇状の床14eが柱列式傾斜連続壁10と免震装置13が設置される部分や受け部14a等を含む建物躯体14の下部分との間の隙間Sp2の上方を覆うようになっている。
【0007】
次に、柱列式傾斜連続壁10の構築に使う装置類を説明する。
掘削泥練機20は、図2及び図3に示され、3軸型であって、その頭部21に吊部21a、モータ21b、減速機21cを備え、モータ21bの回転を減速機21cで減速して頭部21に支持された3本の回転軸22a,22b,22cに伝え得るようになっている。中央の回転軸22aに掘削泥練軸23が連結され、この掘削泥練軸23は略全長にわたってスクリュ23aが設けられ、その先部にスクリョウ23cと掘削刃23bとが設けられている。そして、掘削泥練軸23の略全長にわたって円筒型ケーシング24が嵌められ、この円筒型ケーシング24は頭部21に一体的に結合し得るようになっている。掘削泥練軸23の中心軸線と円筒型ケーシング24の中心軸線とを一致させかつ掘削泥練軸23の回転を許容する間隔保片25が円筒型ケーシング24内に設けられている。右側の回転軸22bにその先部に撹拌翼26aと掘削刃26bとを備えた掘削泥練軸26が連結され、左側の回転軸22cにその先部に撹拌翼27aと掘削刃27bとを備えた掘削泥練軸27が連結されている。
【0008】
円筒型ケーシング24と左右の掘削泥練軸26,27との間には間隔保持手段28が設けられ、各掘削泥練軸23,26,27がそれらの中心軸線を互いに平行に維持した状態でそれぞれ回転し得るようになっている。
掘削泥練機20を吊り上げる吊上機30として、図4に示されているようなクローラ式の走行装置31の上部に設けた旋回装置付きの機体32に、巻上機33、テレスコープ型ブーム34、ブーム起伏装置35、運転室等を設けた移動式クレーンを使う。
そして、巻上機33に巻き付けられかつブーム34の先部から垂下されたロープ33aに付けた吊鈎36を掘削泥練機20の頭部21の吊部21aに掛けて掘削泥練機20を吊り上げ、掘削泥練機20を昇降し得るようにする。なお、吊上機30と掘削泥練機20とで可動掘削泥練装置が構成される。
【0009】
掘削泥練機20の円筒型ケーシング24を一定の傾斜角θに保って上下方向に案内する可動案内装置40は、図4〜図6に示す構成を備えている。すなわち、機体42がクローラ式走行装置41の上部に旋回装置により旋回自在に取り付けられ、機体42上にその一方の側に運転室43が設けられ、アーム44の基部が支軸44aにて機体42の略中央に起伏自在に取り付けられ、アーム44の先部が支軸44bにて案内体45の背部の突起部に回動自在に取り付けられ、アーム44の先部と機体42の略中央部との間に第1の伸縮式連結体46が配され、第1の伸縮式連結体46の基部が支軸46aにて機体42に回動自在に取り付けられ、第1の伸縮式連結体46の先部が支軸44bにて案内体45に回動自在に取り付けられている。アーム44の下側に第2の伸縮式連結体47が配され、第2の伸縮式連結体47の基部が支軸47aにて機体42に回動自在に取り付けられ、第2の伸縮式連結体47の先部が支軸47bにて案内体45の背部の下方の突起部に回動自在に取り付けられている。
なお、伸縮式連結体46,47としては、例えば、シリンダと該シリンダ内にピストン付きのロッドを嵌装してなる油圧シリンダ装置を使う。
案内体45は、例えば、横断面エ型の鋼製の主体45aで構成され、主体45aの前側のフランジ45a1に間隔をおいて主体45aの長手方向に伸びかつその中心軸線が地表面GLを含む水平面に対して垂直な平面上に位置し得るように円形断面の棒状又は管状の長い案内片45b,45bを取り付けて構成されている。長い案内片45bの外側の略半分が横断面半円形状のカバー45cで覆われている。なお、長い案内片45bの代わりに、上記中心軸線上に間隔をおいて位置する複数の案内ローラを前記フランジ45a1に間隔をおいて2列設けるようにしてもよい。
必要に応じて、案内体45の主体45aの下部の背面に受片45dを取り付け、受片45dの下面と地表との間に支持体(例えば、油圧式ジャッキ等)46を配設して、掘削泥練機20の円筒型ケーシング24が係合している時の案内体45の変位を防止するようにする。
【0010】
次に、可動案内装置40による掘削泥練機20の円筒型ケーシング24の案内の仕方等を説明する。図4及び7図に示すように、そのクローラ式走行装置41が構築すべき柱列式傾斜連続壁10の上面の中心線と並行になり、かつ可動案内装置40の案内体45の案内片45b,45bの中心軸線の延長線上に構築すべき柱列式傾斜連続壁10の外側面がくるような位置に、可動案内装置40を移動させる。
そして、掘削泥練機20を吊り上げる吊上機30として、巻上機33、テレスコープ型ブーム34、ブーム起伏装置35等を備えた移動式クレーンを使い、ブーム34先から垂下されたロープ33aに付けた吊鈎36を掘削泥練機20の頭部21の吊部21aに掛けて吊り上げ、掘削泥練機20を吊り下げた状態にした吊上機30を前記可動案内装置40に近づけ、吊り下げた状態の掘削泥練機20の円筒型ケーシング24の下部の外周面を案内体45の案内片45b,45bに接触させ、可動案内装置40の伸縮式連結体46,47を伸縮させて、掘削泥練機20の円筒型ケーシング24の中心軸線の傾斜角θが所定の傾斜角になりかつ前記中心軸線の延長線が柱列式傾斜連続壁10の表面の中心線と一致するように調節する。
それから、掘削泥練機20のモータ21bを回転させて、掘削泥練軸23,26,27を回転させながら、吊上機30の巻上機33を駆動して、巻上機33に巻き付けられたロープ33aを繰り出し、ロープ33aに付けた吊鈎36で吊り下げた掘削泥練機20を降下させ、掘削泥練機20の円筒型ケーシング24を案内体45の案内片45b,45bに沿って下方に移動させ、掘削泥練軸23,26,27の先の掘削刃23b,26b,27bにて地盤を掘削する。
【0011】
工事現場には、7図に示すように、セメントサイロ51、ミキシングプラント52、移送ポンプ53等が設置されている。
構築すべき柱列式傾斜連続壁10に所定の一軸圧縮強度を付与するため、現場土砂1m3当の注入剤の量を、例えば、セメント260kg、ベントナイト10kg、水390lとする。ミキシングプラント52にて上記の配合割合、すなわち、セメント260kg、ベントナイト10kg、水390lの配合割合の注入剤の調製し、移送管54にて、掘削泥練機20に供給する。
【0012】
次に、傾斜山留壁となる柱列式傾斜連続壁10の構築の仕方を説明する。
図12の(a)に示すように、構築すべき傾斜山留壁の柱列式傾斜連続壁10の平面視の中心線Cl上に間隔をおいて、3本のソイルセメント造の柱が互いに結合されている柱列式傾斜部分壁10aを構築し、その後に、図12の(b)に示すように、柱列式傾斜部分壁10aと柱列式傾斜部分壁10aとの間の隙間にそれぞれ対応させて3本のソイルセメント造の柱が互いに結合されている柱列式傾斜部分壁10bを構築し、図12の(c)に示すように、柱列式傾斜連続壁10とする。
【0013】
上記柱列式傾斜部分壁10a,10bは、次のようにして造成する。
吊上機30及び可動案内装置40を、例えば、図4及び図7に示す状態になるように配置し、可動案内装置40の伸縮式連結体46,47を伸縮させて、掘削泥練機20の円筒型ケーシング24の中心軸線の傾斜角θが所定の傾斜角になり、各掘削泥練軸23,26,27の中心軸線の延長線が柱列式傾斜連続壁10の地表の中心軸線CLと一致するように調節してから、掘削泥練機20のモータ21bを回転させて、掘削泥練軸23,26,27を回転させながら、吊上機30の巻上機33を駆動して、巻上機33に巻き付けられたロープ33aを繰り出し、ロープ33aに付けた吊鈎36で吊り下げた掘削泥練機20を降下させ、掘削泥練機20の円筒型ケーシング24を案内体45の案内片45b,45bに沿って下方に移動させ、掘削泥練軸23,26,27の先の掘削刃23b,26b,27bにて地盤を掘削する。所定の深度まで掘削したら、ミキシングプラント52で調製した注入剤を移送ポンプ53、移送管54及び円筒型ケーシング24に取り付けた管体55等を通して掘削孔内の土砂中に前記割合にて供給しなから、掘削泥練軸23,26,27を正転及び逆転させつつ、巻上機33にてロープ36を巻き取ったり繰り出したりして、掘削泥練軸23,26,27を昇降させて、それらの撹拌翼26a,27a等にて掘削孔内の土砂と注入剤とを十分に撹拌泥練してから、掘削泥練軸23,26,27等を引き抜く。掘削泥練軸23,26,27等が引き抜かれた後に柱列式傾斜部分壁10a,10bが造成される。なお、地表が軟弱な場合には、図4に示すように、吊上機30及び可動案内装置40が走行する地表面に鉄板Plを敷設する。掘削により生じた余分の排土はクローラ式油圧ショベル60等を使って邪魔にならない所に移送する。
【0014】
図8に示すように、建物を構築すべき地盤の部分の一部又は全部を囲むようにに柱列式傾斜連続壁10が構築され、建物を構築すべき地盤の部分に、図9に示すように、多数のコンクリート造の現場打ち杭11が構築された後に、柱列式傾斜連続壁10等で囲まれる地盤を所定の深さまで掘削し、図10に示すように、地表面から所定の深さ(例えば、2.8m〜3.5m)の所に杭頭と一体にコンクリート造の基盤、フーチング等の基礎12を構築し、基礎12の上側に、図11に示すように、多数の積層ゴムからなる免震装置13を配設し、免震装置13の上側に、建物躯体14の下部分の免震装置13の受け部14aが載設されるように、梁14b、柱14c、床14d等からなる建物躯体14を構築する。
なお、図1及び図11に示すように、柱列式傾斜連続壁10の隙間Sp2側の面にこれに接して本設のコンクリート造又はモルタル造の傾斜壁16を構築し、その傾斜壁16の下部を建物躯体の基礎12に結合する。この傾斜壁16は、傾斜連続壁10による土圧の低減により、配筋量を少なくし壁厚を薄くすることができる。また、このソイルセメント造の柱列式傾斜連続壁は、止水性が高く、傾斜壁16の長期的保護になる。
【0015】
【発明の作用効果】
この発明は、特許請求の範囲の各請求項に記載した構成を備えることにより、次の(イ)〜(ト)の作用効果を奏する。
(イ)請求項1に係る発明の建物は、地表面より下方に位置する建物躯体の下部分の周囲に該建物躯体の下部分に対して間隔をおいて形成される山留壁の一部又は全部が、ソイルセメント造の柱列式傾斜連続壁で構成され、該柱列式傾斜連続壁が鉛直線に対して建物躯体の下部分の外側に傾斜し、前記柱列式傾斜連続壁の柱列の隣接する柱同士が互いに一体化されており、ソイルセメント造の柱列式傾斜連続壁が鉛直線に対して建物躯体の下部分の外側に傾斜しているため、その壁厚を大きくしなくても、土圧に十分に耐えることができ、地盤改良をすべき土壌の体積を最小することができ、コストの低減と工期の短縮を図ることができる。
(ロ)請求項2に係る発明の免震機能を備えた建物は、上記(イ)に記載した作用効果を奏するだけでなく、免震装置を設置する部分を含む建物躯体の下部分の周囲の山留壁を施工性よく構築することができる。
【0016】
(ハ)請求項3記載のように、ソイルセメント造の柱列式傾斜連続壁を鉛直線に対して建物躯体の下部分の外側に8゜〜16゜傾斜させるようにすると、建物躯体の下部分の周囲の山留壁の構築のための敷地を広くとることなく、土圧に耐え得る柱列式傾斜連続壁の山留壁を構築することができる。また、8゜〜16゜程度の傾斜角度の場合は、ソイルセメント造の柱列式傾斜連続壁の構築の施工性が損なわれることがない。
(ニ)請求項4記載のように、建物躯体の下部分に面する傾斜山留壁の面にこれに接して本設のコンクリート造又はモルタル造の傾斜壁を形成すると、前記傾斜壁は、ソイルセメント造の柱列式傾斜連続壁による土圧の低減により、配筋量を少なくし壁厚を薄くすることができる。また、このソイルセメント造の柱列式傾斜連続壁は、止水性が高く、前記傾斜壁の長期的保護になる。
【0017】
(ホ)請求項5に係る発明の建物の構築方法は、山留壁の一部又は全部として、地表面より下方に位置する建物躯体の下部分の外側となる地盤中に、鉛直線に対して建物躯体の下部分の外側に略同じ角度傾斜した多数のソイルセメント造の柱からなる柱列式傾斜連続壁を構築した後に、前記柱列式傾斜連続壁を含む山留壁で囲まれた地盤部分を所定の深度まで掘削して前記基礎を構築するものであり、ソイルセメント造の柱列式傾斜連続壁が鉛直線に対して建物躯体の下部分の外側に傾斜しているため、その壁厚を大きくしなくても、一列の柱列式傾斜連続壁の山留壁で土圧に十分に耐えることができ、地盤改良をすべき土壌の体積を最小することができ、コストの低減と工期の短縮を図ることができる。
(ヘ)請求項6に係る発明の免震機能を備えた建物の構築方法は、上記(イ)に記載した作用効果を奏するだけでなく、免震装置を設置する部分を含む建物躯体の下部分の周囲の山留壁を施工性よく構築することができる。
(ト)請求項7記載のように、ソイルセメント造の柱列式傾斜連続壁をその下方の部分が建物の外周部の下方に位置する多数のコンクリート造の杭の近傍まで達するように構築すると、柱列式傾斜連続壁の下方の部分が杭の近傍の強化された地盤等でも支持され、その壁厚を大きくしなくても、一列の柱列式傾斜連続壁の山留壁で土圧に十分に耐えることができる。
【図面の簡単な説明】
【図1】実施例の建物躯体の下部分、その外側の山留壁となる柱列式傾斜連続壁等を縦断した正面図
【図2】実施例の柱列式傾斜連続壁の構築に使う掘削泥練機の正面図
【図3】図2に示す掘削泥練機をその右側から見た側面図
【図4】実施例の傾斜山留壁の施工に使う吊上装置、掘削泥練機及び移動式案内装置の関係等を示す正面図
【図5】実施例の柱列式傾斜連続壁の構築に使う可動案内装置の機体を90゜回動させた状態の正面図
【図6】図5に示す可動案内装置の案内体を図5のA−A線で断面した平面図
【図7】実施例の柱列式傾斜連続壁の構築時の吊上機、可動案内装置、セメントサイロ、ミキシングプラント等の関係を示す平面図
【図8】実施例の柱列式傾斜連続壁の構築後の地盤を縦断した正面図
【図9】実施例の柱列式傾斜連続壁及び現場打ち杭の構築後の地盤を縦断した正面図
【図10】実施例の建物躯体を構築すべき地盤の部分を掘削した後に捨てコンクリートを打設した状態を縦断した正面図
【図11】実施例の基盤、フーチング等の基礎上に免震装置を設置し、免震装置の上側に建物躯体を構築した状態を縦断した正面図
【図12】その(a)〜(c)は実施例の傾斜山留壁となる柱列式傾斜連続壁の施工順序を示す平面図
【図13】従来の山留壁の施工方法による山留壁の構築部の地盤を縦断して示す正面図
【符号の説明】
10 柱列式傾斜連続壁
10a,10b 柱列式傾斜部分壁
11 現場打ち杭
12 基礎
13 免震装置
14 建物躯体
14a 受け部
16 傾斜壁
20 掘削泥練機
21 頭部
21a 吊部
21b モータ
21c 減速機
22a,22b,22c 回転軸
23,26,27 掘削泥練軸
23a スクリュ
23b,26b,27b 掘削刃
24 円筒型ケーシング
26a,27a 撹拌翼
28 間隔保持手段
30 吊上機
31 クローラ式走行装置
33 巻上機
33a ロープ
36 吊鈎
40 可動案内装置
41 クローラ式走行装置
42 機体
44 アーム
46,47 伸縮式連結体
45 案内体
45a 主体
45b 案内片
46 支持体(例えば、油圧式ジャッキ)
51 セメントサイロ
52 ミキシングプラント
53 移送ポンプ
54 移送管
FL 床面
GL 地表面
Sp1 収容空間
Sp2 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a building and a construction method thereof, and more particularly to a building having an inclined mountain retaining wall at least at a part of the periphery of the building and a construction method thereof.
[0002]
[Prior art]
For example, as shown in FIG. 13, the conventional method of constructing a mountain wall has a planar shape of the underground structure from the ground surface 2 of the soft ground 1 to the depth D necessary for the construction of the underground structure. Soil part 3 that covers the entire area of the outer periphery with the necessary wall thickness T as a self-supporting mountain steep wall is subjected to ground improvement by means of deep mixing treatment means 7, and then the underground structure of the part 3 subjected to ground improvement Excavation as dry work is performed on the part 4 surrounded by the two-dot chain line necessary for the construction of the body by an open-cut method using heavy machinery (for example, a hydraulic excavator) entering the field, and the ground surface has a trapezoidal slope with a wall thickness T There is a method for constructing the mountain retaining wall 3a and the vertical mountain retaining wall 3b having a wall thickness T (for example, see Japanese Patent Application Laid-Open No. 6-73722).
[0003]
[Problems to be solved by the invention]
The conventional method for constructing the above-mentioned mountain retaining wall is the depth D necessary for the construction of the underground structure from the ground surface 2 over the entire area of the outer periphery of the planar shape of the underground structure plus the wall thickness T of the freestanding mountain stop wall. Until the ground is improved by the deep mixing processing means 7, the portion 4 for constructing the underground structure is excavated as a dry work by an open-cut method using a heavy machine (for example, a hydraulic excavator) entering the site. However, excavation becomes easier, but the wall thickness T of the trapezoidal sloped mountain retaining wall portion 3a gradually increases as the distance from the ground surface 2 increases, increasing the volume of soil to be improved, and increasing the cost of ground improvement. There is a drawback that it will stagnate.
The problem to be solved by the present invention is to provide a building that does not have the above-mentioned drawbacks of the prior art and a method for constructing it, in other words, a building that is easy to construct and does not require a thick mountain wall, and It is to provide the construction method.
[0004]
[Means for Solving the Problems]
The building of the present invention has a concrete base, a foundation such as a footing constructed at a predetermined depth from the ground surface where the building is constructed, and a lower portion positioned below the ground surface above the foundation. A building frame having an upper part located above the ground surface is constructed, and a mountain retaining wall is formed around the lower part of the building frame located below the ground surface at a distance from the lower part. A part or all of the mountain retaining wall is composed of a soil-cemented column-type inclined continuous wall, and the column-type inclined continuous wall is located outside the lower part of the building frame with respect to the vertical line. It is inclined, and adjacent columns of the column array of the column array type inclined continuous wall are integrated with each other. In the case of a building having a seismic isolation function, a large number of seismic isolation devices are arranged on the upper side of the foundation, and a lower part located below the ground surface and an upper side of the ground surface above the seismic isolation device. A building frame with an upper part is constructed so that a mountain retaining wall is formed around the lower part of the building frame including the part where the seismic isolation device is installed.
The inclination angle of the column-type inclined continuous wall made of soil cement is determined by the softness of the ground. For example, it is inclined 8 ° to 16 ° outside the lower part of the building frame with respect to the vertical line.
If necessary, a concrete concrete or mortar inclined wall is constructed in contact with the surface of the column-type inclined continuous wall facing the lower part of the building frame.
[0005]
According to the building construction method of the present invention, a mountain retaining wall is constructed so as to surround a part or all of a portion of the ground where the building is to be constructed, and a number of concrete piles are provided on the portion of the ground where the building is to be constructed. Excavate the ground surrounded by the mountain retaining wall to a predetermined depth, build a concrete base, footing, etc. integrally with the pile head at a predetermined depth from the ground surface, above the foundation, In a building construction method for constructing a building frame having a lower part located below the ground surface and an upper part located above the ground surface, a part or all of the mountain retaining wall is below the ground surface. In the ground that is outside the lower part of the building frame, the column-type inclined continuous wall consisting of a number of soil cement columns inclined at the same angle to the outside of the lower part of the building frame with respect to the vertical line And then the mountain tower including the columnar inclined continuous wall The ground portion enclosed by drilled to a predetermined depth and is characterized in that to construct the foundation.
When building a building with a seismic isolation function, place a number of seismic isolation devices on the upper side of the foundation, above the seismic isolation device, below the ground surface and above the ground surface. Build a building frame with an upper part located. And, as a part or all of the mountain retaining wall, a number of soil cement columns in the ground which is outside the lower part located below the ground surface of the building frame including the part where the seismic isolation device is arranged Are inclined at substantially the same angle to the outside of the lower part of the building frame with respect to the vertical line, and the distance between the centers of the soil cement pillars is made smaller than its diameter, so that adjacent soil cement pillars can be connected to each other. After the soil-cemented columnar column-type sloped continuous wall is integrated, the foundation is constructed by excavating the ground portion surrounded by the mountain retaining wall including the columnar column-type sloped continuous wall.
In addition, a mountain retaining wall is constructed after the construction of the mountain retaining wall, or a mountain retaining wall is constructed after providing the pile. Alternatively, the construction of the mountain retaining wall and the construction of the pile may be performed in parallel.
[0006]
【Example】
An Example is shown by FIGS. 1-12 and is an example which applied this invention to the building provided with the seismic isolation function.
As shown in FIG. 1, a large number of concrete cast-in-place piles 11 are provided in the ground where the building is constructed, and a depth D (for example, 2.8 m to 3.5 m) from the ground surface GL. A foundation 12 such as a flat concrete base or footing is constructed integrally with the pile head, and a seismic isolation device 13 made of a large number of laminated rubber is arranged on the upper side of the foundation 12, and a building is installed on the upper side of the seismic isolation device 13. The receiving part 14a of the seismic isolation device 13 at the lower part of the frame 14 is mounted, and the building frame 14 is formed of a beam 14b, a column 14c, a floor 14d, etc. The floor surface of the floor 14d on the first floor of the building frame 14 The depth D is determined so that FL is slightly higher than the ground surface GL.
Around the accommodation space Sp 1 of receiving from the surface of the building skeleton 14 of the lower portion 14a and the isolator 13, tubular elements inclinometer continuous wall 10 to be inclined mountain Tomekabe at intervals are formed . The columnar inclined continuous wall 10 is formed by curing the soil obtained by excavating the ground with a curing agent. The columnar inclined continuous wall 10 is inclined (for example, 10 °) outside the accommodation space Sp 1 with respect to the vertical line. The columnar inclined continuous wall 10 has such a length that its lower part reaches the vicinity of the pile 11 located below the peripheral part of the building.
In addition, a bowl-like floor 14e is built around the building housing 14, and the bowl-like floor 14e is a portion where the columnar inclined continuous wall 10 and the seismic isolation device 13 are installed or a receiving part 14a. The upper part of the gap Sp 2 between the lower part of the building housing 14 including the above is covered.
[0007]
Next, devices used for constructing the columnar inclined continuous wall 10 will be described.
The drilling and kneading machine 20 is shown in FIG. 2 and FIG. 3 and is a three-shaft type. The head 21 includes a hanging part 21a, a motor 21b, and a speed reducer 21c, and the motor 21b is rotated by the speed reducer 21c. The speed can be reduced and transmitted to the three rotary shafts 22a, 22b, and 22c supported by the head 21. A drilling mud shaft 23 is connected to the central rotating shaft 22a. The drilling mud shaft 23 is provided with a screw 23a over substantially the entire length, and a screw 23c and a drilling blade 23b are provided at the tip thereof. A cylindrical casing 24 is fitted over substantially the entire length of the drilling and muddy shaft 23, and the cylindrical casing 24 can be integrally coupled to the head 21. A spacing piece 25 is provided in the cylindrical casing 24 so that the center axis of the drilling and mastication shaft 23 and the center axis of the cylindrical casing 24 coincide with each other and the rotation of the drilling and muddy shaft 23 is allowed. The right rotating shaft 22b is connected to an excavation mud shaft 26 having a stirring blade 26a and an excavating blade 26b at the tip thereof, and the left rotating shaft 22c is provided with an agitating blade 27a and an excavating blade 27b at the tip thereof. The drilling mud shaft 27 is connected.
[0008]
Spacing means 28 is provided between the cylindrical casing 24 and the left and right drilling mud shafts 26, 27, and the respective drilling mud shafts 23, 26, 27 maintain their central axes parallel to each other. Each can be rotated.
As a hoisting machine 30 for lifting the excavating mud machine 20, a hoisting machine 33, a telescoping boom are provided on a machine body 32 with a turning device provided on the upper part of a crawler type traveling device 31 as shown in FIG. 34, a mobile crane provided with a boom hoisting device 35, a cab and the like is used.
The hanging rod 36 attached to the rope 33a wound around the hoisting machine 33 and suspended from the tip of the boom 34 is hung on the hanging portion 21a of the head 21 of the excavating mud mill 20, and the excavating mud mill 20 is moved. It is lifted so that the drilling and kneading machine 20 can be raised and lowered. The lifting machine 30 and the excavating mud machine 20 constitute a movable excavating mud apparatus.
[0009]
A movable guide device 40 that guides the cylindrical casing 24 of the excavating and kneading machine 20 in the vertical direction while maintaining a constant inclination angle θ has the configuration shown in FIGS. 4 to 6. That is, the airframe 42 is pivotally attached to the upper part of the crawler type traveling device 41 by a turning device, and the cab 43 is provided on the one side of the airframe 42, and the base of the arm 44 is supported by the support shaft 44a. The tip of the arm 44 is pivotably attached to the protrusion on the back of the guide body 45 by the support shaft 44b, and the tip of the arm 44 and the substantially center of the machine body 42 are attached. The first telescopic connection body 46 is disposed between the base body and the base of the first telescopic connection body 46 is rotatably attached to the machine body 42 by a support shaft 46a. A tip portion is rotatably attached to the guide body 45 by a support shaft 44b. A second telescopic connection body 47 is arranged on the lower side of the arm 44, and a base portion of the second telescopic connection body 47 is rotatably attached to the machine body 42 by a support shaft 47a. A tip portion of the body 47 is rotatably attached to a protrusion below the back portion of the guide body 45 by a support shaft 47b.
In addition, as the telescopic coupling bodies 46 and 47, for example, a hydraulic cylinder device in which a cylinder and a rod with a piston are fitted in the cylinder is used.
The guide body 45 is composed of, for example, a steel main body 45a having a transverse cross section, and extends in the longitudinal direction of the main body 45a with a gap from the front flange 45a 1 of the main body 45a, and the central axis thereof extends over the ground surface GL. The long guide pieces 45b, 45b having a rod-like or tubular shape having a circular cross section are attached so as to be positioned on a plane perpendicular to the horizontal plane. The outer half of the long guide piece 45b is covered with a cover 45c having a semicircular cross section. Incidentally, long in place of the guide piece 45b, it may be provided two rows plurality of guide rollers spaced the flange 45a 1 located at intervals in the central axis.
If necessary, a receiving piece 45d is attached to the lower back surface of the main body 45a of the guide body 45, and a support body (for example, a hydraulic jack) 46 is disposed between the lower surface of the receiving piece 45d and the ground surface, Displacement of the guide body 45 is prevented when the cylindrical casing 24 of the drilling and kneading machine 20 is engaged.
[0010]
Next, how to guide the cylindrical casing 24 of the excavating and kneading machine 20 by the movable guide device 40 will be described. As shown in FIGS. 4 and 7, the crawler type traveling device 41 is parallel to the center line of the upper surface of the columnar inclined continuous wall 10 to be constructed, and the guide piece 45 b of the guide body 45 of the movable guide device 40. , 45b, the movable guide device 40 is moved to such a position that the outer surface of the columnar inclined continuous wall 10 to be constructed is located on the extended line of the central axis line.
Then, as a lifting machine 30 for lifting the excavating mud mill 20, a mobile crane equipped with a hoisting machine 33, a telescopic boom 34, a boom hoisting device 35, etc. is used, and a rope 33 a suspended from the tip of the boom 34 is used. The attached hanging rod 36 is hung by hanging on the hanging portion 21a of the head 21 of the excavating mud mill 20, and the hoisting machine 30 in which the excavating mud machine 20 is suspended is brought close to the movable guide device 40 and suspended. The lower outer peripheral surface of the cylindrical casing 24 of the drilling and kneading machine 20 in a lowered state is brought into contact with the guide pieces 45b and 45b of the guide body 45, and the telescopic coupling bodies 46 and 47 of the movable guide device 40 are expanded and contracted. Adjustment is made so that the inclination angle θ of the central axis of the cylindrical casing 24 of the drilling and muddying machine 20 becomes a predetermined inclination angle and the extension line of the central axis coincides with the center line of the surface of the columnar inclined continuous wall 10. To do.
Then, the hoisting machine 33 of the hoisting machine 30 is driven by rotating the motor 21b of the excavating mud mill 20 to rotate the excavating mudshaft shafts 23, 26 and 27, and the hoisting machine 33 is wound around the hoisting machine 33. The rope 33a is fed out and the drilling and kneading machine 20 suspended by the hanging rod 36 attached to the rope 33a is lowered, and the cylindrical casing 24 of the drilling and kneading machine 20 is moved along the guide pieces 45b and 45b of the guide body 45. The ground is excavated by the excavating blades 23b, 26b and 27b at the tip of the excavating mud shafts 23, 26 and 27.
[0011]
As shown in FIG. 7, a cement silo 51, a mixing plant 52, a transfer pump 53, and the like are installed at the construction site.
In order to give a predetermined uniaxial compressive strength to the columnar inclined continuous wall 10 to be constructed, the amount of the infusate per 1 m 3 of on- site earth and sand is, for example, 260 kg of cement, 10 kg of bentonite, and 390 l of water. The mixing plant 52 prepares an injecting agent having the above mixing ratio, that is, a mixing ratio of 260 kg of cement, 10 kg of bentonite, and 390 l of water, and supplies it to the drilling and kneading machine 20 through the transfer pipe 54.
[0012]
Next, a method of constructing the columnar sloped continuous wall 10 that becomes the sloped mountain retaining wall will be described.
As shown in FIG. 12 (a), three soil cement columns are spaced apart from each other on a central line Cl in plan view of the columnar sloped continuous wall 10 of the sloped mountain wall to be constructed. As shown in FIG. 12 (b), the columnar sloped partial wall 10a is connected to the gap between the columnar sloped partial wall 10a and the columnar sloped partial wall 10a. A column-row inclined partial wall 10b in which three soil cement columns are connected to each other is constructed to correspond to each other, and a column-row inclined continuous wall 10 is formed as shown in FIG.
[0013]
The columnar inclined partial walls 10a and 10b are formed as follows.
For example, the hoisting machine 30 and the movable guide device 40 are arranged so as to be in the state shown in FIGS. 4 and 7, and the telescopic coupling bodies 46 and 47 of the movable guide device 40 are expanded and contracted, thereby excavating and kneading machine 20. The inclination angle θ of the central axis of the cylindrical casing 24 becomes a predetermined inclination angle, and the extension line of the central axis of each drilling muddy shaft 23, 26, 27 is the central axis CL of the ground surface of the columnar inclined continuous wall 10. Then, the hoisting machine 33 of the hoisting machine 30 is driven by rotating the motor 21b of the drilling and muddying machine 20 and rotating the drilling and muddying shafts 23, 26 and 27. The rope 33a wound around the hoisting machine 33 is fed out, the excavating mud machine 20 suspended by the hanging rod 36 attached to the rope 33a is lowered, and the cylindrical casing 24 of the excavating mud machine 20 is moved to the guide body 45. Move downward along the guide pieces 45b, 45b, and dig Previous drilling blade 23b of Doronerijiku 23,26,27, 26b, to excavate the ground at 27b. After excavating to a predetermined depth, the injection prepared in the mixing plant 52 is not supplied to the earth and sand in the excavation hole through the transfer pump 53, the transfer pipe 54, the pipe 55 attached to the cylindrical casing 24, etc. Then, while rotating and reversing the drilling mastication shafts 23, 26, and 27, the hoisting machine 33 winds and unwinds the rope 36 to raise and lower the drilling muddy shafts 23, 26, and 27, After the agitating blades 26a, 27a and the like sufficiently agitate the earth and sand in the excavation hole and the injection agent, the excavation mud shafts 23, 26, 27 and the like are pulled out. After the drilling mud shafts 23, 26, 27 and the like are pulled out, the columnar inclined portion walls 10a, 10b are formed. In addition, when the ground surface is weak, as shown in FIG. 4, the iron plate Pl is laid on the ground surface where the lifting machine 30 and the movable guide device 40 travel. Excess soil generated by excavation is transferred to an unobstructed place using a crawler excavator 60 or the like.
[0014]
As shown in FIG. 8, the columnar inclined continuous wall 10 is constructed so as to surround a part or all of the ground portion where the building is to be constructed, and the ground portion where the building is to be constructed is shown in FIG. 9. As shown in FIG. 10, the ground surrounded by the columnar inclined continuous wall 10 and the like is excavated to a predetermined depth after a large number of concrete cast-in-place piles 11 are constructed. A concrete base, footing, or other foundation 12 is constructed integrally with the pile head at a depth (for example, 2.8 m to 3.5 m), and as shown in FIG. A seismic isolation device 13 made of laminated rubber is provided, and a beam 14b, a column 14c, and a receiving portion 14a of the seismic isolation device 13 in the lower part of the building housing 14 are placed on the upper side of the seismic isolation device 13. A building housing 14 composed of a floor 14d and the like is constructed.
As shown in FIGS. 1 and 11, a concrete concrete or mortar slope wall 16 is constructed in contact with the surface on the gap Sp 2 side of the columnar inclined continuous wall 10, and the slope wall The lower part of 16 is connected to the foundation 12 of the building frame. By reducing the earth pressure by the inclined continuous wall 10, the inclined wall 16 can reduce the amount of bar arrangement and reduce the wall thickness. Further, this column-type inclined continuous wall made of soil cement has a high water-stopping property and provides long-term protection of the inclined wall 16.
[0015]
[Effects of the invention]
This invention has the following effects (a) to (g) by providing the configuration described in each claim of the claims.
(A) The building of the invention according to claim 1 is a part of a mountain retaining wall formed around the lower part of the building frame located below the ground surface and spaced from the lower part of the building frame. Alternatively, all of them are composed of column-type inclined continuous walls made of soil cement, and the column-type inclined continuous walls are inclined to the outside of the lower part of the building frame with respect to the vertical line, Columns adjacent to each other in the column are integrated with each other, and the soil-cemented column column type inclined continuous wall is inclined to the outside of the lower part of the building frame with respect to the vertical line. Even without this, it can sufficiently withstand the earth pressure, can minimize the volume of the soil to be improved, and can reduce the cost and the construction period.
(B) The building having the seismic isolation function of the invention according to claim 2 has not only the effects described in (a) above, but also the periphery of the lower part of the building frame including the part where the seismic isolation device is installed. Can be constructed with good workability.
[0016]
(C) As described in claim 3, when the column-type inclined continuous wall made of soil cement is inclined 8 ° to 16 ° outside the lower part of the building frame with respect to the vertical line, It is possible to construct a column wall-type inclined continuous wall that can withstand earth pressure without taking up a site for the construction of the mountain wall around the part. Further, in the case of an inclination angle of about 8 ° to 16 °, the workability of construction of a column-type inclined continuous wall made of soil cement is not impaired.
(D) As described in claim 4, when a slope wall of a concrete concrete or mortar structure is formed in contact with the sloped mountain retaining wall facing the lower part of the building frame, the sloped wall is By reducing the earth pressure by the column-type inclined continuous wall made of soil cement, the amount of bar arrangement can be reduced and the wall thickness can be reduced. Moreover, this column-type inclined continuous wall made of soil cement has a high water-stopping property and provides long-term protection of the inclined wall.
[0017]
(E) The building construction method of the invention according to claim 5 is directed to a vertical line in the ground on the outside of the lower part of the building frame located below the ground surface as part or all of the mountain retaining wall. After building a column-type inclined continuous wall consisting of many soil cement columns inclined at the same angle outside the lower part of the building frame, it was surrounded by a mountain retaining wall including the column-type inclined continuous wall. The foundation is constructed by excavating the ground part to a predetermined depth. Since the soil-cemented columnar continuous slope wall is inclined outside the lower part of the building frame with respect to the vertical line, Even if the wall thickness is not increased, it is possible to sufficiently withstand the earth pressure with the mountain wall of a single column-type inclined continuous wall, minimizing the volume of soil that needs to be improved, and reducing costs. The construction period can be shortened.
(F) The method for constructing a building having the seismic isolation function of the invention according to claim 6 not only exhibits the function and effect described in (a) above, but also includes a part where the seismic isolation device is installed. The mountain retaining wall around the part can be constructed with good workability.
(G) As described in claim 7, when a soil-cemented columnar column-type inclined continuous wall is constructed so that its lower part reaches the vicinity of a number of concrete piles located below the outer peripheral part of the building The lower part of the columnar sloped continuous wall is also supported by the reinforced ground near the pile, and the earth pressure is maintained at the retaining wall of the columnar sloped continuous wall without increasing the wall thickness. Can withstand enough.
[Brief description of the drawings]
FIG. 1 is a front view of a vertical section of a column-type inclined continuous wall, which is a lower part of the building frame of the embodiment, and a mountain retaining wall on the outside thereof. FIG. 2 is used to construct a column-type inclined continuous wall of the embodiment. Front view of the drilling and kneading machine [Fig. 3] Side view of the drilling and kneading machine shown in FIG. 2 from the right side [Fig. 4] Lifting device and drilling and kneading machine used for construction of the sloped mountain retaining wall of the embodiment FIG. 5 is a front view showing a state in which the body of the movable guide device used for constructing the columnar inclined continuous wall of the embodiment is rotated by 90 °. FIG. 5 is a plan view of the guide body of the movable guide device shown in FIG. 5 taken along line AA in FIG. 5. FIG. 7 shows a lifting machine, a movable guide device, a cement silo, Plan view showing the relationship of the mixing plant, etc. [Fig. 8] Front view of the ground after the construction of the column-type inclined continuous wall of the embodiment. [Fig. 9] Column row-type tilt of the embodiment Front view of longitudinal section of ground after construction of continuous wall and on-site pile [Fig. 10] Front view of longitudinal section of abandoned concrete after excavating the ground part where the building frame of the embodiment should be constructed [Figure] 11] Front view of a state in which a seismic isolation device is installed on the foundation, footing, etc. of the embodiment, and a building frame is constructed on the upper side of the seismic isolation device. [Fig. 12] (a) to (c) are FIG. 13 is a front view showing the ground of a construction part of a mountain retaining wall according to a conventional method for constructing a mountain retaining wall in a longitudinal direction. [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Column row-type inclination continuous wall 10a, 10b Column row-type inclination partial wall 11 Field cast pile 12 Foundation 13 Seismic isolation device 14 Building frame 14a Receiving part 16 Inclination wall 20 Excavation mud mill 21 Head 21a Suspension part 21b Motor 21c Deceleration Machines 22a, 22b, 22c Rotating shafts 23, 26, 27 Drilling and mastication shafts 23a Screws 23b, 26b, 27b Drilling blades 24 Cylindrical casings 26a, 27a Stirring blades 28 Spacing means 30 Lifting machine 31 Crawler type traveling device 33 Winding Upper machine 33a Rope 36 Hanging rod 40 Movable guide device 41 Crawler type traveling device 42 Machine body 44 Arms 46, 47 Telescopic coupling body 45 Guide body 45a Main body 45b Guide piece 46 Support body (for example, hydraulic jack)
51 Cement silo 52 Mixing plant 53 Transfer pump 54 Transfer pipe FL Floor GL Ground surface Sp 1 Accommodation space Sp 2 Gap

Claims (7)

建物が構築される箇所の地表面から所定の深度のところにコンクリート造の基盤、フーチング等の基礎が構築され、前記基礎の上側に地表面より下方に位置する下部分と地表面より上方に位置する上部分を備えた建物躯体が構築されて、地表面より下方に位置する建物躯体の下部分の周囲に該下部分に対して間隔をおいて山留壁が形成されている建物において、前記山留壁の一部又は全部がソイルセメント造の柱列式傾斜連続壁で構成され、該柱列式傾斜連続壁が鉛直線に対して建物躯体の下部分の外側に傾斜し、前記柱列式傾斜連続壁の柱列の隣接する柱同士が互いに一体化されていることを特徴とする建物。A concrete base, footing, or other foundation is constructed at a predetermined depth from the ground surface where the building is to be constructed, and is located above the foundation and below the ground surface and above the ground surface. In a building in which a building frame having an upper part is constructed, and a mountain retaining wall is formed around the lower part of the building frame located below the ground surface and spaced from the lower part. A part or all of the mountain retaining wall is composed of a column-type inclined continuous wall made of soil cement, and the column-type inclined continuous wall is inclined to the outside of the lower part of the building frame with respect to the vertical line. The building is characterized in that adjacent columns in a column row of a slanted continuous wall are integrated with each other. 建物が構築される箇所の地中に多数のコンクリート造の杭が設けられ、地表面から所定の深度のところにある杭頭と一体にコンクリート造の基盤、フーチング等の基礎が構築され、前記基礎の上側に多数の免震装置が配置され、前記免震装置の上側に地表面より下方に位置する下部分と地表面より上方に位置する上部分とを備えた建物躯体が構築されて、免震装置が設置される部分を含む建物躯体の下部分の周囲に山留壁が形成されている免震機能を備えた建物において、前記山留壁の一部又は全部がソイルセメント造の柱列式傾斜連続壁で構成され、該柱列式傾斜連続壁が鉛直線に対して建物躯体の下部分の外側に傾斜し、前記柱列式傾斜連続壁の柱列の隣接する柱同士が互いに一体化されていることを特徴とする免震機能を備えた建物。A large number of concrete piles are provided in the ground where the building will be constructed, and a concrete foundation, footing, etc. foundation is built together with the pile head at a predetermined depth from the ground surface. A large number of seismic isolation devices are arranged on the upper side of the building, and a building frame having a lower portion located below the ground surface and an upper portion located above the ground surface is constructed on the upper side of the seismic isolation device. In a building with a seismic isolation function in which a mountain retaining wall is formed around the lower part of the building frame including the part where the seismic device is installed, a part or all of the mountain retaining wall is a column of soil cement The columnar inclined continuous wall is inclined to the outside of the lower part of the building frame with respect to the vertical line, and adjacent columns of the columnar inclined continuous wall are integrated with each other. A building with a seismic isolation function that is characterized by being made into a building. ソイルセメント造の柱列式傾斜連続壁が鉛直線に対して建物躯体の下部分の外側に8゜〜16゜傾斜していることを特徴とする請求項1又は2記載の建物。3. A building according to claim 1 or 2, wherein the soil-cemented column-column-type inclined continuous wall is inclined at an angle of 8 ° to 16 ° outside the lower part of the building frame with respect to the vertical line. 建物躯体の下部分に面する柱列式傾斜連続壁の面に接して本設のコンクリート造又はモルタル造の傾斜壁が形成されてることを特徴とする請求項1又は2記載の建物。The building according to claim 1 or 2, wherein a concrete or mortar inclined wall is formed in contact with a column-type inclined continuous wall facing a lower part of the building frame. 建物を構築すべき地盤の部分の一部又は全部を囲むように山留壁を構築し、かつ建物を構築すべき地盤の部分に多数のコンクリート造の杭を設け、山留壁で囲まれた地盤を所定の深度まで掘削し、地表面から所定深度のところに杭頭と一体にコンクリート造の基盤、フーチング等の基礎を構築し、該基礎の上側に、地表面より下方に位置する下部分と地表面より上方に位置する上部分とを備えた建物躯体を構築する建物の構築方法において、前記山留壁の一部又は全部として、地表面より下方に位置する建物躯体の下部分の外側となる地盤中に、鉛直線に対して建物躯体の下部分の外側に略同じ角度傾斜した多数のソイルセメント造の柱からなる柱列式傾斜連続壁を構築した後に、前記柱列式傾斜連続壁を含む山留壁で囲まれた地盤部分を所定の深度まで掘削して前記基礎を構築することを特徴とする建物の構築方法。A mountain retaining wall is constructed so as to enclose part or all of the ground part where the building is to be constructed, and a number of concrete piles are provided in the ground part where the building is to be constructed, and are surrounded by the mountain retaining wall. Excavate the ground to a predetermined depth, and construct a concrete base, footing, etc. integrally with the pile head at a predetermined depth from the ground surface, and the lower part located below the ground surface above the foundation And an upper part located above the ground surface, the building construction method comprising: a part or all of the mountain retaining wall, the outside of the lower part of the building housing located below the ground surface After building a column-type inclined continuous wall consisting of many soil cement columns inclined at substantially the same angle outside the lower part of the building frame with respect to the vertical line, Place the ground part surrounded by the mountain wall including the wall. Method for constructing a building, characterized by constructing the foundation was drilled to the depth. 建物を構築すべき地盤の部分の一部又は全部を囲むように山留壁を構築し、かつ建物躯体を構築すべき地盤の部分に多数のコンクリート造の杭を設け、山留壁で囲まれた地盤部分を所定の深度まで掘削し、地表面から所定深度のところに杭頭と一体にコンクリート造の基盤、フーチング等の基礎を構築し、該基礎の上側に、多数の免震装置を配置し、免震装置の上側に地表面より下方に位置する下部分と地表面より上方に位置する上部分とを備えた建物躯体を構築する免震機能を備えた建物の構築方法において、前記山留壁の一部又は全部として、免震装置が配置されている部分を含む建物躯体の地表面より下方に位置する下部分の外側となる地盤中に多数のソイルセメント造の柱を鉛直線に対して建物躯体の下部分の外側に略同じ角度傾斜させ、かつソイルセメント造の各柱の中心間の距離をその径よりも小さくし、隣接するソイルセメント造の柱同士を互いに一体化させてソイルセメント造の柱列式傾斜連続壁を構築した後に、前記柱列式傾斜連続壁を含む山留壁で囲まれた地盤部分を掘削して前記基礎を構築することを特徴とする免震機能を備えた建物の構築方法。A retaining wall is constructed so as to surround part or all of the ground part where the building is to be constructed, and a large number of concrete piles are provided in the ground part where the building frame is to be constructed, and are surrounded by the retaining wall. The excavated ground part is excavated to a predetermined depth, and a concrete base, footing, etc. is constructed integrally with the pile head at a predetermined depth from the ground surface, and a number of seismic isolation devices are placed above the base. In the building construction method with a seismic isolation function for constructing a building frame having a lower part located below the ground surface and an upper part located above the ground surface above the seismic isolation device, As part or all of the retaining wall, a number of soil-cement columns are perpendicular to the ground outside the lower part located below the ground surface of the building frame including the part where the seismic isolation device is located. Inclined at approximately the same angle outside the lower part of the building frame And the distance between the centers of each column of soil cement is made smaller than the diameter, and the adjacent soil cement columns are integrated with each other to construct a soil cement column continuous inclined wall A method for constructing a building having a seismic isolation function, wherein the foundation is constructed by excavating a ground portion surrounded by a mountain retaining wall including the columnar inclined continuous wall. ソイルセメント造の柱列式傾斜連続壁をその下方の部分が建物の外周部の下方に位置する多数のコンクリート造の杭の近傍まで延在するように構築することを特徴とする請求項5又は6記載の建物の構築方法。The soil-cemented column-type inclined continuous wall is constructed so that the lower part thereof extends to the vicinity of a number of concrete piles located below the outer peripheral part of the building. 6. A building construction method according to 6.
JP12523998A 1998-04-20 1998-04-20 Building and its construction method Expired - Fee Related JP3806813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12523998A JP3806813B2 (en) 1998-04-20 1998-04-20 Building and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12523998A JP3806813B2 (en) 1998-04-20 1998-04-20 Building and its construction method

Publications (2)

Publication Number Publication Date
JPH11303110A JPH11303110A (en) 1999-11-02
JP3806813B2 true JP3806813B2 (en) 2006-08-09

Family

ID=14905246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12523998A Expired - Fee Related JP3806813B2 (en) 1998-04-20 1998-04-20 Building and its construction method

Country Status (1)

Country Link
JP (1) JP3806813B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524490B2 (en) * 2000-08-03 2010-08-18 東洋建設株式会社 Slope-land conservation type building and its construction method
JP4717691B2 (en) * 2006-04-13 2011-07-06 株式会社テノックス Construction method for obliquely constructing a soil cement pillar containing a steel pipe and a guide device used for the construction
JP6167538B2 (en) * 2013-02-01 2017-07-26 株式会社大林組 Scaffolding structure for construction of underground structure and installation method of scaffolding for construction of underground structure
JP7398609B2 (en) * 2019-12-12 2023-12-15 株式会社大林組 Concrete frame construction method and underground structure

Also Published As

Publication number Publication date
JPH11303110A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
CN110486019B (en) Underground excavation construction method for additionally arranging underground communication channels between new buildings and old buildings
JP3806813B2 (en) Building and its construction method
CN111962506A (en) Collimating pile structure and construction method
CN116044437A (en) Tunnel supporting isolation system and construction method thereof
JP3814771B2 (en) Method for constructing column-row-type inclined continuous wall and movable guide device for cylindrical casing of excavating muddy machine
JP3451275B2 (en) Deep foundation excavator
JP3306527B2 (en) Open cut method of soft ground by deep mixing method
JPH03257215A (en) Pile constructing method
CN216517822U (en) Drill and dig prefabricated well structure of quick installation of pore-forming and drill and dig pore-forming device
WO2010104235A1 (en) Excavation method of underground plaza and submarine plaza using steel casing retaining wall
JPH0534475B2 (en)
JPS62206119A (en) Construction of continuous cut-off wall
JP2003082689A (en) Execution method for foundation of steel pipe pile
JPH02164913A (en) Construction method for foundation pile with transverse wall
JP2876525B2 (en) Soft ground consolidation equipment
JPH09125405A (en) Deep foundation for inclined tower leg
JPS63161289A (en) Shaft excavator and construction method of shaft using said device
CN115595985A (en) Foundation pit supporting structure under narrow space condition and construction method thereof
JPH04108994A (en) Construction for vertical shaft
JPS63297624A (en) Construction work of underground continuous cut-off wall and excavator therefor
JP2553987B2 (en) Deep foundation foundation excavation construction method
CN117344719A (en) Rotary digging pile reinforcement cage arm guard
JP2868664B2 (en) Ridong Cave Construction Method
CN116927654A (en) Hole forming construction method and auxiliary device for dry operation of pile foundation of main tower in complex geology
CN113585280A (en) Inclined strut supporting method for house foundation pit construction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees