JP3806482B2 - Current value change measuring device - Google Patents

Current value change measuring device Download PDF

Info

Publication number
JP3806482B2
JP3806482B2 JP04782997A JP4782997A JP3806482B2 JP 3806482 B2 JP3806482 B2 JP 3806482B2 JP 04782997 A JP04782997 A JP 04782997A JP 4782997 A JP4782997 A JP 4782997A JP 3806482 B2 JP3806482 B2 JP 3806482B2
Authority
JP
Japan
Prior art keywords
voltage
sample
value
current
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04782997A
Other languages
Japanese (ja)
Other versions
JPH10246759A (en
Inventor
裕司 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP04782997A priority Critical patent/JP3806482B2/en
Publication of JPH10246759A publication Critical patent/JPH10246759A/en
Application granted granted Critical
Publication of JP3806482B2 publication Critical patent/JP3806482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路等の試料の検査装置として用いられる試料にレーザビームを照射して、これに伴う試料の電流変化を測定する装置に関する。
【0002】
【従来の技術】
半導体集積回路等の試料の欠陥を検査する装置として、特開昭56−45045号公報に記載されている装置がある。この装置のブロック構成図を図4に示す。
【0003】
光源であるレーザ発生部1から出射されるレーザビームの光路上にこのレーザビームを入射方向に直交する2次元方向にラスタースキャンさせるレーザ走査部2と走査されたレーザビームを微小スポット径に集束させる顕微鏡3が配されている。顕微鏡3の焦点位置には、半導体集積回路等の被測定試料4が配置される。試料4には、電圧源5により所定の電圧が印加されている。被測定試料4は、演算増幅器8と帰還抵抗9からなる電流/電圧変換増幅器7に接続されている。電流/電圧変換増幅器7は、信号処理部10に接続され、信号処理部10には、さらに、モニター11が接続されている。信号処理部10はまた、レーザ走査部2に接続されている。
【0004】
レーザ発生部1から射出されたレーザビームは、レーザ走査部2で光路に直交する2次元方向にラスタースキャンされたうえ顕微鏡部3で集光されて被測定試料4表面の微細部分に照射される。この走査は信号処理部10によって制御される。試料4には、電圧源5により予め所定の電圧が印加されており、回路内には所定の電流が流れている。試料4のレーザビームを照射されている箇所では、レーザビームを吸収して温度が上昇し、抵抗率が変化するため、試料4を流れる電流値も変化する。ボイド等の欠陥がある箇所では熱伝導が悪いため、こうした箇所にレーザを照射した場合は、周囲へ熱が逃げにくいために温度上昇が大きくなり、それに伴う抵抗率変化も大きく、結果として電流値変化も大きくなる。
【0005】
この電流値を電流/電圧変換増幅器7により電圧値に変換して信号処理部10に転送する。信号処理部10は、この電圧値の差を輝度情報に変換してレーザビーム照射位置に対応して並べた画像情報を生成してモニター11に表示する。
【0006】
これにより、試料の欠陥箇所を画面上で確認することができる。
【0007】
【発明が解決しようとする課題】
この装置における試料の欠陥の検出精度は、電流/電圧変換増幅器7における電圧値変化の検出精度に依存する。この電流/電圧変換増幅器7の信号検出時の信号対雑音(S/N)比S/N及び増幅率Gは、
S/N=ΔI(Rf/4kTB)1/2 (1)
G=Rf/Ri (2)
と示される。ここで、ΔIは電流の変動分、kはボルツマン定数、Tは温度、Bは演算増幅器8の周波数帯域、Rfは帰還抵抗9の抵抗値、Riは電圧源5から演算増幅器8の負入力端まで内部抵抗値である。
【0008】
(1)式に示されるように信号検出のS/N比を決定するのは、帰還抵抗9の抵抗値Rfであるため、S/N比を向上させるには、帰還抵抗9の抵抗値Rfを大きくすることが好ましい。しかし、測定対象となる試料4の内部抵抗は、測定対象によって数Ωから数十kΩと大きく異なる。試料4の内部抵抗が大きい試料の電流値変化を正確に測定するため、帰還抵抗9の抵抗値Rfを数MΩまで大きくすると、逆に試料4の内部抵抗が数Ωと小さい場合には、増幅率Gは(2)式より約100万倍と非常に大きな値になる。増幅率が大きいと、電圧源5や電流/電圧変換増幅器7の低周波雑音が試料4を流れる電流の変動分ΔIに比べて著しく大きくなり、出力信号のS/N比も低下してしまう。また、一般に増幅率が大きくなると電流/電圧変換増幅器7の周波数帯域が低周波域に移行するため、レーザ光照射に伴う試料4の抵抗値変化速度に追従できなくなるという問題があった。したがって、数Ω程度と内部抵抗の小さい試料を測定することが困難であった。
【0009】
また、AC動作するような試料を測定する場合には、印加される電圧自体が変動する場合がある。特開昭56−45045号公報には、さらにこの電圧変動を調整する技術が開示されている。これは、図4に示される装置を改良したもので、図5に示されるように電圧源5に上限電圧リミッタ回路15と下限電圧リミッタ回路16が接続され、これらと信号処理部10とがさらに接続されたものである。
【0010】
測定中は、信号処理部10で試料4に印加されている電圧と、上限電圧リミッタ回路15及び下限電圧電圧リミッタ回路16でそれぞれ設定されている上限電圧及び下限電圧と比較し、印加電圧がこの上限電圧を越えた場合は、電圧源5が印加する電圧をこの上限電圧以下に、又印加電圧がこの下限電圧を下回った場合には、電圧源5が印加する電圧をこの下限電圧以上になるように制御するものである。しかし、この技術では、印加電圧は上限電圧と下限電圧の間で変動して一定とならず、それに伴って被測定試料に流れる電流も変動し、測定精度が劣化するという問題点があった。
【0011】
本発明は、半導体集積回路等の試料にレーザを照射したときの電流値変化を高精度で測定可能な電流値変化測定装置を提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明は、通電した半導体集積回路等の試料にレーザビームを走査しながら照射し、この照射に伴う試料の電流値変化を測定することにより、試料の欠陥箇所を検査する電流値変化測定装置において、試料と直列に接続され、レーザビームを照射しない場合の試料との直列回路の全抵抗値が所定の抵抗値以上となるよう直列回路の全抵抗値を調整する可変抵抗手段と、レーザビーム照射前に試料を流れる電流が所定の電流値となるよう試料へ印加する電圧値を設定し、レーザビームを走査して測定する間、試料に印加する電圧を常に設定した電圧値に保持する電圧保持手段と、を備えていることを特徴とする。
【0013】
これにより、試料と可変抵抗を直列に接続した回路の全抵抗値が所定の抵抗値以上に保たれるため、試料を流れる電流値は所定の電流値以下に抑えられる。また、試料に印加する電圧は、測定中事前に設定した測定に好適な電圧値に保たれる。
【0014】
【課題を解決するための手段】
本発明は、通電した半導体集積回路等の試料にレーザビームを走査しながら照射し、この照射に伴う試料の電流値変化を測定することにより、試料の欠陥箇所を検査する電流値変化測定装置において、試料と直列に接続され可変抵抗手段と、この可変抵抗手段、試料に直列に接続され、試料に流れる電流を電圧信号に変換して出力する電流/電圧変換増幅器と、可変抵抗手段、試料、電流/電圧変換増幅器からなる直列回路に入力電圧に比例した電圧を印加する第1の電圧源と、第1の電圧源に接続され、入力された電圧値を第1の電圧源にそのまま出力する動作と、入力された電圧値を保持して保持された電圧値を第1の電圧源に出力する動作の2種類を切り替える電圧保持手段と、出力電圧値を調整可能な第2の電圧源と、電圧保持手段に接続され、第2の電圧源と電流/電圧変換増幅器の出力電圧とを比較する演算増幅器と、レーザビームの照射前に電圧保持手段の帰還制御により、試料に流れる電流値を一定に維持して試料の内部抵抗を判定し、直列回路の抵抗値が所定値以上となるよう可変抵抗手段の抵抗を設定するとともに、レーザビームの照射時は電圧保持手段を保持動作に保ち、電流値変化の測定を行う信号処理部と、を備えていることを特徴とする。
【0015】
最初に本装置の構成を説明する。光源であるレーザ発生部1から出射されるレーザビームの光路上に、このレーザビームを光路に直交する2次元方向にラスタースキャンさせるレーザ走査部2と、走査されたレーザビームを微小スポット径に集束させる顕微鏡3が配されている。顕微鏡3の焦点位置には、半導体集積回路等の被測定試料4が配置される。試料4には、その抵抗値を設定できる可変抵抗手段6が直列に接続されている。この直列回路の一端には、入力電圧に比例した電圧を出力する例えばバッファアンプからなる第1の電圧源5により所定の電圧が印加されている。
【0016】
そして、直列回路の他方の端は、第1の演算増幅器8の負入力端が接続され、この第1の演算増幅器9の負入力端と出力端には、帰還抵抗9が並列に接続されている。また、第1の演算増幅器8の正入力端は接地されており、これにより第1の演算増幅器8と帰還抵抗9は電流/電圧変換増幅器7を構成している。電流/電圧変換増幅器7は、信号処理部10に接続され、信号処理部10には、さらに、モニター11が接続されている。この信号処理部10は、レーザ走査部2、可変抵抗手段6の制御も行う。
【0017】
一方、第1の電圧源5の入力側には、信号処理部12に制御される電圧保持手段12を介して、第2の演算増幅器13の出力端が接続されている。電圧保持手段12は、入力された電圧値をそのまま出力させる動作と、入力された電圧値を保持して保持された電圧を出力する動作の2種類の動作を行うもので、例えば、サンプルホールド素子を用いることができる。第2の演算増幅器13の負入力端には、信号処理部10に制御された第2の電圧源14が接続されており、一方、正入力端は、電流/電圧変換増幅器7の出力端に接続されている。
【0018】
可変抵抗手段6は、試料4と電流/電圧変換増幅器7の間に設置することもできるが、試料4は、接地電位の顕微鏡3等に近接して取り付けられるため、誘導雑音を抑制するためには、片側の電位を接地電位にできる図1の配置が好ましい。
【0019】
本実施形態では、この可変抵抗手段6には、0Ω(短絡)と50Ωの抵抗のいずれかを選択して接続する手段を用いている。ここで、試料4に付加する抵抗として50Ωの抵抗を選んだ理由について説明する。図2は、図1の直列回路の抵抗値を変化させた場合の電流/電圧増幅器7の出力雑音の測定結果である。この時の帰還抵抗9の抵抗値は1MΩとした。内部抵抗値が10Ωの場合は、特に100Hz〜1kHzの低周波雑音が装置のベース雑音よりも10dB以上高くなる。しかし、内部抵抗値を50Ωに設定すると、100Hz以上の雑音はベース雑音とほぼ同じレベルまで低下する。内部抵抗値をこれ以上大きな値に設定しても雑音特性の向上は見込めない。
【0020】
一方、試料4に流れる電流の変動ΔIは、
ΔI=−(ΔR/R)I (3)
で与えられる。ここで、ΔRはレーザ照射に伴う試料4の抵抗増加分、Rは試料4の内部抵抗値、Iは試料4に流す電流値である。(1)、(3)式より、試料4の内部抵抗値Rが小さいほど、S/N比が大きくなることが分かる。従って、試料4の内部抵抗値Rは、低周波雑音成分を抑制できる範囲でできるだけ小さい値であることが好ましい。したがって、本実施形態では、可変抵抗手段6と試料4との直列回路の抵抗値が50Ω以上になるように、可変抵抗手段6で付加する抵抗値を50Ωに設定した。この場合の増幅率は最大で20000倍になる。なお、可変抵抗手段6には、0〜50Ωまで連続的に抵抗値を変化できる抵抗を用いて、試料4と可変抵抗手段6の直列回路の抵抗を50Ω以上に保つものでもよい。
【0021】
続いて、本実施形態の動作を図1、図3により説明する。図3は、本実施形態のタイミングチャートである。
【0022】
図1に示される装置への電源投入後、可変抵抗手段6の抵抗値が50Ωに設定され、電圧保持手段12の帰還制御が行われる(図3(a)の時点)。具体的には、第1の演算増幅器8の出力値と第2の電圧源14が第2の演算増幅器13で比較されて、その出力が第1の電圧源5に入力される。従って、可変抵抗手段6の抵抗値変化に対しても試料4を流れる電流が常に一定になるような帰還制御がかけられる。第2の電圧源14は、試料に流す電流値を設定するもので、出力電圧値を大きくすることにより、試料に流される電流を大きくできる。
【0023】
第1の電圧源5の電圧が安定した後、試料4の内部抵抗値の算出処理が行われる(同図(b)の時点)。具体的には、試料4と可変抵抗手段6との直列回路に流れる電流を電流/電圧変換増幅器7により電圧信号に変換して、信号処理部10に伝送する。信号処理部10では、伝送された電圧信号から直列回路に流れる電流が算出され、この電流値と第1の電圧源5の出力電圧、可変抵抗手段6の付加抵抗値を基にして試料4の内部抵抗値が算出される。算出された内部抵抗値が50Ω以上の場合には、可変抵抗手段6は、短絡状態に切り替えられる(同図(c)の時点)。内部抵抗値が50Ωに満たない場合には、可変抵抗手段6は、50Ωの抵抗をそのまま付加する。これにより、直列回路の抵抗値を50Ω以上に保ち、S/N比が十分に高く、かつ、増幅率も大きな条件下で測定を行うことができる。
【0024】
内部抵抗値の算出処理が終了して、可変抵抗手段6の抵抗値が切り替えられた場合は、前述の帰還制御により第1の電圧源5の電圧が調整される。(同図(c)の時点)。第1の電圧源5の電圧が安定して、試料4の内部を流れる電流値が安定した後、電圧保持手段12は、電圧保持動作に切り替えられる(同図(d)の時点)。この後は、第1の電圧源5の電圧は、帰還制御動作終了時(同図(c)の時点)に設定された電圧に保持される。保持動作に切り替えるのは、帰還制御動作のままだと帰還制御によってレーザ照射に伴う電流値の変動が打ち消されて測定ができないからである。一方、電圧が常に一定に保持されるため、測定時に電圧が変動することがなく、試料4の内部の欠陥以外の要因による試料4を流れる電流の変動が抑えられて高精度での検出が可能になる。
【0025】
その後、測定動作が開始される(同図(e)の時点)。レーザ発生部1から出射されたレーザビームは、レーザ走査部2により、2次元方向にラスタスキャンされ、顕微鏡3で集光されて試料4上に照射される。試料4の欠陥箇所にレーザビームが照射されると(同図(f)の時点)、周囲への熱伝導が悪いために照射された部分の温度が上昇して、内部抵抗値が増大し、試料を流れる電流が小さくなる。欠陥のない部分では、周囲への熱伝導により照射された部分の温度は上昇せず、抵抗値変化もないため、電流値も変化しない。これをレーザを照射した走査位置の情報とともに信号処理部10で処理することにより、試料4の欠陥位置をモニタ11上に輝度変化として表示することができる。
【0026】
【発明の効果】
以上、説明したように、本発明によれば、試料に直列に任意の抵抗値を有する抵抗を付加することにより、試料の内部抵抗が小さい場合でも、試料に流れる電流値を検出する演算増幅器の増幅率を常に適切な範囲に設定することができる。このため、従来、増幅率が大きくなりすぎていた内部抵抗が数Ω程度の試料についてもS/N比の良い測定が行えるようになった。さらに、測定の際に試料に印加されるべき適正な電圧値を自動的に求めて測定中印加電圧をこの電圧値に保持する機能を備えているので、試料を流れる電流の不要な変動が少なく、高精度の測定が可能になる。
【図面の簡単な説明】
【図1】本発明の1実施形態のブロック図である。
【図2】図1に係る装置において内部抵抗値の異なる試料について比較測定した雑音特性を示す図である。
【図3】図1に係る装置の動作タイミングチャートである。
【図4】第1の従来例のブロック図である。
【図5】第2の従来例のブロック図である。
【符号の説明】
1…レーザ発生部、2…レーザ走査部、3…顕微鏡、4…被測定試料、5…電圧源、6…可変抵抗手段、7…電流/電圧変換増幅器、8…演算増幅器、9…帰還抵抗、10…信号処理部、11…モニタ、12…電圧保持手段、13…演算増幅器、14…電圧源、15…上限電圧リミッタ回路、16…下限電圧リミッタ回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for irradiating a sample used as an inspection apparatus for a sample such as a semiconductor integrated circuit with a laser beam and measuring a change in the current of the sample associated therewith.
[0002]
[Prior art]
As an apparatus for inspecting a defect of a sample such as a semiconductor integrated circuit, there is an apparatus described in JP-A-56-45045. A block diagram of this device is shown in FIG.
[0003]
A laser scanning unit 2 that raster scans the laser beam in a two-dimensional direction orthogonal to the incident direction on the optical path of the laser beam emitted from the laser generating unit 1 that is a light source, and the scanned laser beam is focused on a minute spot diameter. A microscope 3 is arranged. A measured sample 4 such as a semiconductor integrated circuit is disposed at the focal position of the microscope 3. A predetermined voltage is applied to the sample 4 by the voltage source 5. The sample 4 to be measured is connected to a current / voltage conversion amplifier 7 including an operational amplifier 8 and a feedback resistor 9. The current / voltage conversion amplifier 7 is connected to a signal processing unit 10, and a monitor 11 is further connected to the signal processing unit 10. The signal processing unit 10 is also connected to the laser scanning unit 2.
[0004]
The laser beam emitted from the laser generator 1 is raster-scanned in a two-dimensional direction orthogonal to the optical path by the laser scanning unit 2, condensed by the microscope unit 3, and irradiated on a fine portion of the surface of the sample 4 to be measured. . This scanning is controlled by the signal processing unit 10. A predetermined voltage is previously applied to the sample 4 by the voltage source 5, and a predetermined current flows in the circuit. At the portion of the sample 4 irradiated with the laser beam, the laser beam is absorbed and the temperature rises and the resistivity changes, so that the value of the current flowing through the sample 4 also changes. Since heat conduction is poor at places with defects such as voids, when such places are irradiated with laser, the heat does not easily escape to the surroundings, resulting in a large temperature rise and a large change in resistivity, resulting in a current value. Change will also increase.
[0005]
The current value is converted into a voltage value by the current / voltage conversion amplifier 7 and transferred to the signal processing unit 10. The signal processing unit 10 converts the difference between the voltage values into luminance information, generates image information arranged in accordance with the laser beam irradiation position, and displays the image information on the monitor 11.
[0006]
Thereby, the defect location of a sample can be confirmed on a screen.
[0007]
[Problems to be solved by the invention]
The detection accuracy of the sample defect in this apparatus depends on the detection accuracy of the voltage value change in the current / voltage conversion amplifier 7. The signal-to-noise (S / N) ratio S / N and the amplification factor G at the time of signal detection of the current / voltage conversion amplifier 7 are:
S / N = ΔI (R f / 4kTB) 1/2 (1)
G = R f / R i (2)
It is shown. Here, ΔI is the current fluctuation, k is the Boltzmann constant, T is the temperature, B is the frequency band of the operational amplifier 8, R f is the resistance value of the feedback resistor 9, and R i is the negative voltage of the operational amplifier 8 from the voltage source 5. Internal resistance value up to the input terminal.
[0008]
Since the signal detection S / N ratio is determined by the resistance value R f of the feedback resistor 9 as shown in the equation (1), the resistance value of the feedback resistor 9 is required to improve the S / N ratio. It is preferable to increase R f . However, the internal resistance of the sample 4 to be measured varies greatly from several Ω to several tens of kΩ depending on the measurement target. If the resistance value R f of the feedback resistor 9 is increased to several MΩ in order to accurately measure the current value change of the sample having a large internal resistance of the sample 4, conversely, if the internal resistance of the sample 4 is as small as several Ω, The amplification factor G is a very large value of about 1 million times from equation (2). When the amplification factor is large, the low frequency noise of the voltage source 5 and the current / voltage conversion amplifier 7 becomes significantly larger than the fluctuation amount ΔI of the current flowing through the sample 4, and the S / N ratio of the output signal is also lowered. Further, in general, when the amplification factor increases, the frequency band of the current / voltage conversion amplifier 7 shifts to a low frequency band, and thus there is a problem that it becomes impossible to follow the resistance value change speed of the sample 4 due to laser light irradiation. Therefore, it is difficult to measure a sample having a small internal resistance of about several Ω.
[0009]
Further, when measuring a sample that performs AC operation, the applied voltage itself may fluctuate. Japanese Patent Laid-Open No. 56-45045 further discloses a technique for adjusting the voltage fluctuation. This is an improvement of the apparatus shown in FIG. 4. As shown in FIG. 5, an upper limit voltage limiter circuit 15 and a lower limit voltage limiter circuit 16 are connected to the voltage source 5. It is connected.
[0010]
During the measurement, the voltage applied to the sample 4 by the signal processing unit 10 is compared with the upper limit voltage and the lower limit voltage set by the upper limit voltage limiter circuit 15 and the lower limit voltage voltage limiter circuit 16, respectively. When the upper limit voltage is exceeded, the voltage applied by the voltage source 5 is lower than the upper limit voltage, and when the applied voltage is lower than the lower limit voltage, the voltage applied by the voltage source 5 is higher than the lower limit voltage. Is to control. However, this technique has a problem that the applied voltage varies between the upper limit voltage and the lower limit voltage and is not constant, and accordingly, the current flowing through the sample to be measured also fluctuates and the measurement accuracy deteriorates.
[0011]
It is an object of the present invention to provide a current value change measuring apparatus capable of measuring a current value change when a sample such as a semiconductor integrated circuit is irradiated with a laser with high accuracy.
[0012]
[Means for Solving the Problems]
The present invention relates to a current value change measuring apparatus for inspecting a defective portion of a sample by irradiating a sample such as a semiconductor integrated circuit that is energized while scanning with a laser beam and measuring a change in the current value of the sample accompanying this irradiation. A variable resistance means connected in series with the sample and adjusting the total resistance value of the series circuit so that the total resistance value of the series circuit with the sample when not irradiating the laser beam is equal to or higher than a predetermined resistance value; and laser beam irradiation Set the voltage value to be applied to the sample so that the current flowing through the sample becomes a predetermined current value before, and keep the voltage applied to the sample at the set voltage value while scanning the laser beam for measurement And means.
[0013]
As a result, since the total resistance value of the circuit in which the sample and the variable resistor are connected in series is maintained at a predetermined resistance value or higher, the current value flowing through the sample is suppressed to a predetermined current value or lower. Further, the voltage applied to the sample is kept at a voltage value suitable for the measurement set in advance during the measurement.
[0014]
[Means for Solving the Problems]
The present invention relates to a current value change measuring apparatus for inspecting a defective portion of a sample by irradiating a sample such as a semiconductor integrated circuit that is energized while scanning with a laser beam and measuring a change in the current value of the sample accompanying this irradiation. a variable resistance means that will be connected to the sample series, the variable resistor means, connected in series with the sample, a current / voltage conversion amplifier for converting the current flowing through the sample into a voltage signal, the variable resistance means, the sample A first voltage source for applying a voltage proportional to the input voltage to a series circuit composed of a current / voltage conversion amplifier, and a first voltage source connected to the first voltage source, and the input voltage value is directly output to the first voltage source. Voltage holding means for switching between two types of operation, holding the input voltage value and outputting the held voltage value to the first voltage source, and a second voltage source capable of adjusting the output voltage value And the voltage holding hand An operational amplifier for comparing the second voltage source and the output voltage of the current / voltage conversion amplifier, and a feedback control of the voltage holding means before irradiation of the laser beam to maintain the current value flowing through the sample constant. The internal resistance of the sample is determined, the resistance of the variable resistance means is set so that the resistance value of the series circuit is equal to or higher than the predetermined value, and the voltage holding means is kept in the holding operation during the laser beam irradiation, and the current value changes. And a signal processing unit that performs measurement .
[0015]
First, the configuration of this apparatus will be described. On the optical path of the laser beam emitted from the laser generator 1 which is a light source, a laser scanning section 2 for raster scanning the laser beam in a two-dimensional direction orthogonal to the optical path, and the scanned laser beam is focused on a minute spot diameter. A microscope 3 is arranged. A measured sample 4 such as a semiconductor integrated circuit is disposed at the focal position of the microscope 3. The sample 4 is connected in series with variable resistance means 6 capable of setting its resistance value. A predetermined voltage is applied to one end of the series circuit by a first voltage source 5 including, for example, a buffer amplifier that outputs a voltage proportional to the input voltage.
[0016]
The other end of the series circuit is connected to the negative input end of the first operational amplifier 8, and the negative input end and the output end of the first operational amplifier 9 are connected to the feedback resistor 9 in parallel. Yes. In addition, the positive input terminal of the first operational amplifier 8 is grounded, so that the first operational amplifier 8 and the feedback resistor 9 constitute a current / voltage conversion amplifier 7. The current / voltage conversion amplifier 7 is connected to a signal processing unit 10, and a monitor 11 is further connected to the signal processing unit 10. The signal processing unit 10 also controls the laser scanning unit 2 and the variable resistance means 6.
[0017]
On the other hand, the output terminal of the second operational amplifier 13 is connected to the input side of the first voltage source 5 via the voltage holding means 12 controlled by the signal processing unit 12. The voltage holding means 12 performs two types of operations, that is, an operation for outputting the input voltage value as it is and an operation for outputting the voltage held and holding the input voltage value. Can be used. A second voltage source 14 controlled by the signal processing unit 10 is connected to the negative input terminal of the second operational amplifier 13, while the positive input terminal is connected to the output terminal of the current / voltage conversion amplifier 7. It is connected.
[0018]
The variable resistance means 6 can be installed between the sample 4 and the current / voltage conversion amplifier 7. However, since the sample 4 is mounted close to the ground potential microscope 3 or the like, in order to suppress induction noise. The arrangement of FIG. 1 in which the potential on one side can be the ground potential is preferable.
[0019]
In the present embodiment, the variable resistance means 6 uses means for selecting and connecting either 0Ω (short circuit) or 50Ω resistance. Here, the reason why a 50Ω resistor is selected as the resistor added to the sample 4 will be described. FIG. 2 shows measurement results of output noise of the current / voltage amplifier 7 when the resistance value of the series circuit of FIG. 1 is changed. The resistance value of the feedback resistor 9 at this time was 1 MΩ. When the internal resistance value is 10Ω, the low frequency noise of 100 Hz to 1 kHz is 10 dB or more higher than the base noise of the device. However, when the internal resistance value is set to 50Ω, noise of 100 Hz or more is reduced to almost the same level as the base noise. Even if the internal resistance value is set to a larger value, the noise characteristics cannot be improved.
[0020]
On the other hand, the fluctuation ΔI of the current flowing through the sample 4 is
ΔI = − (ΔR / R) I (3)
Given in. Here, ΔR is an increase in resistance of the sample 4 due to laser irradiation, R is an internal resistance value of the sample 4, and I is a current value passed through the sample 4. From equations (1) and (3), it can be seen that the S / N ratio increases as the internal resistance value R of the sample 4 decreases. Therefore, the internal resistance value R of the sample 4 is preferably as small as possible within a range in which the low frequency noise component can be suppressed. Therefore, in this embodiment, the resistance value added by the variable resistance means 6 is set to 50Ω so that the resistance value of the series circuit of the variable resistance means 6 and the sample 4 is 50Ω or more. In this case, the maximum amplification factor is 20000 times. Note that the variable resistance means 6 may be one that keeps the resistance of the series circuit of the sample 4 and the variable resistance means 6 at 50Ω or more by using a resistance whose resistance value can be continuously changed from 0 to 50Ω.
[0021]
Next, the operation of this embodiment will be described with reference to FIGS. FIG. 3 is a timing chart of the present embodiment.
[0022]
After the power supply to the apparatus shown in FIG. 1 is turned on, the resistance value of the variable resistance means 6 is set to 50Ω, and feedback control of the voltage holding means 12 is performed (at the time of FIG. 3A). Specifically, the output value of the first operational amplifier 8 and the second voltage source 14 are compared by the second operational amplifier 13, and the output is input to the first voltage source 5. Therefore, feedback control is performed so that the current flowing through the sample 4 is always constant even when the resistance value of the variable resistance means 6 changes. The second voltage source 14 sets a current value that flows through the sample, and the current that flows through the sample can be increased by increasing the output voltage value.
[0023]
After the voltage of the first voltage source 5 is stabilized, the calculation process of the internal resistance value of the sample 4 is performed (at the time of FIG. 5B). Specifically, the current flowing through the series circuit of the sample 4 and the variable resistance means 6 is converted into a voltage signal by the current / voltage conversion amplifier 7 and transmitted to the signal processing unit 10. In the signal processing unit 10, the current flowing through the series circuit is calculated from the transmitted voltage signal, and based on this current value, the output voltage of the first voltage source 5, and the additional resistance value of the variable resistance means 6, the sample 4 An internal resistance value is calculated. When the calculated internal resistance value is 50Ω or more, the variable resistance means 6 is switched to a short-circuited state (at the time point (c) in the figure). When the internal resistance value is less than 50Ω, the variable resistance means 6 adds a 50Ω resistor as it is. As a result, the resistance value of the series circuit can be maintained at 50Ω or more, the S / N ratio is sufficiently high, and the measurement can be performed under a large amplification factor.
[0024]
When the calculation process of the internal resistance value is completed and the resistance value of the variable resistance means 6 is switched, the voltage of the first voltage source 5 is adjusted by the feedback control described above. (Time of (c) in the figure). After the voltage of the first voltage source 5 is stabilized and the value of the current flowing through the sample 4 is stabilized, the voltage holding unit 12 is switched to the voltage holding operation (at the time of FIG. 4D). Thereafter, the voltage of the first voltage source 5 is held at the voltage set at the end of the feedback control operation (at the time point (c) in the figure). The reason for switching to the holding operation is that if the feedback control operation is continued, the fluctuation in the current value accompanying the laser irradiation is canceled by the feedback control, and measurement cannot be performed. On the other hand, since the voltage is always kept constant, the voltage does not fluctuate during measurement, and fluctuations in the current flowing through the sample 4 due to factors other than defects inside the sample 4 can be suppressed and detection with high accuracy is possible. become.
[0025]
Thereafter, the measurement operation is started (at the time point (e) in the figure). The laser beam emitted from the laser generation unit 1 is raster-scanned in a two-dimensional direction by the laser scanning unit 2, collected by the microscope 3, and irradiated onto the sample 4. When the laser beam is irradiated to the defective part of the sample 4 (at the time of (f) in the figure), the temperature of the irradiated part rises due to poor heat conduction to the surroundings, and the internal resistance value increases. The current flowing through the sample is reduced. In a portion having no defect, the temperature of the irradiated portion does not increase due to heat conduction to the surroundings, and the resistance value does not change, so the current value does not change. By processing this with the information of the scanning position irradiated with the laser, the signal processing unit 10 can display the defect position of the sample 4 on the monitor 11 as a luminance change.
[0026]
【The invention's effect】
As described above, according to the present invention, by adding a resistor having an arbitrary resistance value in series to the sample, even if the internal resistance of the sample is small, the operational amplifier for detecting the current value flowing through the sample is provided. The amplification factor can always be set to an appropriate range. For this reason, it has become possible to perform a measurement with a good S / N ratio even for a sample having an internal resistance of about several Ω, which has conventionally been too high. In addition, it has a function to automatically determine the appropriate voltage value to be applied to the sample during measurement and maintain the applied voltage during measurement at this voltage value, so there is little unnecessary fluctuation in the current flowing through the sample. Highly accurate measurement is possible.
[Brief description of the drawings]
FIG. 1 is a block diagram of one embodiment of the present invention.
FIG. 2 is a diagram showing noise characteristics obtained by comparing and measuring samples having different internal resistance values in the apparatus according to FIG. 1;
FIG. 3 is an operation timing chart of the apparatus according to FIG. 1;
FIG. 4 is a block diagram of a first conventional example.
FIG. 5 is a block diagram of a second conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laser generating part, 2 ... Laser scanning part, 3 ... Microscope, 4 ... Sample to be measured, 5 ... Voltage source, 6 ... Variable resistance means, 7 ... Current / voltage conversion amplifier, 8 ... Operational amplifier, 9 ... Feedback resistance DESCRIPTION OF SYMBOLS 10 ... Signal processing part, 11 ... Monitor, 12 ... Voltage holding means, 13 ... Operational amplifier, 14 ... Voltage source, 15 ... Upper limit voltage limiter circuit, 16 ... Lower limit voltage limiter circuit

Claims (2)

通電した半導体集積回路等の試料にレーザビームを走査しながら照射し、前記照射に伴う前記試料の電流値変化を測定することにより、前記試料の欠陥箇所を検査する電流値変化測定装置において、
前記試料と直列に接続され可変抵抗手段と、
前記可変抵抗手段、前記試料に直列に接続され、前記試料に流れる電流を電圧信号に変換して出力する電流/電圧変換増幅器と、
前記可変抵抗手段、前記試料、前記電流/電圧変換増幅器からなる直列回路に入力電圧に比例した電圧を印加する第1の電圧源と、
前記第1の電圧源に接続され、入力された電圧値を前記第1の電圧源にそのまま出力する動作と、入力された電圧値を保持して保持された電圧値を前記第1の電圧源に出力する動作の2種類を切り替える電圧保持手段と、
出力電圧値を調整可能な第2の電圧源と、
前記電圧保持手段に接続され、前記第2の電圧源と前記電流/電圧変換増幅器の出力電圧とを比較する演算増幅器と、
レーザビームの照射前に前記電圧保持手段の帰還制御により、前記試料に流れる電流値を一定に維持して前記試料の内部抵抗を判定し、前記直列回路の抵抗値が所定値以上となるよう前記可変抵抗手段の抵抗を設定するとともに、レーザビームの照射時は前記電圧保持手段を保持動作に保ち、電流値変化の測定を行う信号処理部と、
を備えていることを特徴とする電流値変化測定装置。
In a current value change measuring apparatus for inspecting a defective portion of the sample by irradiating a sample such as a semiconductor integrated circuit energized while scanning with a laser beam and measuring a change in the current value of the sample accompanying the irradiation,
A variable resistance means that will be connected to the sample series,
The variable resistance means, a current / voltage conversion amplifier connected in series to the sample, and converting the current flowing in the sample into a voltage signal and outputting the voltage signal;
A first voltage source for applying a voltage proportional to an input voltage to a series circuit comprising the variable resistance means, the sample, and the current / voltage conversion amplifier;
The first voltage source is connected to the first voltage source and outputs the input voltage value to the first voltage source as it is, and the voltage value held while holding the input voltage value is the first voltage source. Voltage holding means for switching between two types of operations to be output to
A second voltage source capable of adjusting the output voltage value;
An operational amplifier connected to the voltage holding means for comparing the second voltage source and the output voltage of the current / voltage conversion amplifier;
Before the laser beam is irradiated, the voltage holding means is feedback-controlled to determine the internal resistance of the sample while maintaining the current value flowing through the sample constant, so that the resistance value of the series circuit becomes a predetermined value or more. A signal processing unit that sets the resistance of the variable resistance means and keeps the voltage holding means in a holding operation when the laser beam is irradiated, and measures a change in current value,
A current value change measuring apparatus comprising:
前記可変抵抗手段は、その抵抗値が0〜50Ωまで連続的に変化可能であることを特徴とする請求項1記載の電流値変化測定装置。  2. The current value change measuring device according to claim 1, wherein the variable resistance means has a resistance value which can be continuously changed from 0 to 50 [Omega].
JP04782997A 1997-03-03 1997-03-03 Current value change measuring device Expired - Fee Related JP3806482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04782997A JP3806482B2 (en) 1997-03-03 1997-03-03 Current value change measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04782997A JP3806482B2 (en) 1997-03-03 1997-03-03 Current value change measuring device

Publications (2)

Publication Number Publication Date
JPH10246759A JPH10246759A (en) 1998-09-14
JP3806482B2 true JP3806482B2 (en) 2006-08-09

Family

ID=12786254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04782997A Expired - Fee Related JP3806482B2 (en) 1997-03-03 1997-03-03 Current value change measuring device

Country Status (1)

Country Link
JP (1) JP3806482B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627446B2 (en) * 2005-02-25 2011-02-09 株式会社アドバンテスト CURRENT MEASUREMENT DEVICE, TEST DEVICE, CURRENT MEASUREMENT METHOD, AND TEST METHOD
JP5009867B2 (en) * 2008-06-25 2012-08-22 パナソニック株式会社 Gas sensor

Also Published As

Publication number Publication date
JPH10246759A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
US5708371A (en) Scanning photoinduced current analyzer capable of detecting photoinduced current in nonbiased specimen
US7602482B2 (en) Optical inspection method and optical inspection apparatus
JPH0795046B2 (en) Absorption measuring device and method
JPH06300824A (en) Method and equipment for inspecting internal mutual wiring of semiconductor integrated circuit
US5952837A (en) Scanning photoinduced current analyzer capable of detecting photoinduced current in nonbiased specimen
JPH0697210B2 (en) Scanner calibration method and predetermined scattered light amplitude generator
JP6594434B2 (en) Circuit inspection method and sample inspection apparatus
WO2021049313A1 (en) Semiconductor sample inspection device and inspection method
JP3806482B2 (en) Current value change measuring device
TWI791118B (en) Inspection device and inspection method for semiconductor samples
JP5770528B2 (en) Semiconductor sample inspection equipment
JP5296751B2 (en) Sample inspection apparatus and method of creating absorption current image
JP3825542B2 (en) Constant current beam irradiation heating resistance change measuring device
US4885534A (en) Direct measurement of photodiode impedance using electron beam probing
JP2002303597A (en) Device and method for measuring thermal property
JP2001004719A (en) Current variation measuring instrument
JP2518533B2 (en) Inspection device for internal interconnection of semiconductor integrated circuits
JP2008203075A (en) Device for detecting absorbed specimen current of charged particle beam apparatus
JPH03180702A (en) Scan control method
JP2006300777A (en) Current variation measuring apparatus
CN105717170A (en) Laser-induced impedance change test method and system
JPH0763667A (en) Method and device for measuring doped impurity
JPH10170612A (en) Method and device for inspecting internal mutual wiring in semiconductor integrated circuit
JP2001110865A (en) Method and device for measuring carrier life
JPH11297778A (en) Method and apparatus for measuring carrier lifetime of semiconductor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees