JP3803992B2 - Battery management device for assembled batteries for electric vehicles - Google Patents

Battery management device for assembled batteries for electric vehicles Download PDF

Info

Publication number
JP3803992B2
JP3803992B2 JP33912397A JP33912397A JP3803992B2 JP 3803992 B2 JP3803992 B2 JP 3803992B2 JP 33912397 A JP33912397 A JP 33912397A JP 33912397 A JP33912397 A JP 33912397A JP 3803992 B2 JP3803992 B2 JP 3803992B2
Authority
JP
Japan
Prior art keywords
voltage
module
battery
total
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33912397A
Other languages
Japanese (ja)
Other versions
JPH11176480A (en
Inventor
工 清水
周 平松
正樹 小川
義晃 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP33912397A priority Critical patent/JP3803992B2/en
Publication of JPH11176480A publication Critical patent/JPH11176480A/en
Application granted granted Critical
Publication of JP3803992B2 publication Critical patent/JP3803992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車用組み電池の電池管理装置に関する。
【0002】
【従来の技術】
近年、電気自動車用組み電池は、その配線損失の低減や充放電電流をスイッチングする素子の小型化の要請から、300V以上といった高圧化が検討されている。
このような高圧組み電池では、組み電池を構成する各単電池の充放電状態のばらつきが問題となり、放電時に組み電池全体としては残存容量は十分に大きいと推定されても一部の単電池は過放電すなわち充電不足状態寸前になっていたり、逆に充電時に組み電池全体としてはまだ満充電ではないと推定されても一部の単電池は過充電すなわち満充電状態になっていたりする場合が生じる。
【0003】
このため、特開平5−64377号公報及び特開平8ー140204号公報は、縦続接続された多数の単電池により構成される電池モジュール群に組み電池を分割し、各電池モジュール単位で充放電電圧をモニタして電池管理することを提案している。
この電池管理方式によれば、組み電池をそれより小さい電池ブロックである各電池モジュール単位で充放電制御することができるので、上記した一部の単電池の過充電や過放電や故障といった不具合を良好に抑止することができる。
【0004】
一方、組み電池全体の残存容量の算出などの電池管理においては、組み電池の総電圧を用いて行われる。これは、各モジュール電圧を合算して得た合計モジュール電圧が、各モジュール電圧検出、算出、加算などに関する各種ノイズやオフセット誤差の累積の存在のために、組み電池の両端子間から一挙に求めたその総電圧よりも不正確となるためである。
【0005】
【発明が解決しようとする課題】
上記したように、従来の電気自動車用組み電池の電池管理では、ある種の電池管理用処理は各モジュール電圧を用いて行い、またある種の電池管理用処理は組み電池の総電圧を用いて互いに独立に行っている。
しかしながら、モジュール電圧を用いる電池管理用処理(以下、モジュール電圧処理ともいう)、又は、総電圧を用いる電池管理用処理(総電圧処理ともいう)のどちらかで異常を検出すると、異常の程度によっては最終的には電気自動車の走行禁止処置(放電禁止)や充電禁止処置を含む各段階の対応処置を実施して安全性の確保を図るが、このような場合、以下の不具合が生じることがわかった。
【0006】
すなわち、検出した各モジュール電圧の一部や総電圧に異常が生じた場合、それは組み電池に異常が生じた場合もあるが、それ以外のこれら電圧をアナログ検出し、デジタル変換し、信号処理部に取り込むモジュール電圧処理回路や総電圧処理回路といった電池電圧処理回路の作動不良は、組み電池とこれら回路とを接続する配線、又は、これら回路よりの信号を出力する配線の異常であることも多くある。
【0007】
このような場合、組み電池自体は十分に走行できる能力を有しているにもかかわらず、これら電池電圧処理回路から電池管理用処理の結果としての出力信号を受け取る電気自動車の走行制御などの全体制御を行う電子制御装置(ECU)は、電池全体または電池の一部の重大な不良と誤判断して、走行を禁止してしまう。
【0008】
特に、上述した組み電池の高圧化は、電池電圧検出回路の構成の大幅な複雑化を必要とし、それに応じてこの電池電圧検出回路の故障確率も増大することが予測される。
本発明は上記問題点に鑑みなされたものであり、組み電池の総電圧およびモジュール電圧を処理する電気自動車用組み電池の電池管理装置において、回路構成の複雑化を回避しつつ、電池電圧検出不良に伴う電気自動車の機能低下を抑止できる電気自動車用組み電池の電池管理装置を提供することをその解決すべき課題としている。
【0009】
【課題を解決するための手段】
請求項1に記載した本発明の電気自動車用組み電池の電池管理装置によれば、電気自動車用組み電池の各モジュール電圧と総電圧とが検出され、各モジュール電圧に基づいて電池モジュールの状態に関するモジュ−ル状態情報が出力され、総電圧に基づいて組み電池全体の状態に関する組み電池全体状態情報が出力される。
【0010】
本構成では特に、これら各検出電圧の少なくとも一部の誤検出の有無を判定し、誤検出が生じた場合にそれが生じた方の上記状態情報を補正して正常化させる。
このようにすれば、組み電池の総電圧の他に各モジュール電圧を検出して処理することにより、きめ細かい電池管理ができるとともに更に、これら電圧検出回路が部分的に故障した場合でも、安全性の低下を回避しつつそれによる機能低下を最小限に抑えることができ、電気自動車用の使い勝手を向上することができる。
【0011】
【発明の実施の形態】
以下、本発明の好適な態様を以下の実施例により詳細に説明する。ただし、本発明は下記の実施例の構成に限定されるものではなく、置換可能な公知回路を用いて構成できることは当然である。
【0012】
【実施例1】
本発明の電気自動車用組み電池の電池管理装置の一実施例を図1を参照して説明する。
1は電気自動車の走行モ−タ給電用の主バッテリをなす組電池であり、互いに直列接続された101〜120の各電池モジュールに分割されている。
【0013】
201は各電池モジュール101〜120の電圧すなわち合計20個のモジュール電圧を検出するモジュール電圧検出回路であって、モジュール電圧検出回路201は、各モジュール電圧を互いに独立に検出する合計20チャンネルの電圧検出ユニットを内蔵しており、各電圧検出ユニットは、それぞれ入力する一対の電位間の電位差を検出する差動増幅器(図示せず)と、検出した電位差をA/D変換するA/D変換回路(図示せず)とを有しており、これら各A/D変換回路の出力信号はモジュール電圧検出回路201の出力段にて時間順次に一本化されて出力される。
【0014】
202は組電池1の総電圧を検出する総電圧検出回路であり、上記した電圧検出ユニットを一個有している。
5は入力されるこれらモジュール電圧や総電圧、更には電気自動車の各種センサから入力される各種情報に基づいて、組み電池1の充放電を含む各種動作を制御する電子制御装置(ECU)である。
【0015】
301、302はモジュール電圧検出回路201および総電圧検出回路202に電源電圧を個別に給電するための入出力絶縁タイプのDC/DCコンバータであり、これらDC/DCコンバータ301、302は図示しない低圧の補機バッテリから給電されている。
401は、モジュール電圧検出回路201でそれぞれ検出された合計20個の各モジュール電圧を時間順次に伝送するためのシリアル信号線に設けられたフォトカプラ、402は、総電圧検出回路202で検出された総電圧を伝送するためのシリアル信号線に設けられたフォトカプラである。
【0016】
この実施例で重要なことは、モジュール電圧検出回路201と総電圧検出回路202とはその電源給電から入出力を含めて互いに完全に分離されており、一方の回路故障が他方のそれに波及しないことである。
次に、上記した電子制御装置(ECU)による電池管理ルーチンの要部を図2に示すフロ−チャ−トを参照して説明する。
【0017】
まず、モジュール電圧検出回路201から合計20個の各モジュール電圧を読み込み(S100)、次に総電圧検出回路202から総電圧を読み込む(S102)。
次に、読み込んだ各モジュール電圧および総電圧がそれぞれ許容範囲内にあるかどうかを調べ(S104)、各モジュール電圧の一つだけが異常であって他のモジュール電圧および総電圧が正常である場合には、この異常なモジュール電圧を補正モジュール電圧に置換し(S106)、モジュール電圧異常警告信号を出力して(S108)、S110へ進み、S104にてそれ以外の場合には直接にS110へジャンプする。
【0018】
S110では、読み込んだ各モジュール電圧および総電圧がそれぞれ許容範囲内にあるかどうかを調べ、総電圧だけが異常であってすべてのモジュール電圧が正常である場合には、この異常な総電圧を補正総電圧に置換し(S112)、総電圧異常警告信号を出力して(S114)、S116へ進み、S110にてそれ以外の場合には直接にS116へジャンプする。
【0019】
S116では、読み込んだ各モジュール電圧の少なくとも一つと総電圧との両方が異常かどうかを調べ、両方異常であれば、電池異常を報知するとともに、走行動作(放電動作)および充電動作を禁止して(S118)、ルーチンを停止し、S116にて読み込んだ各モジュール電圧の少なくとも一つと総電圧との両方が異常でなければ、次の電池管理動作または充放電制御動作(S120)に進む。
【0020】
S104では、読み込んだモジュール電圧の検出値が満充電時のモジュール電圧値より所定電圧値以上高い場合、または、残存容量が0の場合におけるモジュール電圧値より所定電圧値以上低い場合に、モジュール電圧異常と判定するが、読み込んだ総電圧に基づいて前記所定電圧値を加減することも可能である。
S110では、読み込んだ総電圧の検出値が満充電時の総電圧値より所定電圧値以上高い場合、または、残存容量が0の場合における総電圧値より所定電圧値以上低い場合に、総電圧異常と判定するが、読み込んだモジュール電圧の合計に基づいて前記所定電圧値を加減することも可能である。
【0021】
S106では、誤検出されたモジュール電圧が補償されるが、この補償は、総電圧の1/20の値に置換したり、誤検出されたモジュール電圧以外の残りのモジュール電圧の合計を総電圧から差し引くなどの方法を採用することができる。更には、モジュール電圧全部OKという意味の判定信号を出力するだけでもよい。
【0022】
S112では、誤検出された総電圧が補償されるが、この補償は、読み込まれたモジュール電圧の合計で置換することにより行われるが、更には、総電圧OKという意味の判定信号を出力するだけでもよい。
【図面の簡単な説明】
【図1】本発明の電気自動車用組み電池の電池管理装置のブロック回路図である。
【図2】図1のECUの検出電圧チェック動作を示すフロ−チャ−トである。
【符号の説明】
201はモジュール電圧検出回路(モジュール電圧検出手段)、202は総電圧検出回路(総電圧検出手段)、5はECU(モジュール電圧処理手段、総電圧処理手段、誤検出判定手段、補正手段)、S120はモジュール電圧処理手段および総電圧処理手段、S104、S110は誤検出判定手段、S106、S112は補正手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery management device for an assembled battery for an electric vehicle.
[0002]
[Prior art]
In recent years, as for assembled batteries for electric vehicles, a high voltage of 300 V or higher has been studied in order to reduce wiring loss and to reduce the size of an element for switching charge / discharge current.
In such a high-voltage assembled battery, the variation in the charge / discharge state of each single battery constituting the assembled battery becomes a problem, and even if it is estimated that the remaining capacity of the assembled battery as a whole is sufficiently large at the time of discharge, Some cells may be overcharged, i.e. fully charged, even if it is presumed that the battery is overcharged, i.e. undercharged, or on the contrary, it is estimated that the assembled battery is not fully charged as a whole. Arise.
[0003]
For this reason, Japanese Patent Application Laid-Open No. 5-64377 and Japanese Patent Application Laid-Open No. 8-140204 divide the assembled battery into a battery module group composed of a large number of cascaded single cells, and charge / discharge voltage for each battery module unit. It is proposed to monitor the battery and manage the battery.
According to this battery management method, the assembled battery can be charged / discharged in units of each battery module, which is a smaller battery block, so the above-mentioned problems such as overcharge, overdischarge, and failure of some single cells are avoided. It can be suppressed well.
[0004]
On the other hand, battery management such as calculation of the remaining capacity of the entire assembled battery is performed using the total voltage of the assembled battery. This is because the total module voltage obtained by adding up the module voltages is calculated from both terminals of the assembled battery at once due to the accumulation of various noises and offset errors related to detection, calculation, and addition of each module voltage. This is because it becomes less accurate than the total voltage.
[0005]
[Problems to be solved by the invention]
As described above, in battery management of a conventional assembled battery for an electric vehicle, a certain type of battery management process is performed using each module voltage, and a certain type of battery management process is performed using the total voltage of the assembled battery. They are independent of each other.
However, if an abnormality is detected in either battery management processing using module voltage (hereinafter also referred to as module voltage processing) or battery management processing using total voltage (also referred to as total voltage processing), depending on the degree of abnormality In the end, measures are taken to ensure safety by implementing countermeasures at each stage including electric vehicle travel prohibition (discharge prohibition) and charge prohibition, but in such cases, the following problems may occur: all right.
[0006]
In other words, if an abnormality occurs in a part of the detected module voltage or the total voltage, it may be an abnormality in the assembled battery, but these other voltages are detected in analog, converted into digital signals, and a signal processing unit. The malfunction of battery voltage processing circuits such as the module voltage processing circuit and the total voltage processing circuit to be taken in is often an abnormality in the wiring that connects the assembled battery and these circuits, or the wiring that outputs signals from these circuits. is there.
[0007]
In such a case, although the assembled battery itself has the ability to travel sufficiently, the overall control of the electric vehicle that receives the output signal as a result of the battery management processing from these battery voltage processing circuits, etc. The electronic control unit (ECU) that performs control erroneously determines that the entire battery or a part of the battery is seriously defective, and prohibits traveling.
[0008]
In particular, the above-described increase in the voltage of the assembled battery requires a significant increase in the configuration of the battery voltage detection circuit, and the failure probability of the battery voltage detection circuit is expected to increase accordingly.
The present invention has been made in view of the above problems, and in a battery management device for an assembled battery for an electric vehicle that processes the total voltage and module voltage of the assembled battery, while avoiding complication of the circuit configuration, the battery voltage detection failure It is an object of the present invention to provide a battery management device for an assembled battery for an electric vehicle that can suppress the deterioration of the function of the electric vehicle.
[0009]
[Means for Solving the Problems]
According to the battery management apparatus for an assembled battery for an electric vehicle of the present invention described in claim 1, each module voltage and total voltage of the assembled battery for an electric vehicle are detected, and the state of the battery module is related to each module voltage. The module state information is output, and the assembled battery overall state information relating to the state of the entire assembled battery is output based on the total voltage.
[0010]
In this configuration, in particular, it is determined whether or not at least some of these detection voltages are erroneously detected, and when an erroneous detection occurs, the state information on which the erroneous detection has occurred is corrected and normalized.
In this way, by detecting and processing each module voltage in addition to the total voltage of the assembled battery, detailed battery management can be performed, and even when these voltage detection circuits are partially broken, safety is ensured. While avoiding the deterioration, it is possible to minimize the deterioration of the function, and the usability for the electric vehicle can be improved.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail by the following examples. However, the present invention is not limited to the configurations of the following embodiments, and can naturally be configured using a replaceable known circuit.
[0012]
[Example 1]
An embodiment of a battery management apparatus for an assembled battery for an electric vehicle according to the present invention will be described with reference to FIG.
Reference numeral 1 denotes an assembled battery constituting a main battery for feeding electric power to a traveling motor of an electric vehicle, which is divided into 101 to 120 battery modules connected in series with each other.
[0013]
Reference numeral 201 denotes a module voltage detection circuit that detects voltages of the battery modules 101 to 120, that is, a total of 20 module voltages. The module voltage detection circuit 201 detects voltage of 20 channels in total that detects each module voltage independently of each other. Each voltage detection unit includes a differential amplifier (not shown) for detecting a potential difference between a pair of input potentials, and an A / D conversion circuit (A / D conversion circuit for A / D converting the detected potential difference). The output signals of these A / D conversion circuits are unified in a time sequence at the output stage of the module voltage detection circuit 201 and output.
[0014]
Reference numeral 202 denotes a total voltage detection circuit that detects the total voltage of the assembled battery 1 and has one voltage detection unit described above.
Reference numeral 5 denotes an electronic control unit (ECU) that controls various operations including charging / discharging of the assembled battery 1 based on the input module voltage and total voltage, and various information input from various sensors of the electric vehicle. .
[0015]
Reference numerals 301 and 302 denote input / output insulation type DC / DC converters for individually supplying power supply voltages to the module voltage detection circuit 201 and the total voltage detection circuit 202. These DC / DC converters 301 and 302 are low voltage not shown. Power is supplied from the auxiliary battery.
Reference numeral 401 denotes a photocoupler provided on a serial signal line for sequentially transmitting a total of 20 module voltages detected by the module voltage detection circuit 201, and 402 is detected by the total voltage detection circuit 202. It is a photocoupler provided on a serial signal line for transmitting the total voltage.
[0016]
What is important in this embodiment is that the module voltage detection circuit 201 and the total voltage detection circuit 202 are completely separated from each other, including input and output, from the power supply, so that one circuit failure does not affect the other. It is.
Next, the main part of the battery management routine by the electronic control unit (ECU) will be described with reference to the flowchart shown in FIG.
[0017]
First, a total of 20 module voltages are read from the module voltage detection circuit 201 (S100), and then the total voltage is read from the total voltage detection circuit 202 (S102).
Next, it is checked whether or not each read module voltage and total voltage are within the allowable range (S104). When only one of the module voltages is abnormal and the other module voltage and total voltage are normal The abnormal module voltage is replaced with the correction module voltage (S106), a module voltage abnormality warning signal is output (S108), the process proceeds to S110, and in S104, the process directly jumps to S110 in other cases. To do.
[0018]
In S110, it is checked whether or not each read module voltage and total voltage are within the allowable range. If only the total voltage is abnormal and all the module voltages are normal, the abnormal total voltage is corrected. The total voltage is replaced (S112), a total voltage abnormality warning signal is output (S114), the process proceeds to S116, and otherwise the process jumps directly to S116 in S110.
[0019]
In S116, it is checked whether or not at least one of the read module voltages and the total voltage are both abnormal. If both are abnormal, the battery abnormality is notified and the running operation (discharge operation) and the charging operation are prohibited. (S118) The routine is stopped, and if at least one of the module voltages read in S116 and the total voltage are not abnormal, the process proceeds to the next battery management operation or charge / discharge control operation (S120).
[0020]
In S104, if the detected value of the read module voltage is higher than the module voltage value at full charge by a predetermined voltage value or higher, or if the remaining capacity is 0, the module voltage error is lower than the module voltage value by a predetermined voltage value or more. However, the predetermined voltage value can be adjusted based on the read total voltage.
In S110, when the detected value of the read total voltage is higher than the total voltage value at full charge by a predetermined voltage value or lower than the total voltage value when the remaining capacity is 0, the total voltage abnormality is detected. However, the predetermined voltage value can be adjusted based on the total of the read module voltages.
[0021]
In S106, the erroneously detected module voltage is compensated. This compensation is performed by substituting the value of 1/20 of the total voltage or the total of the remaining module voltages other than the erroneously detected module voltage from the total voltage. A method such as deduction can be employed. Furthermore, it is also possible to simply output a determination signal meaning that all module voltages are OK.
[0022]
In S112, the erroneously detected total voltage is compensated. This compensation is performed by replacing with the total of the read module voltages. Further, only the determination signal meaning the total voltage OK is output. But you can.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram of a battery management device for an assembled battery for an electric vehicle according to the present invention.
FIG. 2 is a flowchart showing a detection voltage check operation of the ECU of FIG. 1;
[Explanation of symbols]
201 is a module voltage detection circuit (module voltage detection means), 202 is a total voltage detection circuit (total voltage detection means), 5 is an ECU (module voltage processing means, total voltage processing means, erroneous detection determination means, correction means), S120 Are module voltage processing means and total voltage processing means, S104 and S110 are false detection determination means, and S106 and S112 are correction means.

Claims (1)

多数の電池モジュールを縦続接続してなる組み電池の各モジュール電圧をそれぞれ検出するモジュール電圧検出手段と、
前記組み電池の総電圧を一挙に検出する総電圧検出手段と、
検出された前記各モジュール電圧に基づいて電池モジュールの状態に関するモジュ−ル状態情報を出力するモジュール電圧処理手段と、
検出された前記総電圧に基づいて組み電池全体の状態に関する組み電池全体状態情報を出力する総電圧処理手段と、
検出された前記各モジュール電圧および総電圧に基づいて前記モジュール電圧および総電圧のどちらかの誤検出の有無を判定する誤検出判定手段と、
前記誤検出判定時に、前記両処理手段のうち前記誤検出が生じた方の電圧を処理する処理手段の出力を補正する補正手段と、
を備えることを特徴とする電気自動車用組み電池の電池管理装置。
Module voltage detection means for detecting each module voltage of the assembled battery formed by cascading a large number of battery modules;
Total voltage detecting means for detecting the total voltage of the assembled battery at a time;
Module voltage processing means for outputting module state information relating to the state of the battery module based on each detected module voltage;
Total voltage processing means for outputting overall assembled battery state information relating to the state of the entire assembled battery based on the detected total voltage;
Erroneous detection determination means for determining the presence or absence of erroneous detection of either the module voltage or the total voltage based on each detected module voltage and the total voltage;
Correction means for correcting the output of the processing means for processing the voltage of the processing means that has caused the false detection during the erroneous detection determination;
The battery management apparatus of the assembled battery for electric vehicles characterized by the above-mentioned.
JP33912397A 1997-12-09 1997-12-09 Battery management device for assembled batteries for electric vehicles Expired - Lifetime JP3803992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33912397A JP3803992B2 (en) 1997-12-09 1997-12-09 Battery management device for assembled batteries for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33912397A JP3803992B2 (en) 1997-12-09 1997-12-09 Battery management device for assembled batteries for electric vehicles

Publications (2)

Publication Number Publication Date
JPH11176480A JPH11176480A (en) 1999-07-02
JP3803992B2 true JP3803992B2 (en) 2006-08-02

Family

ID=18324471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33912397A Expired - Lifetime JP3803992B2 (en) 1997-12-09 1997-12-09 Battery management device for assembled batteries for electric vehicles

Country Status (1)

Country Link
JP (1) JP3803992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161316A (en) * 2010-02-15 2011-08-24 株式会社电装 Emergency notification system for electric vehicle and method for emergency notification

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669143B2 (en) 1998-04-20 2005-07-06 住友ゴム工業株式会社 Golf club shaft and manufacturing method thereof
JP5052488B2 (en) * 2004-04-09 2012-10-17 三洋電機株式会社 Power supply
JP4260121B2 (en) * 2004-04-09 2009-04-30 三洋電機株式会社 Power supply
JP4506606B2 (en) * 2005-07-28 2010-07-21 日産自動車株式会社 Voltage detection device for battery pack
JP4490928B2 (en) 2006-02-01 2010-06-30 矢崎総業株式会社 Voltage detector
JP4490931B2 (en) * 2006-02-09 2010-06-30 矢崎総業株式会社 Voltage detector
JP4589888B2 (en) * 2006-03-23 2010-12-01 株式会社ケーヒン Battery voltage measurement circuit and battery ECU
JP5274110B2 (en) * 2008-05-29 2013-08-28 三洋電機株式会社 Power supply for vehicle
JP2010145128A (en) * 2008-12-16 2010-07-01 Denso Corp Device for monitoring battery pack
JP5462096B2 (en) * 2010-07-15 2014-04-02 株式会社マキタ Battery for power tools
DE102010041049A1 (en) 2010-09-20 2012-03-22 Sb Limotive Company Ltd. Battery system and method for determining battery module voltages
JP5573575B2 (en) * 2010-10-08 2014-08-20 トヨタ自動車株式会社 VEHICLE BATTERY MONITORING DEVICE, VEHICLE BATTERY MONITORING SYSTEM, AND VEHICLE BATTERY DIAGNOSIS METHOD
DE102012216312A1 (en) * 2012-09-13 2014-03-13 Siemens Aktiengesellschaft Rail vehicle with battery operation
JP5987583B2 (en) * 2012-09-18 2016-09-07 トヨタ自動車株式会社 Abnormality detection method for power storage system and voltage monitoring device.
JP5991299B2 (en) 2012-12-26 2016-09-14 株式会社デンソー Voltage detection device for battery pack
CN105730273A (en) * 2016-02-04 2016-07-06 梁彦云 Compatible direct current charging pile
US10434883B2 (en) 2016-09-27 2019-10-08 Ford Global Technologies, Llc Safety critical systems control in autonomous vehicles
WO2018180520A1 (en) * 2017-03-31 2018-10-04 三洋電機株式会社 Monitoring device and power storage system
KR102215703B1 (en) * 2019-08-13 2021-02-16 한국과학기술원 Estimation of the remaining useful life of the energy storage system and the appropriate operating boundary decision algorithm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161316A (en) * 2010-02-15 2011-08-24 株式会社电装 Emergency notification system for electric vehicle and method for emergency notification
CN102161316B (en) * 2010-02-15 2014-10-01 株式会社电装 Emergency notification system for electric vehicle and method for emergency notification

Also Published As

Publication number Publication date
JPH11176480A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP3803992B2 (en) Battery management device for assembled batteries for electric vehicles
US10895603B2 (en) Voltage monitoring module and voltage monitoring system to detect a current leakage
JP4186916B2 (en) Battery pack management device
EP2549581B1 (en) Battery apparatus for controlling plural batteries and control method of plural batteries
US8489347B2 (en) Battery pack monitoring apparatus
JP4449829B2 (en) Power supply
US7394222B2 (en) Power supply apparatus with function for correcting for erroneous detection
US8125187B2 (en) Method of controlling battery charging and discharging in a hybrid car power source
EP2799894B1 (en) Monitoring system and vehicle
JP5092812B2 (en) Battery monitoring device and failure diagnosis method
JP7039563B6 (en) Monitoring device and power storage system
US11493564B2 (en) Ground fault detection device
US20120249075A1 (en) Secondary battery voltage detecting system
US20080103707A1 (en) Malfunction detecting apparatus
JP2007205977A (en) Monitor for secondary battery
JP6787705B2 (en) Anomaly detector and battery system
US20080185997A1 (en) Charged control device and battery pack employing it
JPH11178231A (en) Temperature control device of set battery for electric vehicle
JP3711639B2 (en) Abnormality judgment device for battery pack
JP2014106145A (en) Battery monitoring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term