JP3804570B2 - Semiconductor device manufacturing method and semiconductor device manufacturing apparatus - Google Patents

Semiconductor device manufacturing method and semiconductor device manufacturing apparatus Download PDF

Info

Publication number
JP3804570B2
JP3804570B2 JP2002110178A JP2002110178A JP3804570B2 JP 3804570 B2 JP3804570 B2 JP 3804570B2 JP 2002110178 A JP2002110178 A JP 2002110178A JP 2002110178 A JP2002110178 A JP 2002110178A JP 3804570 B2 JP3804570 B2 JP 3804570B2
Authority
JP
Japan
Prior art keywords
resin
electrode
semiconductor
semiconductor device
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002110178A
Other languages
Japanese (ja)
Other versions
JP2003303837A (en
Inventor
健司 山田
建二 古本
知之 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002110178A priority Critical patent/JP3804570B2/en
Publication of JP2003303837A publication Critical patent/JP2003303837A/en
Application granted granted Critical
Publication of JP3804570B2 publication Critical patent/JP3804570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はウエハーの不良素子電極上に紫外線硬化性樹脂を用いて絶縁被膜を形成する技術に関するものである。
【0002】
【従来の技術】
先ず、絶縁被膜形成を行う半導体素子電極回りの関係を図1から図3を用いて説明する。図1のウエハーと半導体素子の配列説明図に示すようにウエハー1の半導体素子領域2内に複数の半導体素子を配置している。また、図2の半導体素子とスクライブレーンの関係を説明する図に示すようにウエハー状態で行う全ての検査終了後に半導体素子3を個片状態にするための切断代であるスクライブレーン4が半導体素子3の周辺に設けてある。更に、図3の素子と電極の配列を説明する図に示すように半導体素子3内に絶縁保護膜(回路部)6を囲うように絶縁被膜形成を行う電極5が配置されている。
【0003】
電極5表面に絶縁被膜形成を行うための従来技術は、半導体ウエハーを所定の位置に位置決めするX、Y、Zテーブルと、前記半導体ウエハー面に対して垂直に設けられた樹脂塗布用ノズル及び制御部より構成された装置において、前記X、Y、Zテーブルに載置された半導体ウエハー内の不良素子電極を所定の場所に位置決め後、X、Y、Zテーブルを上昇させ図4の従来の塗布状態を説明する図で示すようにノズル7先端を電極5表面に接触させ紫外線硬化性樹脂9を所定量滴下した後X、Y、Zテーブルを下降させて1回の処理を終了させる。この動作を不良素子の該当電極全てに対して行うことにより、最初の不良素子に対する絶縁被膜形成のための樹脂塗布処理が終わる。以上の動作をウエハー内の全不良素子に対して行うことにより1ウエハーの不良素子に対する絶縁被膜形成のための樹脂塗布処理が終了する。その後、ウエハー全体に紫外線を照射し樹脂を硬化させることにより絶縁被膜形成が完了する。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の技術には次のような問題がある。すなわち半導体素子の微細化にともない、電極面積も小さくなってきているが、一方樹脂を滴下するノズルの形状は滴下性からこれ以上小型化することが困難になってきており、結果として電極寸法に対するノズル径の許容差がなくなってきている。このため、図4の従来の塗布状態を説明する図で示されるようにノズル7先端が電極5表面に接触した時点で紫外線硬化性樹脂9が電極5表面からはみ出た状態で塗布され図4のダム8表面にも紫外線硬化性樹脂9が滴下されてしまい、その後浸透性のためスクライブレーン4を越えて隣接する素子にまで紫外線硬化性樹脂9が浸透してしまい良品素子を不良にしてしまうことになる。また、絶縁被膜層の厚みは検査時の測定端子の接触圧に耐えるために3μm〜5μmが必要とされるが、塗布後の紫外線硬化性樹脂9が電極5の中心部側を形成する図4の絶縁保護膜(回路部)6に時間の経過とともに浸透していき、最終的に電極5表面の絶縁被膜層の厚みは1μm以下になり検査時の測定端子が絶縁被膜を突き破り電極5と導通してしまう課題が発生する。さらに、前記のように半導体ウエハーに対する絶縁被膜形成のための樹脂塗布工程は、1ウエハー内の不良素子電極全てに塗布後に、紫外線照射による硬化を行うため、1ウエハーの処理時間が長くなると、樹脂の絶縁保護膜への浸透という特殊性のため1ウエハーでみた場合、最初に塗布した部分の絶縁被膜層の厚み寸法が薄くなり終わり部分の絶縁被膜層厚み寸法が厚くなる1ウエハー内のばらつき現象が発生する。このため、従来技術では、図5の従来の樹脂塗布プロセスを説明する図で示すようにウエハーを絶縁被膜層厚み寸法がばらつかない10分程度の時間毎で絶縁被膜形成処理を複数ブロックに分け、最初のブロックでステップS01からステップS03の処理を繰り返して不良素子の電極に樹脂を塗布後、ステップS04の紫外線硬化処理で絶縁被膜形成を完了させる。以上の処理を全ブロックに対して行うことにより1ウエハー当たりの絶縁被膜の厚みを一定水準に確保している。したがって、本発明では、1ウエハー全体の不良素子に対する絶縁被膜品質を確保するために、微細な電極上の限られた領域に樹脂を滴下する方法と、絶縁保護膜の浸透性による電極上の樹脂が時間経過とともに吸収され膜厚が減少しにくくすることが課題となる。また、ブロック化による紫外線硬化処理による絶縁被膜形成工程の生産性低下対策も課題となる。
【0005】
【課題を解決するための手段】
前記課題を解決するために、本発明の半導体製造装置、製造方法では樹脂塗布用のノズルを半導体ウエハー面に対して45°の角度に設定し、ノズルの先端の一部が電極に接触した状態で樹脂を滴下するようにすることで微細電極への樹脂塗布を実現した。また、図3の素子と電極の配列を説明する図のように、電極5は素子の四囲に沿って配置されているため、前記45°に傾斜した固定ノズルを使用した場合、辺ごとにノズル傾斜とスクライブレーン4や図3の絶縁保護膜(回路部)6との位置関係が変わってしまい、滴下条件を一定に決められない。このため、本発明では、ノズルに回転装置を設けて、ノズル傾斜方向と電極5周囲のスクライブレーン4や絶縁保護膜(回路部)6との関係が同じになるようにして、一定の条件で樹脂が滴下できるようにすることで樹脂塗布条件を大幅に広げることが可能となった。さらに膜厚品質と絶縁被膜形成工程の生産性を向上させるために、高粘度の樹脂を導入して、樹脂の絶縁保護膜への浸透を遅らして、ウエハー内の不良素子全てに樹脂塗布後、ホットプレートによりウエハー全体を加熱することにより樹脂を軟化させて電極上に樹脂を均一の厚みに広げたあと、紫外線を照射して絶縁被膜を形成するようにした。この方法により1ウエハーの全不良素子の該当電極に樹脂を塗布後、紫外線硬化を1回実施するだけで絶縁被膜を形成することが出来るので生産性向上が可能となった。
【0006】
【発明の実施の形態】
以下本発明の実施の形態について、図面を参照しながら説明する。図6のように本発明の塗布方法は電極5表面に対してノズル7の角度を45°に傾斜させノズル7の方向を素子の中心方向に設定する。この状態でX、Y、Zテーブルを上昇させて電極5表面にノズル7先端の一部を接触させたまま、紫外線硬化性樹脂9を滴下した後、X、Y、Zテーブルを下降させて1回分の樹脂塗布を完了させる。このような樹脂塗布方法を採ると、紫外線硬化性樹脂9の滴下状態が従来方式に比べて電極5表面の限られた領域に集中的に滴下されるので、その後電極5表面を緩やかに広がって電極5のスクライブレーン4側に設けられたダム8で紫外線硬化性樹脂9が堰きとめられスクライブレーン4まで浸透することが防止できる。さらにノズル7方向を素子の中心方向にすることで、紫外線硬化性樹脂9の滴下時にノズル7と電極5表面との接触部分から前方に多く吐出されることになり、スクライブレーン4に溢れずに、従来方式に比べて4倍の紫外線硬化性樹脂9を1回で塗布することが可能となった。その結果、絶縁保護膜への樹脂吸収状態が早く飽和状態になるため時間が経過しても電極5表面の絶縁被膜厚が薄くなることがなくなり、ブロック化処理を行っていた紫外線硬化を無くしても、電極5表面に必要絶縁被膜厚が確保出来るようになった。次に、前記ノズル7方向を素子中心部に向けるための方法を図7の本発明のノズル方向を変える装置の説明を使って説明していく。本装置はデータ部10と制御部11と回転機構12と、樹脂供給部13、XYZテーブル14及び、ノズル7より構成され、半導体素子の位置データを記憶しているデータ部10より、順次位置データを制御部11に読み込み、データに従って制御部11が回転機構12を駆動しノズル7を所定の方向に回転する。こうすることにより、電極がどの位置にあっても、ノズル7からの紫外線樹脂9の滴下方向が素子中心方向に保つことが出来るので、前述のように1回の樹脂量をどの電極位置でも増やすことが可能となった。
【0007】
さらに、粘度1000cpsの高粘度タイプの紫外線樹脂9を使った塗布方法を図8、図9を使って説明する。先ず、図8の本発明の樹脂塗布プロセスを説明する図で、ステップS11からS13までの処理を繰り返してウエハー内の全不良素子の電極に紫外線樹脂9を塗布する、そのときの紫外線樹脂9の状態は図9の本発明の塗布された紫外線樹脂9の状態の変化を説明する図のC11のように高粘度樹脂のため電極5の表面全体には広がらず一点に集中した状態になる。次のステップ図8のS14でホットプレートにより40℃でウエハー裏面全体を2分程度の熱を加えることにより紫外線樹脂9が軟化して粘度が100cps程度となり図9のC12のように電極5表面に均一に紫外線樹脂9が広がる。最後に図8のステップS15の処理で紫外線を5秒間照射することにより、図9のC13のように紫外線樹脂9が硬化して絶縁被膜が形成される。この方法をとることにより、紫外線樹脂9の電極5表面への広がりと紫外線硬化のプロセスがウエハー全体で一括処理となるため絶縁被膜厚が均一になる効果と、ウエハーを加熱するまでは紫外線樹脂9が電極5表面に広がらず、絶縁保護膜への浸透もしないので、紫外線硬化処理をブロック化する必要がなくなった。
【0008】
【発明の効果】
以上説明したように、本発明の半導体製造方法、製造装置をとれば次のような効果がある。すなわち、本発明のように45°に傾けた塗布ノズルを使うことで、微細な電極に対しても均質な絶縁被膜を形成する樹脂塗布を行うことができる。また、ノズルの方向を変える回転機構を具備することにより1回の樹脂量が増やせ、絶縁保護膜への浸透を遅らせることができる。さらには、高粘度の樹脂を使用し、ホットプレートによる一括樹脂軟化・硬化プロセスを採用することにより、均質な絶縁被膜を形成でき、また紫外線硬化処理が1回で済み生産性を大幅に向上することができる。
【図面の簡単な説明】
【図1】ウエハーと半導体素子の配列説明図
【図2】半導体素子とスクライブレーンの関係を説明する図
【図3】素子と電極の配列を説明する図
【図4】従来の塗布状態を説明する図
【図5】従来の樹脂塗布プロセスを説明する図
【図6】本発明の塗布方法を説明する図
【図7】本発明のノズルの方向を変える装置を説明する図
【図8】本発明の樹脂塗布プロセスを説明する図
【図9】本発明の塗布された樹脂の状態の変化を説明する図
【符号の説明】
1 ウエハー
2 半導体素子領域
3 半導体素子
4 スクライブレーン
5 電極
6 絶縁保護膜(回路部)
7 ノズル
8 ダム
9 紫外線硬化性樹脂
10 データ部
11 制御部
12 回転機構
13 樹脂供給部
14 XYZテーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for forming an insulating film on a defective element electrode of a wafer using an ultraviolet curable resin.
[0002]
[Prior art]
First, the relationship around the semiconductor element electrodes on which the insulating coating is formed will be described with reference to FIGS. A plurality of semiconductor elements are arranged in the semiconductor element region 2 of the wafer 1 as shown in the explanatory view of the arrangement of the wafer and semiconductor elements in FIG. Further, as shown in the drawing for explaining the relationship between the semiconductor element and the scribe lane in FIG. 2, the scribe lane 4 which is a cutting margin for making the semiconductor element 3 into a single piece state after completion of all the inspections performed in the wafer state is the semiconductor element. 3 is provided in the periphery of the area. Furthermore, as shown in the drawing for explaining the arrangement of the elements and electrodes in FIG. 3, an electrode 5 for forming an insulating film is disposed in the semiconductor element 3 so as to surround the insulating protective film (circuit portion) 6.
[0003]
The prior art for forming an insulating film on the surface of the electrode 5 includes an X, Y, Z table for positioning a semiconductor wafer at a predetermined position, a resin coating nozzle provided perpendicular to the semiconductor wafer surface, and a control. 4, after positioning the defective element electrode in the semiconductor wafer placed on the X, Y, Z table at a predetermined position, the X, Y, Z table is raised and the conventional coating shown in FIG. As shown in the figure for explaining the state, the tip of the nozzle 7 is brought into contact with the surface of the electrode 5 and a predetermined amount of the ultraviolet curable resin 9 is dropped, and then the X, Y and Z tables are lowered to complete one process. By performing this operation on all the corresponding electrodes of the defective element, the resin coating process for forming the insulating film on the first defective element is completed. By performing the above operation on all defective elements in the wafer, the resin coating process for forming an insulating film on the defective elements of one wafer is completed. Thereafter, the entire wafer is irradiated with ultraviolet rays to cure the resin, thereby completing the formation of the insulating film.
[0004]
[Problems to be solved by the invention]
However, the conventional technique has the following problems. In other words, as the semiconductor element is miniaturized, the electrode area is also reduced. On the other hand, it is difficult to further reduce the size of the nozzle for dropping the resin because of the dripping property. Nozzle diameter tolerance is disappearing. Therefore, as shown in the drawing for explaining the conventional application state of FIG. 4, when the tip of the nozzle 7 comes into contact with the surface of the electrode 5, the ultraviolet curable resin 9 is applied in a state of protruding from the surface of the electrode 5 as shown in FIG. The UV curable resin 9 is dripped also on the surface of the dam 8, and then the UV curable resin 9 penetrates to the adjacent element beyond the scribe lane 4 due to the permeability, thereby deteriorating the non-defective element. become. Further, the thickness of the insulating coating layer is required to be 3 μm to 5 μm in order to withstand the contact pressure of the measuring terminal at the time of inspection, but the ultraviolet curable resin 9 after application forms the center side of the electrode 5. It penetrates into the insulation protective film (circuit part) 6 over time, and finally the thickness of the insulating coating layer on the surface of the electrode 5 becomes 1 μm or less, and the measurement terminal at the time of inspection breaks through the insulating coating and becomes conductive with the electrode 5 This will cause problems. Further, as described above, the resin coating process for forming the insulating film on the semiconductor wafer is cured by ultraviolet irradiation after being applied to all the defective element electrodes in one wafer. Due to the peculiarity of permeation into the insulating protective film, when viewed on one wafer, the thickness dimension of the insulating coating layer in the first applied portion becomes thinner and the thickness dimension of the insulating coating layer in the end portion becomes thicker. Will occur. For this reason, in the prior art, as shown in the diagram for explaining the conventional resin coating process in FIG. 5, the insulating film forming process is divided into a plurality of blocks every 10 minutes when the thickness of the insulating film layer does not vary. In the first block, the process from step S01 to step S03 is repeated to apply a resin to the electrode of the defective element, and then the insulating film formation is completed by the ultraviolet curing process in step S04. By performing the above processing on all blocks, the thickness of the insulating coating per wafer is secured at a certain level. Therefore, in the present invention, in order to ensure the quality of the insulation film for defective elements of the entire wafer, a method of dropping the resin on a limited area on the fine electrode and the resin on the electrode due to the permeability of the insulation protective film It is a problem that the film is absorbed as time passes and the film thickness is hardly reduced. In addition, measures to reduce productivity in the insulating coating forming process by ultraviolet curing treatment by blocking are also an issue.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the semiconductor manufacturing apparatus and manufacturing method of the present invention, the nozzle for resin coating is set at an angle of 45 ° with respect to the semiconductor wafer surface, and a part of the tip of the nozzle is in contact with the electrode The resin application to the fine electrode was realized by dripping the resin. Further, as shown in FIG. 3 for explaining the arrangement of the elements and electrodes, the electrodes 5 are arranged along the four sides of the elements. Therefore, when the fixed nozzle inclined at 45 ° is used, the nozzles are arranged for each side. The positional relationship between the inclination and the scribe lane 4 and the insulating protective film (circuit portion) 6 in FIG. 3 changes, and the dripping conditions cannot be fixed. For this reason, in the present invention, a rotating device is provided in the nozzle so that the relationship between the nozzle inclination direction and the scribe lane 4 and the insulating protective film (circuit portion) 6 around the electrode 5 is the same, and under certain conditions. By allowing the resin to be dripped, the resin coating conditions can be greatly expanded. In addition, in order to improve the film quality and the productivity of the insulation film formation process, a resin with high viscosity is introduced to delay the penetration of the resin into the insulation protective film, and after applying the resin to all defective elements in the wafer. The entire wafer was heated by a hot plate to soften the resin and spread the resin on the electrode to a uniform thickness, and then irradiated with ultraviolet rays to form an insulating film. By this method, after applying a resin to the corresponding electrodes of all defective elements of one wafer, an insulating film can be formed by performing UV curing only once, so that productivity can be improved.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 6, in the coating method of the present invention, the angle of the nozzle 7 is inclined by 45 ° with respect to the surface of the electrode 5, and the direction of the nozzle 7 is set to the center direction of the element. In this state, the X, Y, Z table is raised, and the ultraviolet curable resin 9 is dropped while keeping a part of the tip of the nozzle 7 in contact with the surface of the electrode 5, and then the X, Y, Z table is lowered to 1 Complete the batch of resin application. By adopting such a resin coating method, the dripping state of the ultraviolet curable resin 9 is concentrated and dripped onto a limited area on the surface of the electrode 5 as compared with the conventional method, and thereafter the surface of the electrode 5 is gently spread. It is possible to prevent the ultraviolet curable resin 9 from being blocked by the dam 8 provided on the scribe lane 4 side of the electrode 5 and penetrating into the scribe lane 4. Further, by setting the nozzle 7 direction to the center direction of the element, when the ultraviolet curable resin 9 is dropped, the nozzle 7 and the electrode 5 surface are ejected in a large amount forward from the contact portion, without overflowing the scribe lane 4. Thus, it becomes possible to apply the ultraviolet curable resin 9 four times as much as that of the conventional method. As a result, the resin absorption state in the insulating protective film quickly becomes saturated, so that the insulating film thickness on the surface of the electrode 5 does not become thin even after a lapse of time, and the ultraviolet curing that has been blocked is eliminated. In addition, the required insulation film thickness can be secured on the surface of the electrode 5. Next, a method for directing the nozzle 7 direction toward the element center will be described using the description of the apparatus for changing the nozzle direction of the present invention in FIG. This apparatus is composed of a data unit 10, a control unit 11, a rotation mechanism 12, a resin supply unit 13, an XYZ table 14, and a nozzle 7, and sequentially receives position data from a data unit 10 storing semiconductor element position data. The control unit 11 drives the rotation mechanism 12 according to the data to rotate the nozzle 7 in a predetermined direction. By doing so, the dripping direction of the ultraviolet resin 9 from the nozzle 7 can be maintained in the element center direction regardless of the position of the electrode, so that the amount of one resin is increased at any electrode position as described above. It became possible.
[0007]
Further, a coating method using a high viscosity type ultraviolet resin 9 having a viscosity of 1000 cps will be described with reference to FIGS. First, FIG. 8 is a diagram for explaining the resin coating process of the present invention, in which the processes from steps S11 to S13 are repeated to apply the ultraviolet resin 9 to the electrodes of all defective elements in the wafer. The state is a high-viscosity resin as shown in C11 of FIG. 9 for explaining the change in the state of the coated ultraviolet resin 9 of the present invention, so that it does not spread over the entire surface of the electrode 5 but is concentrated at one point. In the next step S14 in FIG. 8, the entire surface of the back surface of the wafer is heated by a hot plate at 40 ° C. for about 2 minutes, so that the ultraviolet resin 9 is softened and the viscosity becomes about 100 cps. The UV resin 9 spreads uniformly. Finally, by irradiating ultraviolet rays for 5 seconds in the process of step S15 in FIG. 8, the ultraviolet resin 9 is cured and an insulating film is formed as shown in C13 of FIG. By adopting this method, the process of spreading the ultraviolet resin 9 to the surface of the electrode 5 and the ultraviolet curing process is performed collectively on the entire wafer, so that the insulating film thickness is uniform and the ultraviolet resin 9 is heated until the wafer is heated. Does not spread on the surface of the electrode 5 and does not penetrate into the insulating protective film, so that it is not necessary to block the ultraviolet curing treatment.
[0008]
【The invention's effect】
As described above, the semiconductor manufacturing method and manufacturing apparatus according to the present invention have the following effects. That is, by using a coating nozzle inclined at 45 ° as in the present invention, it is possible to perform resin coating that forms a uniform insulating film even on fine electrodes. Also, by providing a rotation mechanism that changes the direction of the nozzle, the amount of resin can be increased at one time, and penetration into the insulating protective film can be delayed. Furthermore, by using a high-viscosity resin and adopting a batch resin softening / curing process using a hot plate, it is possible to form a homogeneous insulating film, and only one UV curing treatment is required, which greatly improves productivity. be able to.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the arrangement of a wafer and a semiconductor device. FIG. 2 is a diagram for explaining the relationship between the semiconductor device and a scribe lane. FIG. FIG. 5 is a diagram illustrating a conventional resin coating process. FIG. 6 is a diagram illustrating a coating method according to the present invention. FIG. 7 is a diagram illustrating an apparatus for changing the direction of a nozzle according to the present invention. FIG. 9 is a diagram for explaining the resin coating process of the invention. FIG. 9 is a diagram for explaining a change in the state of the coated resin of the present invention.
DESCRIPTION OF SYMBOLS 1 Wafer 2 Semiconductor element area | region 3 Semiconductor element 4 Scribe lane 5 Electrode 6 Insulation protective film (circuit part)
7 Nozzle 8 Dam 9 UV curable resin 10 Data unit 11 Control unit 12 Rotating mechanism 13 Resin supply unit 14 XYZ table

Claims (4)

半導体ウエハーに形成された複数の半導体集積回路素子の各検査用電極に電圧を印加して、前記複数の半導体集積回路素子の電気特性をウエハー状態で一括して検査する場合に、不良素子による他素子への影響がないように、事前に前記不良素子電極の表面紫外線硬化性樹脂塗布する半導体装置の製造方法であって、
前記不良素子電極の表面に対して樹脂塗布ノズルを45°傾けて紫外線硬化性樹脂を塗布することを特徴とする半導体装置の製造方法。
And voltage is applied to each inspection electrodes of the semiconductor integrated circuit device formed on a semiconductor wafer, in the case of collectively inspecting in the electrical characteristics wafer state of the plurality of semiconductor integrated circuit devices, by bad elements A method of manufacturing a semiconductor device in which an ultraviolet curable resin is applied to the surface of the defective element electrode in advance so as not to affect other elements ,
A method of manufacturing a semiconductor device, wherein an ultraviolet curable resin is applied by tilting a resin coating nozzle by 45 ° with respect to the surface of the defective element electrode .
塗布した紫外線硬化性樹脂に紫外線を照射することを特徴とする請求項1に記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the applied ultraviolet curable resin is irradiated with ultraviolet rays. 全不良素子電極の表面に塗布した紫外線硬化性樹脂に紫外線を照射する前に、前記塗布した紫外線硬化性樹脂を一括してホットプレートで軟化させることを特徴とする請求項記載の半導体装置の製造方法。 Before irradiating the ultraviolet to the ultraviolet curing resin coated on the surface of all the defective element electrodes, a semiconductor according to claim 2, wherein the softening on a hot plate at once the coated ultraviolet curable resin Device manufacturing method. 半導体ウエハーに形成された複数の半導体集積回路素子の各検査用電極に電圧を印加して、前記複数の半導体集積回路素子の電気特性をウエハー状態で一括して検査する場合に、不良素子による他素子への影響がないように、事前に前記不良素子電極の表面に紫外線硬化性樹脂を塗布する半導体装置の製造装置であって、When a voltage is applied to each inspection electrode of a plurality of semiconductor integrated circuit elements formed on a semiconductor wafer and the electrical characteristics of the plurality of semiconductor integrated circuit elements are collectively inspected in the wafer state, other elements caused by defective elements An apparatus for manufacturing a semiconductor device in which an ultraviolet curable resin is applied to the surface of the defective element electrode in advance so as not to affect the element,
前記不良素子電極の表面に対して45°傾斜する樹脂塗布ノズルを備え、A resin coating nozzle inclined by 45 ° with respect to the surface of the defective element electrode;
前記樹脂塗布ノズルから前記不良素子電極の表面に対して紫外線硬化性樹脂を塗布することを特徴とする半導体装置の製造装置。An apparatus for manufacturing a semiconductor device, wherein an ultraviolet curable resin is applied to the surface of the defective element electrode from the resin application nozzle.
JP2002110178A 2002-04-12 2002-04-12 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus Expired - Fee Related JP3804570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110178A JP3804570B2 (en) 2002-04-12 2002-04-12 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110178A JP3804570B2 (en) 2002-04-12 2002-04-12 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006098867A Division JP2006191155A (en) 2006-03-31 2006-03-31 Manufacturing method and manufacturing device of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003303837A JP2003303837A (en) 2003-10-24
JP3804570B2 true JP3804570B2 (en) 2006-08-02

Family

ID=29393404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110178A Expired - Fee Related JP3804570B2 (en) 2002-04-12 2002-04-12 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3804570B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032350A1 (en) 2008-09-17 2010-03-25 パナソニック株式会社 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2003303837A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
JP3654483B2 (en) Manufacturing method of liquid crystal display device
KR101505242B1 (en) Imprint method, imprint apparatus, and article manufacturing method
JP2003241206A (en) Method of fabricating liquid crystal display device
CN109300842A (en) The processing method of chip
JP3804570B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JPH0541407A (en) Packaging method of semiconductor device
KR100824964B1 (en) Apparatus and method for forming thin metal film using laser
KR101117617B1 (en) Manufacturing method of semiconductor device
JP2006191155A (en) Manufacturing method and manufacturing device of semiconductor device
JP4209146B2 (en) Liquid crystal display element and manufacturing method thereof
JPH09230351A (en) Alignment layer treatment for alignment layer
JP3423239B2 (en) Bump electrode formation method
JPH0437146A (en) Mounting of semiconductor chip of liquid crystal display apparatus
JP5358143B2 (en) Manufacturing method of liquid crystal display device
JP4021258B2 (en) Liquid crystal display device manufacturing method
JPH06124952A (en) Bump forming method of semiconductor chip
TW201915480A (en) Method for inspecting semiconductor device structure
JP6478526B2 (en) Manufacturing method of liquid crystal display element
KR102621793B1 (en) Sputtering pretreatment method
JP2003094295A (en) Semiconductor wafer grinding method, semiconductor wafer and protection material for semiconductor wafer
DE102022202308B4 (en) LASER PROCESSING METHODS
JP2841846B2 (en) IC semiconductor element bonding method
KR100860476B1 (en) Dual dispensing method of resin for imprinting
KR101065251B1 (en) Manufacturing method of micro lens array having function of shadow mask
JP2008108988A (en) Method and apparatus of manufacturing semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees