JP3806029B2 - Power generation control device for power consignment - Google Patents

Power generation control device for power consignment Download PDF

Info

Publication number
JP3806029B2
JP3806029B2 JP2001383136A JP2001383136A JP3806029B2 JP 3806029 B2 JP3806029 B2 JP 3806029B2 JP 2001383136 A JP2001383136 A JP 2001383136A JP 2001383136 A JP2001383136 A JP 2001383136A JP 3806029 B2 JP3806029 B2 JP 3806029B2
Authority
JP
Japan
Prior art keywords
power
amount
received
sampling
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001383136A
Other languages
Japanese (ja)
Other versions
JP2003189479A (en
Inventor
成生 野宮
寛 森島
充弘 藤川
豊邦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001383136A priority Critical patent/JP3806029B2/en
Publication of JP2003189479A publication Critical patent/JP2003189479A/en
Application granted granted Critical
Publication of JP3806029B2 publication Critical patent/JP3806029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定規模電気事業者による自家用発電設備からの電力託送における発電電力制御装置に関する。
【0002】
【従来の技術】
規制緩和により電力小売部分自由化が始まり、電力系統に連系している自家発電設備の発電電力を電力会社の送電ネットワークを介して別の場所の需要家に供給する電力託送を行うことが可能となった。(現時点においては、特別高圧需要家との制限あり。)この電力託送によって需要家に電力を供給する事業を特定規模電気事業と言い、この事業を行う者を特定規模電気事業者と言う。特定規模電気事業者は、契約した需要家が必要とする電力を発電あるいは調達することで供給する義務が生じ、送電電力量と需要家受電電力量を一致させることが求められている。具体的には30分間の電力量が一致していれば良いとされている。これを同時同量と言う。
【0003】
現在の系統連系する自家用発電設備の基本的な構成は図7に示すように、発電機1、原動機2、調速機3、発電コントローラ4、自動電圧調整装置(AVR)5から成り、遮断器6,遮断器7を介して構内系統に接続され構内負荷8に電力供給し、さらに遮断器9を介して電力系統と連系されている。また、保護装置として発電機異常を保護する継電器10、電力系統との連系保護のための連系保護継電器11が設置されている。この系統連系する自家用発電設備において発電機出力の制御は発電コントローラ4により行われ、発電電力指令値に追従させるため調速機3を動作させ、発電機出力が制御される。ここで発電電力制御は、逆潮流あり連系の場合、自家用発電設備の稼働率を考え、発電効率の良いポイントにおける発電電力一定制御が行われることが考えられる。
【0004】
【発明が解決しようとする課題】
電力系統へ電力を送り出す逆潮流ありの系統連系において、発電電力一定制御を行った場合、逆潮流となる電力(逆送電力)は構内負荷で消費した残りの電力であり、これは成り行き任せとなる。この逆送電力を託送することを考える場合、現状の成り行き任せでは特定規模電気事業者としての同時同量を満たすことは不可能である。したがって、発電コントロールを同時同量を満たすための制御に変更するか、そのための制御装置の追加設置が必要となる。
【0005】
本発明は、このような事情に基づいてなされたもので、その課題は発電コントローラに組み入れるか、発電コントローラに対して上位から指令を与えることで同時同量を満たす電力託送における発電電力制御装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明は前記課題を解決するために、請求項1記載の発明は、電力系統に連系する発電設備がその発電電力を電力系統に逆送し、電力系統を介して前記発電設備からの発電電力の供給を受ける需要家から成る電力託送システムにおいて、
前記発電設備が電力系統に逆送した送電電力量と、前記需要家が受電した受電電力量をもとに、所定時間区間における前記受電電力量と、前記送電電力量から所定の送電損失電力量を除いた電力量を一致させるため、所定時間区間内を所定のサンプリングで区切るサンプリング設定手段と、
前記サンプリング設定手段にて設定された区間毎に計量される受電電力量と送電電力量と所定の送電損失電力量に基づき、サンプリング毎に所定時間の開始時間を起点とした今回サンプリングまでの受電電力量と今回サンプリングまでの所定の送電損失電力量を除いた送電電力量の間の誤差を誤差補正値として次回のサンプリング区間にて誤差を補う誤差補正手段と、
今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差を変動予測値として次回のサンプリングにおける受電電力量の予測を行う受電電力量予測手段と
所定の電力量による追加補正を行う追加補正値とを設け、
前記誤差補正手段による誤差補正値と前記受電電力量予測手段による受電電力量予測値の加算結果に対して追加補正値を加算し、さらに送電損失電力量相当分を加算することで必要送電電力量とし、それをサンプリング区間幅で平均化することで、次回のサンプリング区間における送電電力指令とすることを特徴とする。
請求項1記載の発明によると、同時同量の制御を短いサンプリングに設定することで同時同量の制御が可能となり、また追加補正値により受電電力の変動に対してやや過剰に電力を送電することができる。
【0007】
請求項2記載の発明は、電力系統に連系する発電設備がその発電電力を電力系統に逆送し、電力系統を介して前記発電設備からの発電電力の供給を受ける需要家から成る電力託送システムにおいて、
前記発電設備が電力系統に逆送した送電電力量と、前記需要家が受電した受電電力量を もとに、所定時間区間における前記受電電力量と、前記送電電力量から所定の送電損失電力量を除いた電力量を一致させるため、所定時間区間内を所定のサンプリングで区切るサンプリング設定手段と、
前記サンプリング設定手段にて設定された区間毎に計量される受電電力量と送電電力量と所定の送電損失電力量に基づき、サンプリング毎に所定時間の開始時間を起点とした今回サンプリングまでの受電電力量と今回サンプリングまでの所定の送電損失電力量を除いた送電電力量の間の誤差を誤差補正値として次回のサンプリング区間にて誤差を補う誤差補正手段と、
所定の係数であって、今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差がプラスの場合は1より大きくし、受電電力量の差がマイナスの場合は1より小さくする補正係数と、
今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差に対して前記補正係数を乗算したものを変動予測値として次回のサンプリングにおける受電電力量の予測を行う受電電力量予測手段とを設け、
前記誤差補正手段による誤差補正値と前記受電電力量予測手段による受電電力量予測値の加算結果に送電損失電力量相当分を加算することで必要送電電力量とし、それをサンプリング区間幅で平均化することで、次回のサンプリング区間における送電電力指令とすることを特徴とする。
請求項2記載の発明によると、同時同量の制御を短いサンプリングに設定することで同時同量の制御が可能となり、また受電電力量の変動分に補正係数を乗算することで受電電力の変動に対してやや過剰に電力を送電することができる
【0008】
請求項3記載の発明は、電力系統に連系する発電設備がその発電電力を電力系統に逆送し、電力系統を介して前記発電設備からの発電電力の供給を受ける需要家から成る電力託送システムにおいて、
前記発電設備が電力系統に逆送した送電電力量と、前記需要家が受電した受電電力量をもとに、所定時間区間における前記受電電力量と、前記送電電力量から所定の送電損失電力量を除いた電力量を一致させるため、所定時間区間内を所定のサンプリングで区切るサンプリング設定手段と、
前記サンプリング設定手段にて設定された区間毎に計量される受電電力量と送電電力量と所定の送電損失電力量に基づき、サンプリング毎に所定時間の開始時間を起点とした今回サンプリングまでの受電電力量と今回サンプリングまでの所定の送電損失電力量を除いた送電電力量の間の誤差を誤差補正値として次回のサンプリング区間にて誤差を補う誤差補正手段と、
今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差を変動予測値として次回のサンプリングにおける受電電力量の予測を行う受電電力量予測手段とを設け、
前記誤差補正手段による誤差補正値と前記受電電力量予測手段による受電電力量予測値の加算結果に送電損失電力量相当分を加算することで必要送電電力量とし、それをサンプリング区間幅で平均化することで、次回のサンプリング区間における送電電力指令とするが、その際に今回サンプリング区間の送電電力指令よりも次回サンプリング区間の送電電力指令の方が大きい場合、発電装置の制御遅れや不感帯要素を考慮した所定の量を受電電力量予測値に上乗せすることを特徴とする。
請求項3記載の発明によると、同時同量の制御を短いサンプリングに設定することで同時同量の制御が可能となり、また電力指令の時間遅れをなくして電力量の不足を補うことができる
【0009】
請求項4記載の発明は、請求項1記載の電力託送における発電電力制御装置において、前記追加補正値は、需要家受電電力量の一日の変動パターンを考慮して、所定時間毎に追加補正値を異なる値とすることを特徴とする。
請求項4によると、追加補正値により受電電力量の誤差を少なくできる。
【0010】
請求項5記載の発明は、請求項2記載の電力託送における発電電力制御装置において、前記補正係数は、需要家受電電力量の一日の変動パターンを考慮して、所定時間毎に補正係数を異なる値とすることを特徴とする。
請求項5によると、補正係数により受電電力量の予測誤差を少なくできる。
【0011】
請求項6記載の発明は、請求項記載の電力託送における発電電力制御装置において、次回サンプリング区間の受電電力量の予測値から次回サンプリング区間において計測される実績値の差を求めてこれを予測誤差とし、所定時間区間内の全サンプリング区間における予測誤差の累積値がプラスならばその所定時間区間における前記補正係数を減らした値で再設定し、予測誤差の累積値がマイナスならばその所定時間区間における前記補正係数を増やした値で再設定することで、後日以降の同所定時間区間に再設定した値を用いることを特徴とする。
請求項6によると、補正係数を調整することで、受電電力量の予測精度を高めることができる。
【0012】
請求項7記載の発明は、請求項1乃至請求項6のいずれかに記載の電力託送における発電電力制御装置において、所定時間は30分であることを特徴とする。
請求項7によると、所定時間を30分とすることで同時同量を満たすことができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は力託送システムの基本構成図である。
図に示すように、自家用発電設備100は、図7の従来の自家用発電設備に加え、自家用発電設備100から電力系統300へ送電する送電電力量を検出する電力量計13と、電力系統300から需要家200が受電する受電電力量を検出する電力量計23を需要家200に設置し、自家用発電設備の電力量計13で検出した送電電力量と、需要家の電力量計23で検出した受電電力量に基づき、同時同量を満たすために必要とする送電電力指令を決定し、送電電力を満たす発電電力となるように発電コントローラ4に対して発電電力指令を与える電力託送用発電電力制御装置12を設置している。したがって、電力系統300を介して託送された電力は、遮断器22を介して負荷21に供給されることになる。なお、電力量計23で検出された需要家の受電電力量の情報を電力託送用発電電力制御装置12へ伝達するために、通信手段として、例えば、電話回線を活用することが考えられる。
【0014】
図2は図1の電力託送システムで同時同量を成し得るための基本概念を説明するための図である。
図に示すように、本実施形態では30分間の需要家受電電力量と自家用発電設備送電電力量を一致させる同時同量を満たすため、30分の時間を例えば5分毎に区切り、このサンプリングでもって需要家受電電力量と自家発電設備送電電力量を取得することで自家用発電設備の電力指令を決定し、発電電力を制御する。図中のPLは需要家受電電力の推移を表している。
【0015】
今回のサンプリング区間がtn、前回のサンプリング区間がtb、次回のサンプリング区間がtaである。Pbは前回のサンプリング区間(tbの区間)におけるPLの推移から決まる需要家受電電力の平均値である。同様に、Pnは今回のサンプリング区間(tnの区間)における需要家受電電力の平均値を示す。サンプリング毎に電力量計23での計測値を取得すると、tbおよびtnにおける電力量は、Pb×tb、Pb×tnとして捉えることができる。発電所からの送電電力量についても電力量計13の計測値に基づいて、tbおよびtnにおける送電電力量をPrb×tb、Prn×tnと表現できる。PrbおよびPrnは、tbおよびtnにおける送電電力指令を意味している。同様に、Pra*もtaにおける送電電力指令を意味している。送電電力量から送電損失電力量を差し引くため損失率γ(%)とすると、需要家に供給した電力量は、それぞれ、Prb×tb×(1−γ/100)、Prn×tn×(1−γ/100)となる。30分の時間区間の最初のサンプリング区間がtbであったとして、今回サンプリングまでの需要側と供給側の電力量の誤差をαとすると、α=
(Pb×tb+Pn×tn)−(Prb×tb+Prn×tn)×(1−γ/100)となる。同時同量を実現する上ではこの誤差を埋める必要があるので、誤差に相当する電力量を次回の区間に上乗せすることで誤差補正とする。
【0016】
一方、需要家受電電力が図2のPLに示すように変動(この図では増加傾向)していると前記の誤差補正だけでは必ず1サンプリングの遅れが発生するので需要家受電電力への追従性が不十分である。このため、前回サンプリング区間における電力量(Pb×tb)から今回サンプリング区間における電力量(Pn×tn)へ受電電力量が変動したと捉え、同じ変動が今回から次回のサンプリングの間でも生じると仮定して、変動分β=(Pn×tn)−(Pb×tb)を予測補正値とする。次回のサンプリング区間の予測値は、β+(Pb×tn)=2(Pn×tn)−(Pb×tb)となる。次回のサンプリング区間における送電電力指令Pra*は、送電損失電力量を含めて、Pra*=((α+β+(Pn×tn))/(1−γ/100))/taとなる。tb=tn=taなので、
Pra*=(3Pn−(Prb+Prn)×(1−γ/100))/(1−γ/100)となる。
【0017】
このような電力指令の決定は、電力託送用発電電力制御装置12をマイクロコンピュータ等で構成することにより実現できるものであり、サンプリングを決定する手段を設けておけばサンプリングを5分に限定せず、同時同量の制御精度を上げるためにもっと短いサンプリングに設定することが可能となる。
【0018】
ここで、本発明の実施形態を図3〜図6を用いて説明する。
図3に示すように、本発明の第1実施形態は、誤差補正および予測補正の他に追加補正値(δ)を設定したものである。同時同量の制御の際には、その制度上、需要に対して供給が不足する場合よりも供給側がやや過剰であるほうが経済的であるので、需要家受電電力の変動に対して不足よりも過剰気味で送電するため追加補正値を設ける。次回サンプリング区間の送電電力指令Pra*は、Pra*=((α+β+δ+(Pn×tn))/(1−γ/100))/taとなる。補正の内容も図3に示すとおりである。
【0019】
図4は本発明の第2実施形態を説明するための図である。
図に示すように、本発明の第2実施形態は、図2の基本概念における受電電力量予測において、βの値による補正ではなく、補正係数kを設定し、β×kの値によって補正を行うものである。これは、第1の実施形態と同様に同時同量の制御の際には、その制度上、需要に対して供給が不足する場合よりも供給側がやや過剰である方が経済的であるので、需要家受電電力の変動に対して不足よりも過剰気味で送電するための手段として講じるものである。なお、受電電力量の変動分βがプラスである場合には補正係数kは1より大きな値で、受電電力量の変動分βがマイナスである場合には補正係数kは1未満との設定範囲を制限して設定する。このとき、次回サンプリング区間の送電電力指令Pra*は、
Pra*=((α+β+k+(Pn×tn))/(1−γ/100))/taとなる。補正の内容も図4に示すとおりである。
【0020】
図5は本発明の第3実施形態を説明するための図である。
図に示すように、本発明の第3実施の形態は、誤差補正手段による誤差補正値と受電電力量予測手段による受電電力量予測値と送電損失電力量を加算し、サンプリング区間幅で平均化することで次回のサンプリング区間における送電電力指令が得られる。この送電電力指令値が今回のサンプリング区間における送電電力指令値よりも大きい場合、当然ながら発電機の出力を上げる指令となる。発電機の出力を制御する際には図1の電力託送用発電電力制御装置12からの信号は発電コントローラ4、それから調速機3、原動機2へと作用していくが、それぞれにおいて制御遅れや不感帯となる要素を持っている。つまり、図2の基本概念のように次回サンプリング区間における送電電力指令を算出しても制御遅れや不感帯の分だけ予定した発電電力が得られないことが考えられる。予定した発電電力に対する不足分は需要側と供給側の電力量の誤差に含まれる形で生じることになり、1サンプリング遅れた補正になってしまう。また、第1実施形態でも述べたように、需要に対して供給が不足する場合よりも供給側がやや過剰である方が望ましいという観点からも予定した発電電力が得られない制御遅れや不感帯要素による電力量不足を補うために、予め所定の電力量(ε)を加算しておく。次回サンプリング区間の送電電力指令Pra*は、Pra*=((α+β+ε+(Pn×tn))/(1−γ/100))/taとなる。補正の内容も図5に示すとおりである。εについては、例えば発電機の制御遅れにより図6(a)に示すような発電電力をたどっていくと、αとβによる補正量に相当する電力指令に到達するまでの時間遅れによって、斜線部(1)の電力量が不足することになる。この斜線部(1)を図6(b)で示す斜線部(2)で補うために予め電力指令を上げておく。この役割がεである。
【0021】
本発明の第4実施形態を図3を用いて説明する。
本発明の第4実施形態は、第1実施形態における追加補正値を30分毎に異なる値に設定するものである。第1実施形態で述べたように、需要に対して供給が不足する場合よりも供給側がやや過剰である方が望ましいわけであり、そのために追加補正値を設けている。一日の需要家受電電力量の推移を考えると、急激に変動するときもあれば、緩やかに変動する時もある。例えば、急激に増加する時には受電電力量予測手段による受電電力量予測が追従しにくくなり、誤差が生じやすいことが考えられる。このような時間帯では、追加補正値を多めに設定する。追加補正値は、需要家受電電力量の状態を考慮して設定する。設定値は、図1の電力託送用発電電力制御装置12をマイクロコンピュータ等で構成することにより容易にデータベース化できて活用できる。
【0022】
本発明の第5実施形態を図4を用いて説明する。
本発明の第5実施形態は、第2実施形態における追加補正値kを30分毎に異なる値に設定するものである。第2実施形態で述べたように、需要に対して供給が不足する場合よりも供給側がやや過剰である方が望ましいわけであり、そのために追加補正値を設けている。第4実施形態でも述べたように、一日の需要家受電電力量の推移を考えると、急激に変動するときもあれば、緩やかに変動する時もある。例えば、急激に増加する時には受電電力量予測手段による受電電力量予測が追従しにくくなり、誤差が生じやすいことが考えられる。このような時間帯では、受電電力量の予測値(β×k)における補正係数kを大きく設定して受電電力量の予測の誤差を少なくする。補正係数は、需要家受電電力量の状態を考慮して設定する。設定値は、電力託送用発電電力制御装置12をマイクロコンピュータ等で構成することにより容易にデータベース化できて活用できる。
【0023】
本発明の第6実施形態を図4を用いて説明する。
本発明の第6実施形態は、第5実施形態で30分毎に設定することにした補正係数kを定める手段を追加した形態である。各サンプリング毎に次回サンプリング区間の受電電力量予測値を算出しているが、この予測値と実際に次回サンプリング区間において計測される受電電力量の実績値を比較する。30分区間における全サンプリング毎に、予測値から実績値を差し引き、その差を30分区間において累積する。累積値がプラスならば、補正係数kによる作用が過剰傾向にある30分区間として、補正係数kを少し減らす。逆に累積値がマイナスならば、補正係数kによる作用が不足傾向にある30分区間として、補正係数kを少し増やす。このようにして、補正係数kのチューニングを行い、予測精度を高める。
【0024】
なお、以上の各実施形態の説明では所要時間を30分で説明したが、本実施形態は所要時間を30分より長くてもあるいは短くても適宜本発明の技術思想が適用できることは勿論である。
【0025】
【発明の効果】
以上説明したように、本発明によると、逆潮流ありで系統連系している自家用発電設備が、電力系統を介して需要家に対し電力託送を行う場合に、需要家設置の電力量計と発電所設置の電力量計の値をもとに、所定時間での需要家の受電電力量に発電所の送電電力量を追従させる電力量制御を行う発電電力制御装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の自家用発電設備の電力託送システムの基本構成図。
【図2】 図1における基本概念の説明図。
【図3】 本発明の第1実施形態の説明図。
【図4】 本発明の第2実施形態の説明図。
【図5】 本発明の第3実施形態の説明図。
【図6】 本発明の第3実施形態の補足説明図。
【図7】 従来の発電電力制御装置による逆潮流運転を行う自家用発電設備のブロック構成図。
【符号の説明】
1…発電装置、2…原動機、3…調速機、4…発電コントローラ、5…AVR、6,7,9…発電所設置の遮断器、8…発電所設置の負荷、10…発電機保護装置、11…系統連系保護装置、12…電力託送用発電電力制御装置、13…発電所設置の電力量計、21…需要家設置の負荷、22…需要家設置の遮断器、23…需要家設置の電力量計、100…発電所、200…需要家、300…電力系統。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a generated power control apparatus in power consignment from a private power generation facility by a specific scale electric power company.
[0002]
[Prior art]
The deregulation will start the partial liberalization of power retail, and it is possible to carry out power consignment to supply the power generated by private power generation facilities linked to the power grid to customers in other locations via the power company's transmission network It became. (At present, there is a restriction with special high-voltage customers.) A business that supplies power to consumers through this power consignment is called a specific-scale electric business, and a person who performs this business is called a specific-scale electric business. Specified-scale electric utilities are obligated to supply power generated or procured by contracted consumers, and are required to match the amount of transmitted power and the amount of power received by consumers. Specifically, it is said that the power amount for 30 minutes should match. This is called the same amount at the same time.
[0003]
As shown in FIG. 7, the basic configuration of the current grid-connected private power generation facility is composed of a generator 1, a prime mover 2, a speed governor 3, a power generation controller 4, and an automatic voltage regulator (AVR) 5. It is connected to the local system via the circuit breaker 6 and the circuit breaker 7, supplies power to the local load 8, and is connected to the power system via the circuit breaker 9. Moreover, the relay 10 which protects generator abnormality as a protective device, and the interconnection protection relay 11 for the interconnection protection with an electric power system are installed. In this system-connected private power generation facility, the generator output is controlled by the power generation controller 4, and the speed governor 3 is operated to follow the generated power command value to control the generator output. Here, regarding the generated power control, in the case of interconnection with reverse power flow, it is considered that the constant control of generated power is performed at a point where the power generation efficiency is good, considering the operation rate of the private power generation facility.
[0004]
[Problems to be solved by the invention]
In the grid connection with reverse power flow that sends power to the power grid, when constant control of generated power is performed, the power that becomes the reverse power flow (reverse power transmission) is the remaining power consumed by the premises load, and this is left to the job. It becomes. When considering the consignment of this reverse transmission power, it is impossible to satisfy the same amount as a specific scale electric power company with the current situation. Therefore, it is necessary to change the power generation control to a control for satisfying the same amount at the same time or to additionally install a control device for that purpose.
[0005]
The present invention has been made based on such circumstances, and the problem is that the power generation control device in the power consignment that satisfies the same amount by incorporating the power generation controller into the power generation controller or giving a command from the upper level to the power generation controller. It is to provide.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is characterized in that a power generation facility connected to an electric power system sends the generated electric power back to the electric power system and generates electric power from the power generation facility via the electric power system. In the power consignment system consisting of consumers who receive power supply,
Based on the amount of power transmitted back to the power grid by the power generation facility and the amount of power received by the consumer, the amount of power received in a predetermined time interval, and a predetermined amount of transmission loss power from the amount of power transmitted Sampling setting means for dividing the predetermined time interval by a predetermined sampling in order to match the electric energy excluding
Based on the received power amount , the transmitted power amount, and the predetermined transmission loss power amount measured for each section set by the sampling setting means, the received power until the current sampling from the start time of the predetermined time for each sampling An error correction means for compensating for an error in the next sampling section using an error between the power amount and the transmission power amount excluding a predetermined transmission loss power amount until the current sampling as an error correction value;
A received power amount prediction means for predicting a received power amount in the next sampling with a difference between a received power amount in the current sampling section and a received power amount in the previous sampling section as a fluctuation prediction value ;
An additional correction value for performing additional correction with a predetermined amount of power is provided,
Said error correcting means by for the sum of the received power amount prediction value by the reception power amount estimating means and the error correction value by adding the additional correction value, required transmission power amount by further adding a transmission loss amount of power equivalent Then, by averaging it with the sampling interval width, the transmission power command in the next sampling interval is obtained.
According to the first aspect of the invention, Ri Do is possible to control the supply-demand by setting the control of the supply-demand balancing in short sampling, also power a little excess to variations in received power by adding the correction value Ru can be power transmission.
[0007]
According to a second aspect of the present invention, the power generation facility connected to the power system reversely transmits the generated power to the power system, and is a power consignment consisting of a consumer who receives supply of the generated power from the power generation facility via the power system In the system,
Based on the amount of power transmitted back to the power grid by the power generation facility and the amount of power received by the consumer, the amount of power received in a predetermined time interval, and a predetermined amount of transmission loss power from the amount of power transmitted Sampling setting means for dividing the predetermined time interval by a predetermined sampling in order to match the electric energy excluding
Based on the received power amount, the transmitted power amount, and the predetermined transmission loss power amount measured for each section set by the sampling setting means, the received power until the current sampling from the start time of the predetermined time for each sampling An error correction means for compensating for an error in the next sampling section using an error between the power amount and the transmission power amount excluding a predetermined transmission loss power amount until the current sampling as an error correction value;
A correction coefficient that is a predetermined coefficient that is larger than 1 when the difference between the received power amount in the current sampling section and the received power amount in the previous sampling section is positive, and is smaller than 1 when the difference in received power amount is negative. When,
Received power amount prediction means for predicting the received power amount in the next sampling using a variation prediction value obtained by multiplying the difference between the received power amount in the current sampling interval and the received power amount in the previous sampling interval by the correction coefficient. Provided,
Wherein the error correcting unit by the error correction value and the received power amount predicting means required transmission power amount by adding the transmission loss amount of power equivalent to the sum of the received power amount prediction value by averaging it with the sampling interval width Thus, the transmission power command in the next sampling section is set .
According to the second aspect of the present invention, it is possible to control the same amount simultaneously by setting the control of the same amount to a short sampling, and the fluctuation of the received power can be obtained by multiplying the fluctuation amount of the received power by the correction coefficient. The power can be transmitted slightly excessively .
[0008]
According to a third aspect of the present invention, the power generation facility connected to the power system sends the generated power back to the power system, and the power consignment consists of consumers who receive the supply of the generated power from the power generation facility via the power system. In the system,
Based on the amount of power transmitted back to the power grid by the power generation facility and the amount of power received by the consumer, the amount of power received in a predetermined time interval, and a predetermined amount of transmission loss power from the amount of power transmitted Sampling setting means for dividing the predetermined time interval by a predetermined sampling in order to match the electric energy excluding
Based on the received power amount, the transmitted power amount, and the predetermined transmission loss power amount measured for each section set by the sampling setting means, the received power until the current sampling from the start time of the predetermined time for each sampling An error correction means for compensating for an error in the next sampling section using an error between the power amount and the transmission power amount excluding a predetermined transmission loss power amount until the current sampling as an error correction value;
A received power amount prediction means for predicting the received power amount in the next sampling using the difference between the received power amount in the current sampling interval and the received power amount in the previous sampling interval as a fluctuation prediction value;
The required transmission power amount is obtained by adding the amount corresponding to the transmission loss power amount to the addition result of the error correction value by the error correction unit and the received power amount prediction value by the received power amount prediction unit, and averaged by the sampling interval width In this case, the transmission power command in the next sampling section is set, but when the transmission power command in the next sampling section is larger than the transmission power command in the current sampling section, the control delay or dead band element of the power generator is A predetermined amount considered is added to the predicted amount of received power .
According to the third aspect of the present invention, the simultaneous equal amount control can be performed by setting the simultaneous equal amount control to a short sampling, and the shortage of the electric power command can be eliminated to compensate for the shortage of the electric energy amount .
[0009]
According to a fourth aspect of the present invention, in the generated power control apparatus in the electric power consignment according to the first aspect, the additional correction value is an additional correction every predetermined time in consideration of a daily fluctuation pattern of consumer received electric energy. The values are different values .
According to the fourth aspect, the error in the amount of received power can be reduced by the additional correction value.
[0010]
According to a fifth aspect of the present invention, in the generated power control apparatus in the power consignment according to the second aspect, the correction coefficient is calculated every predetermined time in consideration of a daily fluctuation pattern of consumer received power. It is characterized by having different values.
According to the fifth aspect, the prediction error of the received power amount can be reduced by the correction coefficient .
[0011]
According to a sixth aspect of the present invention, in the generated power control apparatus in the power consignment according to the second aspect , the difference between the actual values measured in the next sampling section is obtained from the predicted value of the received power amount in the next sampling section and predicted. If the cumulative value of the prediction error in all the sampling intervals within the predetermined time interval is positive, the error is reset to a value obtained by reducing the correction coefficient. If the cumulative value of the prediction error is negative, the predetermined time is reached. By resetting with the value which increased the said correction coefficient in the area, the value reset to the predetermined time area after a later day is used, It is characterized by the above-mentioned.
According to the sixth aspect, by adjusting the correction coefficient , it is possible to improve the prediction accuracy of the received power amount.
[0012]
A seventh aspect of the invention is characterized in that the predetermined time is 30 minutes in the generated power control apparatus for power consignment according to any one of the first to sixth aspects .
According to the seventh aspect, the same amount can be satisfied by setting the predetermined time to 30 minutes .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Figure 1 is a basic configuration diagram of a power wheeling system.
As shown in the figure, in addition to the conventional private power generation facility of FIG. 7, the private power generation facility 100 includes a watt-hour meter 13 that detects the amount of transmitted power transmitted from the private power generation facility 100 to the power grid 300, and the power grid 300. A watt hour meter 23 for detecting the amount of received power received by the customer 200 is installed in the customer 200, and the transmission power amount detected by the watt hour meter 13 of the private power generation facility and the watt hour meter 23 of the consumer are detected. Based on the received power amount, a transmission power command required to satisfy the same amount simultaneously is determined, and the generated power control for power consignment that gives the generated power command to the power generation controller 4 so that the generated power satisfies the transmitted power. A device 12 is installed. Therefore, the power entrusted via the power system 300 is supplied to the load 21 via the circuit breaker 22. Note that, for example, a telephone line may be used as a communication means in order to transmit the information on the received power amount of the customer detected by the watt-hour meter 23 to the generated power control apparatus 12 for power consignment.
[0014]
FIG. 2 is a diagram for explaining a basic concept for achieving the same amount simultaneously in the power consignment system of FIG.
As shown in the figure, in the present embodiment, in order to satisfy the same amount of power to match the amount of power received by the customer for 30 minutes and the amount of power transmitted to the private power generation facility, the time of 30 minutes is divided every 5 minutes, for example. Therefore, the power command of the private power generation facility is determined by acquiring the consumer received power amount and the private power generation facility transmission power amount, and the generated power is controlled. PL in the figure represents the transition of customer received power.
[0015]
The current sampling interval is tn, the previous sampling interval is tb, and the next sampling interval is ta. Pb is an average value of customer received power determined from the transition of PL in the previous sampling interval (tb interval). Similarly, Pn represents the average value of the customer received power in the current sampling section (tn section). When the measurement value obtained by the watt hour meter 23 is acquired for each sampling, the power amounts at tb and tn can be regarded as Pb × tb and Pb × tn. Regarding the amount of transmitted power from the power plant, the amount of transmitted power at tb and tn can be expressed as Prb × tb and Prn × tn based on the measured value of the watt-hour meter 13. Prb and Prn mean transmission power commands at tb and tn. Similarly, Pra * also means a transmission power command at ta. If the loss rate γ (%) is used to subtract the transmission loss power amount from the transmission power amount, the power amount supplied to the consumer is Prb × tb × (1−γ / 100), Prn × tn × (1− γ / 100). Assuming that the first sampling interval of the 30-minute time interval is tb, if the error between the power amount on the demand side and the supply side until the current sampling is α, α =
(Pb * tb + Pn * tn)-(Prb * tb + Prn * tn) * (1- [gamma] / 100). Since it is necessary to fill this error in realizing the same amount simultaneously, error correction is performed by adding a power amount corresponding to the error to the next section.
[0016]
On the other hand, if the received power of the customer fluctuates as shown by PL in FIG. 2 (in this figure, it tends to increase), a delay of one sampling always occurs only by the error correction described above. Is insufficient. For this reason, it is assumed that the amount of received power has changed from the amount of power in the previous sampling interval (Pb × tb) to the amount of power in the current sampling interval (Pn × tn), and it is assumed that the same variation occurs between this time and the next sampling. Then, the variation β = (Pn × tn) − (Pb × tb) is set as the predicted correction value. The predicted value of the next sampling interval is β + (Pb × tn) = 2 (Pn × tn) − (Pb × tb). The transmission power command Pra * in the next sampling interval includes Pra * = ((α + β + (Pn × tn)) / (1−γ / 100)) / ta including the transmission loss power amount. Since tb = tn = ta,
Pra * = (3Pn− (Prb + Prn) × (1−γ / 100)) / (1−γ / 100).
[0017]
Such determination of the power command can be realized by configuring the generated power control apparatus 12 for power consignment with a microcomputer or the like, and if means for determining sampling is provided, the sampling is not limited to 5 minutes. In order to increase the control accuracy of the same amount simultaneously, it is possible to set a shorter sampling.
[0018]
Here, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 3 , in the first embodiment of the present invention, an additional correction value (δ) is set in addition to error correction and prediction correction. When controlling the same amount at the same time, it is more economical for the supply side to be slightly more than the shortage of supply due to the system, so it is more economical than the shortage to fluctuations in the received power of the consumer. An additional correction value is provided to transmit power in an excessive manner. The transmission power command Pra * in the next sampling section is Pra * = ((α + β + δ + (Pn × tn)) / (1−γ / 100)) / ta. The contents of the correction are as shown in FIG.
[0019]
FIG. 4 is a view for explaining a second embodiment of the present invention .
As shown in the figure, in the second embodiment of the present invention, in the prediction of the amount of received power in the basic concept of FIG. 2 , the correction coefficient k is set instead of the correction by the value of β, and the correction is made by the value of β × k. Is what you do. This is because, in the case of simultaneous control of the same amount as in the first embodiment, it is more economical that the supply side is slightly excessive than the case where supply is insufficient with respect to demand because of the system. This measure is taken as a means to transmit power with an excessive feeling rather than shortage with respect to fluctuations in power received by consumers. The correction coefficient k is a value larger than 1 when the variation β of the received power amount is positive, and the correction coefficient k is less than 1 when the variation β of the received power amount is negative. Restrict and set. At this time, the transmission power command Pra * for the next sampling section is
Pra * = ((α + β + k + (Pn × tn)) / (1−γ / 100)) / ta. The contents of the correction are as shown in FIG.
[0020]
FIG. 5 is a diagram for explaining a third embodiment of the present invention .
As shown in the figure, in the third embodiment of the present invention, the error correction value by the error correction unit, the received power amount prediction value by the received power amount prediction unit, and the transmission loss power amount are added and averaged over the sampling interval width. By doing so, the transmission power command in the next sampling section is obtained. When this transmission power command value is larger than the transmission power command value in the current sampling section, it is a command to increase the output of the generator. When controlling the output of the generator, the signal from the generated power control device 12 for power consignment shown in FIG. 1 acts on the generator controller 4, then the governor 3 and the prime mover 2. Has an element that becomes a dead zone. That is, it is conceivable that even if the transmission power command in the next sampling section is calculated as in the basic concept of FIG. 2, the generated power that is scheduled for the control delay or dead zone cannot be obtained. The shortage with respect to the planned generated power is generated in the form of being included in the error in the amount of power between the demand side and the supply side, resulting in a correction delayed by one sampling. In addition, as described in the first embodiment, it is preferable that the supply side is slightly excessive rather than the case where supply is insufficient with respect to demand. In order to compensate for the power shortage, a predetermined power amount (ε) is added in advance. The transmission power command Pra * in the next sampling section is Pra * = ((α + β + ε + (Pn × tn)) / (1−γ / 100)) / ta. The contents of the correction are as shown in FIG. For ε, for example, if the generated power as shown in FIG. 6A is traced due to the control delay of the generator, the hatched portion is caused by the time delay until the power command corresponding to the correction amount by α and β is reached. The amount of power in (1) will be insufficient. In order to compensate for the shaded portion (1) with the shaded portion (2) shown in FIG. 6B, a power command is raised in advance. This role is ε.
[0021]
A fourth embodiment of the present invention will be described with reference to FIG .
In the fourth embodiment of the present invention, the additional correction value in the first embodiment is set to a different value every 30 minutes. As described in the first embodiment, it is desirable that the supply side is slightly excessive rather than the case where supply is insufficient with respect to demand, and an additional correction value is provided for this purpose. Considering the changes in the amount of electricity received by consumers per day, there are times when it fluctuates abruptly and sometimes it fluctuates slowly. For example, it is conceivable that the received power amount prediction by the received power amount prediction means becomes difficult to follow when it increases rapidly and an error is likely to occur. In such a time zone, a large additional correction value is set. The additional correction value is set in consideration of the state of customer received power. The set value can be easily converted into a database and utilized by configuring the generated power control apparatus 12 for power consignment in FIG. 1 with a microcomputer or the like.
[0022]
A fifth embodiment of the present invention will be described with reference to FIG .
In the fifth embodiment of the present invention, the additional correction value k in the second embodiment is set to a different value every 30 minutes. As described in the second embodiment, it is desirable that the supply side is slightly excessive rather than the case where supply is insufficient with respect to demand, and an additional correction value is provided for this purpose. As described in the fourth embodiment, considering the transition of the amount of received power per day, there may be a sudden change or a gentle change. For example, it is conceivable that the received power amount prediction by the received power amount prediction means becomes difficult to follow when it increases rapidly and an error is likely to occur. In such a time zone, the correction coefficient k in the predicted value (β × k) of the received power amount is set large to reduce the prediction error of the received power amount. The correction coefficient is set in consideration of the state of consumer received power. The set value can be easily made into a database and utilized by configuring the generated power control apparatus 12 for power consignment with a microcomputer or the like.
[0023]
A sixth embodiment of the present invention will be described with reference to FIG .
The sixth embodiment of the present invention is a mode in which means for determining the correction coefficient k decided to be set every 30 minutes in the fifth embodiment is added. The predicted value of the received power amount in the next sampling section is calculated for each sampling, and this predicted value is compared with the actual value of the received power amount actually measured in the next sampling section. For every sampling in the 30-minute interval, the actual value is subtracted from the predicted value, and the difference is accumulated in the 30-minute interval. If the cumulative value is positive, the correction coefficient k is slightly reduced as a 30-minute section in which the effect of the correction coefficient k tends to be excessive. On the other hand, if the accumulated value is negative, the correction coefficient k is slightly increased as a 30-minute section in which the effect of the correction coefficient k tends to be insufficient. In this way, the correction coefficient k is tuned to increase the prediction accuracy.
[0024]
In the above description of each embodiment, the required time has been described as 30 minutes. However, it goes without saying that the technical idea of the present invention can be applied to this embodiment as appropriate even if the required time is longer or shorter than 30 minutes. .
[0025]
【The invention's effect】
As described above, according to the present invention, when a private power generation facility that is connected to the grid with a reverse power flow performs power consignment to the customer via the power system, Based on the value of the watt-hour meter installed at the power plant, it is possible to provide a power generation control device that performs power amount control for causing the power transmitted by the power plant to follow the amount of power received by a consumer at a predetermined time.
[Brief description of the drawings]
The basic configuration diagram of a power wheeling system power generation equipment for self house of the present invention; FIG.
FIG. 2 is an explanatory diagram of a basic concept in FIG.
FIG. 3 is an explanatory diagram of the first embodiment of the present invention.
FIG. 4 is an explanatory diagram of a second embodiment of the present invention.
FIG. 5 is an explanatory diagram of a third embodiment of the present invention.
FIG. 6 is a supplementary explanatory diagram of a third embodiment of the present invention.
FIG. 7 is a block diagram of a private power generation facility that performs reverse power flow operation by a conventional power generation control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Power generation device, 2 ... Prime mover, 3 ... Speed governor, 4 ... Power generation controller, 5 ... AVR, 6, 7, 9 ... Power plant installation circuit breaker, 8 ... Power plant installation load, 10 ... Generator protection 11 ... Grid connection protection device, 12 ... Power generation control device for power consignment, 13 ... Electricity meter installed at power plant, 21 ... Load installed at customer, 22 ... Circuit breaker installed at customer, 23 ... Demand Home-installed watt-hour meter, 100 ... power plant, 200 ... customer, 300 ... electric power system.

Claims (7)

電力系統に連系する発電設備がその発電電力を電力系統に逆送し、電力系統を介して前記発電設備からの発電電力の供給を受ける需要家から成る電力託送システムにおいて、
前記発電設備が電力系統に逆送した送電電力量と、前記需要家が受電した受電電力量をもとに、所定時間区間における前記受電電力量と、前記送電電力量から所定の送電損失電力量を除いた電力量を一致させるため、所定時間区間内を所定のサンプリングで区切るサンプリング設定手段と、
前記サンプリング設定手段にて設定された区間毎に計量される受電電力量と送電電力量と所定の送電損失電力量に基づき、サンプリング毎に所定時間の開始時間を起点とした今回サンプリングまでの受電電力量と今回サンプリングまでの所定の送電損失電力量を除いた送電電力量の間の誤差を誤差補正値として次回のサンプリング区間にて誤差を補う誤差補正手段と、
今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差を変動予測値として次回のサンプリングにおける受電電力量の予測を行う受電電力量予測手段と
所定の電力量による追加補正を行う追加補正値とを設け、
前記誤差補正手段による誤差補正値と前記受電電力量予測手段による受電電力量予測値の加算結果に対して追加補正値を加算し、さらに送電損失電力量相当分を加算することで必要送電電力量とし、それをサンプリング区間幅で平均化することで、次回のサンプリング区間における送電電力指令とすることを特徴とする電力託送における発電電力制御装置。
In the power consignment system consisting of a customer who receives the supply of generated power from the power generation facility via the power system, the power generation facility linked to the power system sends the generated power back to the power system.
Based on the amount of power transmitted back to the power grid by the power generation facility and the amount of power received by the consumer, the amount of power received in a predetermined time interval, and a predetermined amount of transmission loss power from the amount of power transmitted Sampling setting means for dividing the predetermined time interval by a predetermined sampling in order to match the electric energy excluding
Based on the received power amount , the transmitted power amount, and the predetermined transmission loss power amount measured for each section set by the sampling setting means, the received power until the current sampling from the start time of the predetermined time for each sampling An error correction means for compensating for an error in the next sampling section using an error between the power amount and the transmission power amount excluding a predetermined transmission loss power amount until the current sampling as an error correction value;
A received power amount prediction means for predicting a received power amount in the next sampling with a difference between a received power amount in the current sampling section and a received power amount in the previous sampling section as a fluctuation prediction value ;
An additional correction value for performing additional correction with a predetermined amount of power is provided,
Said error correcting means by for the sum of the received power amount prediction value by the reception power amount estimating means and the error correction value by adding the additional correction value, required transmission power amount by further adding a transmission loss amount of power equivalent And a power transmission control device for power consignment characterized in that the power transmission command in the next sampling section is obtained by averaging it with the sampling section width.
電力系統に連系する発電設備がその発電電力を電力系統に逆送し、電力系統を介して前記発電設備からの発電電力の供給を受ける需要家から成る電力託送システムにおいて、
前記発電設備が電力系統に逆送した送電電力量と、前記需要家が受電した受電電力量をもとに、所定時間区間における前記受電電力量と、前記送電電力量から所定の送電損失電力量を除いた電力量を一致させるため、所定時間区間内を所定のサンプリングで区切るサンプリング設定手段と、
前記サンプリング設定手段にて設定された区間毎に計量される受電電力量と送電電力量と所定の送電損失電力量に基づき、サンプリング毎に所定時間の開始時間を起点とした今回サンプリングまでの受電電力量と今回サンプリングまでの所定の送電損失電力量を除いた送電電力量の間の誤差を誤差補正値として次回のサンプリング区間にて誤差を補う誤差補正手段と、
所定の係数であって、今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差がプラスの場合は1より大きくし、受電電力量の差がマイナスの場合は1より小さくする補正係数と、
今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差に対して前記補正係数を乗算したものを変動予測値として次回のサンプリングにおける受電電力量の予測を行う受電電力量予測手段とを設け、
前記誤差補正手段による誤差補正値と前記受電電力量予測手段による受電電力量予測値の加算結果に送電損失電力量相当分を加算することで必要送電電力量とし、それをサンプリング区間幅で平均化することで、次回のサンプリング区間における送電電力指令とすることを特徴とする電力託送における発電電力制御装置。
In the power consignment system consisting of a customer who receives the supply of generated power from the power generation facility via the power system, the power generation facility linked to the power system sends the generated power back to the power system.
Based on the amount of power transmitted back to the power grid by the power generation facility and the amount of power received by the consumer, the amount of power received in a predetermined time interval, and a predetermined amount of transmission loss power from the amount of power transmitted Sampling setting means for dividing the predetermined time interval by a predetermined sampling in order to match the electric energy excluding
Based on the received power amount, the transmitted power amount, and the predetermined transmission loss power amount measured for each section set by the sampling setting means, the received power until the current sampling from the start time of the predetermined time for each sampling An error correction means for compensating for an error in the next sampling section using an error between the power amount and the transmission power amount excluding a predetermined transmission loss power amount until the current sampling as an error correction value;
A correction coefficient that is a predetermined coefficient that is larger than 1 when the difference between the received power amount in the current sampling section and the received power amount in the previous sampling section is positive, and is smaller than 1 when the difference in received power amount is negative. When,
Received power amount prediction means for predicting the received power amount in the next sampling using a variation prediction value obtained by multiplying the difference between the received power amount in the current sampling interval and the received power amount in the previous sampling interval by the correction coefficient. Provided,
Wherein the error correcting unit by the error correction value and the received power amount predicting means required transmission power amount by adding the transmission loss amount of power equivalent to the sum of the received power amount prediction value by averaging it with the sampling interval width By doing so, it is set as the transmission power command in the next sampling section, The generated power control apparatus in the power consignment characterized by the above-mentioned.
電力系統に連系する発電設備がその発電電力を電力系統に逆送し、電力系統を介して前記発電設備からの発電電力の供給を受ける需要家から成る電力託送システムにおいて、
前記発電設備が電力系統に逆送した送電電力量と、前記需要家が受電した受電電力量を もとに、所定時間区間における前記受電電力量と、前記送電電力量から所定の送電損失電力量を除いた電力量を一致させるため、所定時間区間内を所定のサンプリングで区切るサンプリング設定手段と、
前記サンプリング設定手段にて設定された区間毎に計量される受電電力量と送電電力量と所定の送電損失電力量に基づき、サンプリング毎に所定時間の開始時間を起点とした今回サンプリングまでの受電電力量と今回サンプリングまでの所定の送電損失電力量を除いた送電電力量の間の誤差を誤差補正値として次回のサンプリング区間にて誤差を補う誤差補正手段と、
今回サンプリング区間における受電電力量と前回サンプリング区間における受電電力量の差を変動予測値として次回のサンプリングにおける受電電力量の予測を行う受電電力量予測手段とを設け、
前記誤差補正手段による誤差補正値と前記受電電力量予測手段による受電電力量予測値の加算結果に送電損失電力量相当分を加算することで必要送電電力量とし、それをサンプリング区間幅で平均化することで、次回のサンプリング区間における送電電力指令とするが、その際に今回サンプリング区間の送電電力指令よりも次回サンプリング区間の送電電力指令の方が大きい場合、発電装置の制御遅れや不感帯要素を考慮した所定の量を受電電力量予測値に上乗せすることを特徴とする電力託送における発電電力制御装置。
In the power consignment system consisting of a customer who receives the supply of generated power from the power generation facility via the power system, the power generation facility linked to the power system sends the generated power back to the power system.
Based on the amount of power transmitted back to the power grid by the power generation facility and the amount of power received by the consumer, the amount of power received in a predetermined time interval, and a predetermined amount of transmission loss power from the amount of power transmitted Sampling setting means for dividing the predetermined time interval by a predetermined sampling in order to match the electric energy excluding
Based on the received power amount, the transmitted power amount, and the predetermined transmission loss power amount measured for each section set by the sampling setting means, the received power until the current sampling from the start time of the predetermined time for each sampling An error correction means for compensating for an error in the next sampling section using an error between the power amount and the transmission power amount excluding a predetermined transmission loss power amount until the current sampling as an error correction value;
A received power amount prediction means for predicting the received power amount in the next sampling using the difference between the received power amount in the current sampling interval and the received power amount in the previous sampling interval as a fluctuation prediction value;
The required transmission power amount is obtained by adding the amount corresponding to the transmission loss power amount to the addition result of the error correction value by the error correction unit and the received power amount prediction value by the received power amount prediction unit, and averaged by the sampling interval width In this case, the transmission power command in the next sampling section is set, but when the transmission power command in the next sampling section is larger than the transmission power command in the current sampling section, the control delay or dead band element of the power generator is A generated power control apparatus in power consignment, wherein a predetermined amount considered is added to a predicted received power amount .
請求項1記載の電力託送における発電電力制御装置において、前記追加補正値は、需要家受電電力量の一日の変動パターンを考慮して、所定時間毎に追加補正値を異なる値とすることを特徴とする電力託送における発電電力制御装置。The generated power control apparatus for power consignment according to claim 1, wherein the additional correction value is set to a different value every predetermined time in consideration of a daily fluctuation pattern of consumer received power. The generated power control device in the power consignment feature. 請求項2記載の電力託送における発電電力制御装置において、前記補正係数は、需要家受電電力量の一日の変動パターンを考慮して、所定時間毎に補正係数を異なる値とすることを特徴とする電力託送における発電電力制御装置。The generated power control apparatus for power consignment according to claim 2, wherein the correction coefficient is set to a different value every predetermined time in consideration of a daily fluctuation pattern of consumer received power. Power generation control device for power consignment. 請求項記載の電力託送における発電電力制御装置において、次回サンプリング区間の受電電力量の予測値から次回サンプリング区間において計測される実績値の差を求めてこれを予測誤差とし、所定時間区間内の全サンプリング区間における予測誤差の累積値がプラスならばその所定時間区間における前記補正係数を減らした値で再設定し、予測誤差の累積値がマイナスならばその所定時間区間における前記補正係数を増やした値で再設定することで、後日以降の同所定時間区間に再設定した値を用いることを特徴とする電力託送における発電電力制御装置。In the generated power control apparatus in the power consignment according to claim 5, the difference between the actual values measured in the next sampling section is obtained from the predicted value of the received power amount in the next sampling section, and this is used as a prediction error. If the cumulative value of prediction error in all sampling intervals is positive, the correction coefficient in the predetermined time interval is reset to a reduced value, and if the cumulative value of prediction error is negative, the correction coefficient in the predetermined time interval is increased. A generated power control apparatus in power consignment, wherein a value reset in a predetermined time interval after a later date is used by resetting with a value . 請求項1乃至請求項6のいずれかに記載の電力託送における発電電力制御装置において、所定時間は30分であることを特徴とする電力託送における発電電力制御装置。In generated power control device in the power wheeling according to any one of claims 1 to 6, generated power control device in a power wheeling, wherein the predetermined time is 30 minutes.
JP2001383136A 2001-12-17 2001-12-17 Power generation control device for power consignment Expired - Fee Related JP3806029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383136A JP3806029B2 (en) 2001-12-17 2001-12-17 Power generation control device for power consignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383136A JP3806029B2 (en) 2001-12-17 2001-12-17 Power generation control device for power consignment

Publications (2)

Publication Number Publication Date
JP2003189479A JP2003189479A (en) 2003-07-04
JP3806029B2 true JP3806029B2 (en) 2006-08-09

Family

ID=27593276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383136A Expired - Fee Related JP3806029B2 (en) 2001-12-17 2001-12-17 Power generation control device for power consignment

Country Status (1)

Country Link
JP (1) JP3806029B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155834A1 (en) 2007-06-20 2008-12-24 Fujitsu Limited Processing device
JP2011250526A (en) * 2010-05-25 2011-12-08 Hitachi Ltd Power error integration system simultaneous same amount control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050162A (en) * 2012-08-30 2014-03-17 Hitachi Ltd Conversion device for windmill, control device for windmill, method for controlling conversion device for windmill
JP6629673B2 (en) * 2016-05-25 2020-01-15 株式会社日立製作所 Power transfer control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155834A1 (en) 2007-06-20 2008-12-24 Fujitsu Limited Processing device
EP2453350A2 (en) 2007-06-20 2012-05-16 Fujitsu Limited Processing device
JP2011250526A (en) * 2010-05-25 2011-12-08 Hitachi Ltd Power error integration system simultaneous same amount control method

Also Published As

Publication number Publication date
JP2003189479A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP5580183B2 (en) Power control apparatus and power control system using the same
US8200370B2 (en) Energy reduction
WO2014208059A1 (en) Power adjustment device, power adjustment method, power adjustment system, power storage device, server, program
EP2665149B1 (en) Reserve power-supplying capacity transaction system and reserve power-supplying capacity transaction method
US10031503B2 (en) Energy management device, energy management method, and energy management system
US20170310140A1 (en) System and method for reducing time-averaged peak charges
US20100145884A1 (en) Energy savings aggregation
KR20060121139A (en) Responsive electricity grid substation
EP2359456A2 (en) Energy savings aggregation
JP6208614B2 (en) Energy management apparatus, energy management method, and energy management system
US20040257730A1 (en) Power supply method and power supply system
KR20120114435A (en) Method of managing electric consumption with demand response
JP2004056996A (en) Local electric power intelligence supervisory system and its operation method
JP2017221040A (en) Power distribution system monitoring device
JP2003199249A (en) Method of making use of power supply network and system therefor
JP3793921B2 (en) Power supply service business method
JP3806029B2 (en) Power generation control device for power consignment
JP4192131B2 (en) Power generation planning method and power generation planning apparatus using secondary battery
JP2004040956A (en) Power supply management method
JP2015211516A (en) Charge/discharge control system for power storage device
EP2503504A1 (en) Systems and methods for generating a bill
JP7484034B2 (en) Upper level control device, power system and lower level control device
JP3753946B2 (en) Power generation control device for power consignment system
JP5638104B2 (en) Electricity rate calculation apparatus and method
JP4031412B2 (en) Power generation control device and program for power consignment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3806029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees