JP3803147B2 - Drilling pressure control device for drilling device - Google Patents

Drilling pressure control device for drilling device Download PDF

Info

Publication number
JP3803147B2
JP3803147B2 JP25478696A JP25478696A JP3803147B2 JP 3803147 B2 JP3803147 B2 JP 3803147B2 JP 25478696 A JP25478696 A JP 25478696A JP 25478696 A JP25478696 A JP 25478696A JP 3803147 B2 JP3803147 B2 JP 3803147B2
Authority
JP
Japan
Prior art keywords
striking
pressure
oil passage
flow rate
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25478696A
Other languages
Japanese (ja)
Other versions
JPH10102972A (en
Inventor
勉 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP25478696A priority Critical patent/JP3803147B2/en
Publication of JPH10102972A publication Critical patent/JPH10102972A/en
Application granted granted Critical
Publication of JP3803147B2 publication Critical patent/JP3803147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、岩盤の掘削等に使用される打撃機構を備えたさく孔装置の打撃圧制御装置に関する。
【0002】
【従来の技術】
一般に、岩盤の掘削に使用されるさく孔装置は、油圧で駆動される打撃機構、回転機構、及び送り機構を備えており、打撃機構がさく孔用のロッドに打撃を与え、回転機構がさく孔用のロッドに回転を与えると共に、送り機構がさく孔用のロッドに送りを与えて岩盤にさく孔する。
【0003】
打撃機構は流量が増加すると打撃圧が増大して打撃力が大となり、流量が減少すると打撃圧が減小して打撃力が小となる特性を有している。
近年の油圧技術の発展に伴い、さく孔装置では電気的制御技術を組み込んだ自動制御も実用化されているが、部品点数が多くコストが嵩みメンテナンスも面倒であることから、現場では油圧のみによる制御を要望されることが多い。
【0004】
従来の油圧のみにより制御されるさく孔装置では、打撃機構、回転機構、及び送り機構は、図11に示すような油圧回路で駆動されている。
このさく孔装置では、打撃機構71、回転機構72、及び送り機構73には、さく孔時に油圧源から打撃用作動油路74、回転用正転油路75、送り用前進油路76を経てそれぞれ必要な圧油が供給される。
【0005】
打撃用作動油路74には手動の打撃油圧切換弁82が設けられており、レバーの操作により流量を調整して座繰り時の打撃圧と通常のさく孔時の打撃圧とを切換え制御する。
【0006】
また、打撃用作動油路74と打撃用戻り油路77との間に、リリーフ弁83とパイロット切換弁84とを設け、パイロット切換弁84のパイロットポートを回転用正転油路75と接続して、回転圧の増大によりリリーフ弁83を作動させて打撃圧を規制するようになっている。
【0007】
回転機構はさく孔する岩盤の状態により回転圧が変化する。さく孔状態が悪化し回転抵抗が増加すると回転圧が増大するので、打撃圧が減小して打撃力が小さくなるように制御される。
【0008】
【発明が解決しようとする課題】
ところが、近年さく孔装置の性能が向上し、打撃機構の打撃力が強大になるのに伴って、打撃による消耗品の損傷の増加が懸念されるようになっている。
【0009】
打撃力が消耗品に悪影響を及ぼすのは、送り機構の推力が不足していて、打撃力が岩盤のさく孔に有効に消費されない場合であるが、従来のさく孔装置では、これに対処するための適切な打撃圧の制御はなされていなかった。
【0010】
この発明は、さく孔装置の打撃圧の制御における上記問題を解決するものであって、送り機構の推力が小さく打撃力が十分に岩盤のさく孔に消費されない場合には打撃機構の打撃力が小さく、送り機構の推力が大きく打撃力が十分に岩盤のさく孔に消費される場合には打撃力が大となるように打撃圧を制御して、消耗品の損傷を防止するさく孔装置の打撃圧制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明のさく孔装置の打撃圧制御装置では、油圧で駆動される打撃機構、回転機構、及び送り機構を備えたさく孔装置において、打撃機構の打撃用作動油路と打撃用戻り油路とをバイパス油路で接続し、バイパス油路の途中に、送り機構の送り用前進油路の圧力の増大によりバイパス油路の流量を減少させる流量制御手段を設けて上記課題を解決している。
【0012】
さく孔作業の際は、打撃機構、回転機構、及び送り機構には、油圧源から打撃用作動油路、回転用正転油路、送り用前進油路を経てそれぞれ必要な圧油が供給される。
【0013】
送り機構の推力が小さく打撃力が十分に岩盤のさく孔に消費されない場合には、送り用前進油路の圧力が小さいので、流量制御手段がバイパス油路の流量を増加させて打撃機構の打撃用作動油路の流量を減少させ、打撃圧を減小させて打撃力を小とする。
【0014】
送り機構の推力が大きくなって打撃力が十分に岩盤のさく孔に消費される場合には、送り用前進油路の圧力が増大しているので、流量制御手段がバイパス油路の流量を減少させて打撃機構の打撃用作動油路の流量を増加させ、打撃圧を増大させて打撃力を大とする。
このように打撃圧を制御することにより、さく孔装置の消耗品の損傷が防止される。
【0015】
また、油圧で駆動される打撃機構、回転機構、及び送り機構を備えたさく孔装置において、送り機構の送り用戻り油路を回転機構の回転用正転油路と接続し、打撃機構の打撃用作動油路と打撃用戻り油路とをバイパス油路で接続し、バイパス油路の途中に、送り機構の送り用前進油路と回転用正転油路との圧力差の増減によりバイパス油路の流量を減増させる流量制御手段を設けるようにすると、送り機構の推力は送り機構の送り用前進油路と回転用正転油路との圧力差によって与えられ、さく孔状態が悪化し回転抵抗が増加したときには、回転用正転油路の圧力が増大して、送り機構の送り用前進油路と回転用正転油路との圧力差が小さくなり推力が小さくなるように制御される。
【0016】
ここで、送り機構の推力が小さく打撃力が十分に岩盤のさく孔に消費されない場合には、送り機構の送り用前進油路と回転用正転油路との圧力差が減小しているので、流量制御手段がバイパス油路の流量を増加させて打撃機構の打撃用作動油路の流量を減少させ、打撃圧を減小させて打撃力を小とする。
【0017】
送り機構の推力が大きく打撃力が十分に岩盤のさく孔に消費される場合には、送り機構の送り用前進油路と回転用正転油路との圧力差が増大しているので、流量制御手段がバイパス油路の流量を減少させて打撃機構の打撃用作動油路の流量を増加させ、打撃圧を増大させて打撃力を大とする。
【0018】
流量制御手段が回転用正転油路の所定圧力発生時のみバイパス油路の流量を減少させるよう作動可能とすれば、さく孔用ロッドの接続、回収等で回転を伴わない作業を行う場合に、流量制御手段が作動しないよう停止させておくことができる。
【0019】
【発明の実施の形態】
図1は本発明の実施の一形態を示すさく孔装置の打撃圧制御装置の油圧回路図、図2は流量制御手段の一例を示す縦断面図、図3乃至図5は制御スプールの作動状態の説明図、図6は制御スプール移動量と制御スプール押し力との関係を示すグラフ、図7は制御スプール移動量とオリフィス開口面積との関係を示すグラフである。
【0020】
さく孔装置は、油圧で駆動される打撃機構1、回転機構2、及び送り機構3を備えており、この打撃機構1、回転機構2、及び送り機構3には、さく孔時に油圧源10から打撃用作動油路4、回転用正転油路5、送り用前進油路6を経てそれぞれ必要な圧油が供給される。そこで、打撃機構1がさく孔用のロッドに打撃を与え、回転機構2がさく孔用のロッドに回転を与えると共に、送り機構3がさく孔用のロッドに推力を与えて岩盤にさく孔する。打撃機構1、回転機構2、及び送り機構3からの戻り油は、それぞれ打撃用戻り油路7、回転用戻り油路8及び送り用戻り油路9からタンク11に戻る。
【0021】
打撃用作動油路4には手動の打撃油圧切換弁12が設けられており、レバーの操作により流量を調整して座繰り時の打撃圧と通常のさく孔時の打撃圧とを切換え制御する。
【0022】
打撃機構1の打撃用作動油路4と打撃用戻り油路7との間には、バイパス油路13が接続されており、このバイパス油路13の途中に、流量制御手段20が設けられている。
【0023】
この流量制御手段20は、図2に示すように、ボデイ21内に制御スプール22を左右移動可能に設けたものであり、ボデイ21の内周上には左右に所定距離離隔して高圧油室23と低圧油室24とが形成され、高圧油室23は高圧ポートPHを介して打撃用作動油路4に連通し、低圧油室24は低圧ポートTを介して打撃用戻り油路7と連通している。制御スプール22は、内部に連絡油路25を備えており、高圧油室23とこの連絡油路25とを連通させるためのオリフィス26と、連絡油路25と低圧油室24とを連通させる油孔27とが、それぞれ左右方向に位置をずらして複数配設されている。
【0024】
制御スプール22の左端には制御油室33が形成されており、制御油室33は制御ポートFFを介して送り用前進油路6に連通している。
制御スプール22の右側には、制御スプール22を左方へ押すスプリング28が装着されている。このスプリング28は、制御スプール22の右端に当接するスプリング座29とボデイ21の右端に螺着されたスプリングケース30との間に取付けられていて、スプリングケース30に設けたスプリング調整ねじ31によって押し力を調整できる。スプリング調整ねじ31はロッナット32により固定される。
【0025】
制御スプール22の右端面には十字状に油溝34が設けられ、スプリング座29にはこの油溝34に通ずる移動速度規制絞り35が設けられていて、スプリング座29とスプリングケース30との間に形成されているスプリング油室36は、移動速度規制絞り35、油溝34、スプリングポートSPを介して打撃用戻り油路7と連通している。移動速度規制絞り35は、制御スプール22の移動の際のチャタリングを防止する。
【0026】
さく孔作業の際は、打撃機構1、回転機構2、及び送り機構3には、油圧源10から打撃用作動油路4、回転用正転油路5、送り用前進油路6を経てそれぞれ必要な圧油が供給される。
【0027】
流量制御手段20は、当初制御スプール22が図2に示す位置にあり、打撃用作動油路4へ供給された圧油は、一部が図3に示すように高圧ポートPHからオリフィス26、連絡通路25、油孔27を経て低圧ポートTへ流れて、バイパス油圧路13から打撃用戻り油路7を経てタンク11に戻るので、打撃機構1の打撃力が減少する。
【0028】
さく孔装置のロッドの先端が岩盤に押しつけられて送り機構3の推力が大となり、送り用前進油路6の圧力が所定圧力以上になると、流量制御手段20の制御室33の圧力が上昇して制御スプール22が図2の状態から右方へ移動を開始する。制御スプール22の移動量は図6に示すように、制御スプール押し力に対し直線的に増減する。移動開始時の圧力は、スプリング調整ねじ31で調整することができる。押し力の変化に対する移動量の変化の割合は、スプリング28の特性を変えることで変更することができる。
【0029】
制御スプール22が右方へ移動すると、図4に示すように右側のオリフィス26が閉じられてゆくので、図7に示すようにオリフィス開孔面積が減少してゆく。従って、高圧ポートPHからオリフィス26、連絡通路25、油孔27を経て低圧ポートTへ流れる油量が減少し、打撃用作動油路4から打撃機構1に供給される圧油の流量が増加するので、打撃機構1では送り用前進油路6の圧力の上昇に伴って徐々に打撃圧を増大させる。
【0030】
送り機構3の推力が大きくなって打撃力が十分に岩盤のさく孔に消費されるようになると、送り用前進油路6の圧力がさらに増大して、図5に示すように、流量制御手段20の制御スプール22は右方のストロークエンドまで移動する。この状態では、オリフィス26は全て閉じられており、バイパス油路13には圧油が流れなくなるので、打撃機構1の打撃用作動油路4の流量が最大となり、打撃機構1の打撃圧を増大させて打撃力を最大とする。
【0031】
送り機構1の推力が減小して打撃力が十分に岩盤のさく孔に消費されないようになると、送り用前進油路6の圧力が減小するので、流量制御手段20がバイパス油路13の流量を増加させて打撃機構1の打撃用作動油路4の流量を減少させ、打撃圧を減小させて打撃力を小とする。
【0032】
このように打撃圧を制御することにより、さく孔装置の消耗品の損傷が防止される。
図8は、本発明の他の実施の形態を示すさく孔装置の打撃圧制御装置の油圧回路図である。
【0033】
ここでは、送り機構1の送り用戻り油路9が回転機構2の回転用正転油路5と接続されており、また、流量制御手段20のスプリングポートSPが回転機構2の回転用正転油路5と接続されている。その他の構成は、図1のものと同様である。
【0034】
この場合の送り機構3の推力は、次式で示される。
F=A(PFF−kPRF
ここに、
F:推力
A:出力定数
k:面積定数
FF:送り用前進油路の圧力
RF:回転用正転油路の圧力
送り機構3に油圧モータを使用した場合、
k=1であり、
F=A(PFF−PRF
となる。
【0035】
この場合、送り機構3の推力Fは送り用前進油路6と回転用正転油路5との圧力差で決定される。
そして、流量制御手段20の制御ポートFFが送り機構3の送り用前進油路6と、スプリングポートSPが回転機構2の回転用正転油路5と接続されているので、制御スプール22も送り用前進油路6と回転用正転油路5との圧力差によって生ずる押し力で移動する。
【0036】
従って、座繰りさく孔等で送り用前進油路6の圧力が低いときに打撃圧を低くし、送り用前進油路6の圧力の上昇に伴って徐々に打撃圧を増大させるように制御できるだけでなく、さく孔状態が悪化し回転抵抗が増加したときには、回転用正転油路5の圧力が増大して、送り機構3の送り用前進油路6と回転用正転油路5との圧力差が小さくなるので推力が小さくなり、且つ打撃圧も小さくなるように制御される。
【0037】
送り機構3に油圧シリンダを使用した場合、
k=ロッド側受圧面積/シリンダ側受圧面積
であり、Aはシリンダ側受圧面積で計算できる。
【0038】
この場合には、流量制御手段20のスプリング力調整、及びオリフィス26の加工の変更等で対応することができるが、図9に示すような流量制御手段20をを用いると良い。
【0039】
この流量制御手段20では、制御スプール22と制御油圧室33との間に、サブピストン37が設けられており、制御スプール22のスプリング油室36側の受圧面積とサブピストン37の制御油圧室33側の受圧面積との比が、送り機構3のロッド側受圧面積とシリンダ側受圧面積との比と等しくなるように設定されている。この流量制御手段20を用いることにより、上記k=1の場合と同様の制御を行うことができる。
【0040】
図10は、請求項3の発明において用いられる流量制御手段の一例を示す縦断面図である。
この流量制御手段20には、高圧ポートPHと高圧油室23との間に左右に移動可能なパイロントピストン41が設けられ、このパイロットピストン41がボデイ21の左側に設けたパイロットスプリング42で常時高圧ポートPHと高圧油室23との間の連通を遮断する位置に保持さている。パイロットピストン41の右端には、スプリングポートSPと連通するパイロット油室43が形成されており、スプリングポートSPの圧力でパイロットピストン41が左方に移動して高圧ポートPHと高圧油室23とを連通させる。
【0041】
この流量制御手段20は、スプリングポートSPが回転機構2の回転用正転油路5に接続される。ここで、流量制御手段20は、回転用正転油路5に所定圧力が発生したときにのみ高圧ポートPHと高圧油室23とを連通させるので、回転機構2が作動しているときだけバイパス油路13の流量を減少させて打撃圧を制御する。
【0042】
従って、さく孔用ロッドの接続、回収等で回転を伴わない作業を行う場合には打撃圧を最大とすることができる。
【0043】
【発明の効果】
以上説明したように、本発明のさく孔装置の打撃圧制御装置は、油圧で駆動される打撃機構、回転機構、及び送り機構を備えたさく孔装置において、打撃機構の打撃用作動油路と打撃用戻り油路とをバイパス油路で接続し、バイパス油路の途中に、送り機構の送り用前進油路の圧力の増大によりバイパス油路の流量を減少させる流量制御手段を設けることにより、送り機構の推力が小さく打撃力が十分に岩盤のさく孔に消費されない場合には打撃力が小さく、送り機構の推力が大きく打撃力が十分に岩盤のさく孔に消費される場合には打撃力が大となるように打撃圧を制御して、消耗品の損傷を防止することができる。
【0044】
また、油圧で駆動される打撃機構、回転機構、及び送り機構を備えたさく孔装置において、送り機構の送り用戻り油路を回転機構の回転用正転油路と接続し、打撃機構の打撃用作動油路と打撃用戻り油路とをバイパス油路で接続し、バイパス油路の途中に、送り機構の送り用前進油路と回転用正転油路との圧力差の増減によりバイパス油路の流量を減増させる流量制御手段を設けることにより、さく孔状態が悪化し回転抵抗が増加したときには、推力が小さくなるように制御し、且つ、送り機構の推力が小さく打撃力が十分に岩盤のさく孔に消費されない場合には打撃力が小さく、送り機構の推力が大きく打撃力が十分に岩盤のさく孔に消費される場合には打撃機構の打撃力が大とるように打撃圧を制御して、消耗品の損傷を防止することができる。
【0045】
さらに、流量制御手段が回転用正転油路の所定圧力発生時のみバイパス油路の流量を減少させるよう作動可能とすることにより、さく孔用ロッドの接続、回収等で回転を伴わない作業を行う場合に、流量制御手段が作動しないよう停止させておくことができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示すさく孔装置の打撃圧制御装置の油圧回路図である。
【図2】流量制御手段の縦断面図である。
【図3】制御スプールの作動状態の説明図である。
【図4】制御スプールの作動状態の説明図である。
【図5】制御スプールの作動状態の説明図である。
【図6】制御スプール移動量と制御スプール押し力との関係を示すグラフである。
【図7】制御スプール移動量とオリフィス開口面積との関係を示すグラフである。
【図8】本発明の他の実施の形態を示すさく孔装置の打撃圧制御装置の油圧回路図である。
【図9】流量制御手段の縦断面図である。
【図10】流量制御手段の縦断面図である。
【図11】従来のさく孔装置の油圧回路図である。
【符号の説明】
1 打撃機構
2 回転機構
3 送り機構
4 打撃用作動油路
5 回転用正転油路
6 送り用前進油路
7 打撃用戻り油路
8 回転用戻り油路
9 送り用戻り油路
10 油圧源
11 タンク
12 打撃油圧切換弁
13 バイパス油路
20 流量制御手段
21 ボデイ
22 制御スプール
23 高圧油室
24 低圧油室
25 連絡通路
26 オリフィス
27 油孔
28 スプリング
33 制御油室
34 油溝
35 移動速度制御絞り
36 スプリング油室
37 サブピストン
41 パイロットピストン
42 パイロットスプリング
43 パイロット油室
FF 制御ポート
PH 高圧ポート
SP スプリングポート
T 低圧ポート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a striking pressure control device for a drilling device having a striking mechanism used for excavation of a rock mass.
[0002]
[Prior art]
In general, a drilling device used for rock excavation is provided with a hydraulically driven striking mechanism, a rotating mechanism, and a feed mechanism. The striking mechanism strikes the drilling rod, and the rotating mechanism drills. A rotation is given to the hole rod, and a feed mechanism feeds the hole rod to make a hole in the rock.
[0003]
The striking mechanism has a characteristic that when the flow rate increases, the striking pressure increases and the striking force increases, and when the flow rate decreases, the striking pressure decreases and the striking force decreases.
With the development of hydraulic technology in recent years, automatic control incorporating electrical control technology has been put into practical use in the drilling device, but because of the large number of parts and high cost, maintenance is troublesome. In many cases, the control by is required.
[0004]
In a conventional drilling device controlled only by hydraulic pressure, the striking mechanism, the rotating mechanism, and the feed mechanism are driven by a hydraulic circuit as shown in FIG.
In this drilling device, the striking mechanism 71, the rotating mechanism 72, and the feed mechanism 73 are passed from the hydraulic source through the striking hydraulic fluid path 74, the rotating forward rotating fluid path 75, and the feeding forward fluid path 76 when drilling. Each is supplied with the necessary pressure oil.
[0005]
The striking hydraulic fluid passage 74 is provided with a manual striking hydraulic pressure switching valve 82, which controls the switching between the striking pressure during stroking and the striking pressure during normal drilling by adjusting the flow rate by operating the lever. .
[0006]
In addition, a relief valve 83 and a pilot switching valve 84 are provided between the striking hydraulic fluid passage 74 and the striking return fluid passage 77, and the pilot port of the pilot switching valve 84 is connected to the rotation normal rotation fluid passage 75. Accordingly, the relief pressure 83 is actuated by increasing the rotational pressure to regulate the striking pressure.
[0007]
The rotation pressure of the rotating mechanism varies depending on the condition of the drilled rock. When the drilling state is deteriorated and the rotational resistance is increased, the rotational pressure is increased, so that the impact pressure is reduced and the impact force is reduced.
[0008]
[Problems to be solved by the invention]
However, in recent years, as the performance of the drilling device has improved and the striking force of the striking mechanism has increased, there has been a concern about an increase in consumable damage due to striking.
[0009]
The striking force has an adverse effect on consumables when the thrust of the feed mechanism is insufficient and the striking force is not effectively consumed by the drilling of the rock mass. For this reason, the appropriate striking pressure was not controlled.
[0010]
The present invention solves the above-mentioned problem in controlling the striking pressure of the drilling device, and the striking force of the striking mechanism is reduced when the thrust of the feed mechanism is small and the striking force is not sufficiently consumed by the rock drilling holes. When the thrust of the feed mechanism is large and the striking force is sufficiently consumed in the drilling hole of the rock, the striking pressure is controlled so that the striking force becomes large, and the drilling device that prevents consumables from being damaged is used. An object is to provide a striking pressure control device.
[0011]
[Means for Solving the Problems]
In the drilling pressure control device for a drilling device of the present invention, in the drilling device provided with a hydraulically driven hitting mechanism, a rotating mechanism, and a feed mechanism, the hitting hydraulic fluid path and the hitting return oil path of the hitting mechanism are provided. Are connected by a bypass oil passage, and a flow rate control means for reducing the flow rate of the bypass oil passage by increasing the pressure of the feed forward oil passage of the feed mechanism is provided in the middle of the bypass oil passage.
[0012]
During drilling, the striking mechanism, rotating mechanism, and feed mechanism are each supplied with the necessary pressure oil from the hydraulic source via the striking hydraulic fluid passage, the forward rotating fluid passage, and the forward feed fluid passage. The
[0013]
When the thrust of the feed mechanism is small and the striking force is not sufficiently consumed in the drill hole in the rock, the pressure of the forward oil passage for feed is small, so the flow control means increases the flow rate of the bypass oil passage and hits the striking mechanism. Decrease the impact force by decreasing the flow rate of the hydraulic fluid passage and decreasing the impact pressure.
[0014]
When the thrust of the feed mechanism is increased and the striking force is sufficiently consumed in the drill hole in the rock mass, the flow control means reduces the flow rate of the bypass oil passage because the pressure of the forward oil passage for feed has increased. Thus, the flow rate of the hydraulic fluid passage for impact of the impact mechanism is increased, and the impact pressure is increased to increase the impact force.
Controlling the striking pressure in this way prevents damage to the consumables of the drilling device.
[0015]
Further, in a drilling device equipped with a hydraulically driven impact mechanism, a rotation mechanism, and a feed mechanism, the feed return oil passage of the feed mechanism is connected to the normal rotation oil passage of the rotation mechanism, and the impact mechanism strikes. The hydraulic oil path for impact and the return oil path for impact are connected by a bypass oil path, and the bypass oil is increased by increasing or decreasing the pressure difference between the forward oil path for feeding and the forward rotating oil path for rotation in the middle of the bypass oil path. If a flow control means is provided to reduce the flow rate of the passage, the thrust of the feed mechanism is given by the pressure difference between the feed forward oil passage and the forward rotation oil passage of the feed mechanism, and the drilling state deteriorates. When the rotational resistance increases, the pressure in the forward rotation oil passage increases, and the pressure difference between the feed forward oil passage and the rotation forward oil passage of the feed mechanism becomes smaller and the thrust is reduced. The
[0016]
Here, when the thrust of the feed mechanism is small and the striking force is not sufficiently consumed by the drill hole in the rock, the pressure difference between the feed forward oil passage and the rotation forward oil passage of the feed mechanism is reduced. Therefore, the flow rate control means increases the flow rate of the bypass oil passage to decrease the flow rate of the impact hydraulic fluid passage of the impact mechanism, and reduces the impact pressure to reduce the impact force.
[0017]
When the thrust of the feed mechanism is large and the striking force is sufficiently consumed in the drill hole in the rock mass, the pressure difference between the feed forward oil passage and the forward rotation oil passage of the feed mechanism increases, so the flow rate The control means decreases the flow rate of the bypass oil passage to increase the flow rate of the impact hydraulic fluid passage of the impact mechanism, and increases the impact pressure to increase the impact force.
[0018]
If the flow control means can be operated so as to reduce the flow rate of the bypass oil passage only when a predetermined pressure is generated in the forward rotation oil passage, when the work without rotation is performed by connecting and collecting the drilling rod, etc. The flow rate control means can be stopped so as not to operate.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a hydraulic circuit diagram of an impact pressure control device for a drilling device showing an embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing an example of a flow rate control means, and FIGS. 3 to 5 are operating states of a control spool FIG. 6 is a graph showing the relationship between the control spool movement amount and the control spool pushing force, and FIG. 7 is a graph showing the relationship between the control spool movement amount and the orifice opening area.
[0020]
The drilling device includes an impact mechanism 1, a rotation mechanism 2, and a feed mechanism 3 that are driven by hydraulic pressure. The impact mechanism 1, the rotation mechanism 2, and the feed mechanism 3 are connected to the hydraulic source 10 when drilling. Necessary pressure oil is supplied through the hydraulic oil passage 4 for impact, the forward rotation oil passage 5 for rotation, and the forward oil passage 6 for feed. Therefore, the striking mechanism 1 strikes the drilling rod, the rotation mechanism 2 rotates the drilling rod, and the feed mechanism 3 thrusts the drilling rod to drill the rock. . The return oil from the striking mechanism 1, the rotation mechanism 2, and the feed mechanism 3 returns to the tank 11 from the striking return oil path 7, the rotation return oil path 8, and the feed return oil path 9, respectively.
[0021]
The striking hydraulic fluid passage 4 is provided with a manual striking hydraulic pressure switching valve 12, and controls the switching between the striking pressure during stroking and the striking pressure during normal drilling by adjusting the flow rate by operating the lever. .
[0022]
A bypass oil passage 13 is connected between the striking hydraulic fluid passage 4 and the striking return fluid passage 7 of the striking mechanism 1, and a flow rate control means 20 is provided in the middle of the bypass oil passage 13. Yes.
[0023]
As shown in FIG. 2, the flow rate control means 20 is provided with a control spool 22 in a body 21 so as to be movable left and right. On the inner periphery of the body 21, a high pressure oil chamber is separated by a predetermined distance from side to side. 23 and a low pressure oil chamber 24 are formed, the high pressure oil chamber 23 communicates with the impact hydraulic fluid passage 4 via the high pressure port PH, and the low pressure oil chamber 24 communicates with the return fluid passage 7 for impact via the low pressure port T. Communicate. The control spool 22 includes a communication oil passage 25 therein, an orifice 26 for communicating the high pressure oil chamber 23 and the communication oil passage 25, and an oil communicating the communication oil passage 25 and the low pressure oil chamber 24. A plurality of holes 27 are disposed with their positions shifted in the left-right direction.
[0024]
A control oil chamber 33 is formed at the left end of the control spool 22, and the control oil chamber 33 communicates with the feed forward oil passage 6 via the control port FF.
A spring 28 that pushes the control spool 22 to the left is mounted on the right side of the control spool 22. The spring 28 is attached between a spring seat 29 that contacts the right end of the control spool 22 and a spring case 30 screwed to the right end of the body 21, and is pressed by a spring adjusting screw 31 provided on the spring case 30. You can adjust the power. The spring adjusting screw 31 is fixed by a lock nut 32.
[0025]
An oil groove 34 is formed in a cross shape on the right end surface of the control spool 22, and a moving speed restricting throttle 35 communicating with the oil groove 34 is provided in the spring seat 29, and between the spring seat 29 and the spring case 30. The spring oil chamber 36 formed in the communication with the striking return oil passage 7 through the movement speed regulating restriction 35, the oil groove 34, and the spring port SP. The movement speed restriction aperture 35 prevents chattering when the control spool 22 moves.
[0026]
In the drilling operation, the striking mechanism 1, the rotating mechanism 2, and the feeding mechanism 3 are respectively supplied from the hydraulic source 10 through the striking hydraulic fluid path 4, the rotating forward rotating oil path 5, and the feeding forward oil path 6. Necessary pressure oil is supplied.
[0027]
In the flow rate control means 20, the control spool 22 is initially in the position shown in FIG. 2, and the pressure oil supplied to the striking hydraulic fluid passage 4 is partially connected to the orifice 26 from the high pressure port PH as shown in FIG. Since it flows to the low pressure port T through the passage 25 and the oil hole 27 and returns to the tank 11 from the bypass hydraulic path 13 through the hitting return oil path 7, the striking force of the striking mechanism 1 is reduced.
[0028]
When the tip of the drilling device rod is pressed against the rock, the thrust of the feed mechanism 3 becomes large, and the pressure in the feed forward oil passage 6 exceeds a predetermined pressure, the pressure in the control chamber 33 of the flow rate control means 20 increases. Thus, the control spool 22 starts moving rightward from the state shown in FIG. As shown in FIG. 6, the movement amount of the control spool 22 increases or decreases linearly with respect to the control spool pressing force. The pressure at the start of movement can be adjusted with the spring adjustment screw 31. The rate of change of the movement amount with respect to the change of the pushing force can be changed by changing the characteristics of the spring 28.
[0029]
When the control spool 22 moves to the right, the right orifice 26 is closed as shown in FIG. 4, and the orifice opening area is reduced as shown in FIG. Accordingly, the amount of oil flowing from the high pressure port PH to the low pressure port T via the orifice 26, the communication passage 25, and the oil hole 27 is reduced, and the flow rate of the pressure oil supplied from the impact hydraulic fluid path 4 to the impact mechanism 1 is increased. Therefore, in the striking mechanism 1, the striking pressure is gradually increased as the pressure in the feed forward oil passage 6 increases.
[0030]
When the thrust of the feed mechanism 3 is increased and the striking force is sufficiently consumed in the drilling hole of the rock, the pressure in the feed forward oil passage 6 further increases, and as shown in FIG. The 20 control spools 22 move to the right stroke end. In this state, all the orifices 26 are closed, and no pressure oil flows into the bypass oil passage 13, so that the flow rate of the hydraulic fluid passage 4 for the impact mechanism 1 is maximized and the impact pressure of the impact mechanism 1 is increased. Let the impact strength be maximized.
[0031]
When the thrust of the feed mechanism 1 is reduced and the striking force is not sufficiently consumed in the drill hole in the rock, the pressure in the feed forward oil passage 6 is reduced. By increasing the flow rate, the flow rate of the hydraulic fluid passage 4 for the impact of the impact mechanism 1 is decreased, and the impact pressure is reduced by reducing the impact pressure.
[0032]
Controlling the striking pressure in this way prevents damage to the consumables of the drilling device.
FIG. 8 is a hydraulic circuit diagram of a striking pressure control device for a drilling device according to another embodiment of the present invention.
[0033]
Here, the feed return oil passage 9 of the feed mechanism 1 is connected to the rotation normal rotation oil passage 5 of the rotation mechanism 2, and the spring port SP of the flow rate control means 20 is the rotation normal rotation of the rotation mechanism 2. It is connected to the oil passage 5. Other configurations are the same as those in FIG.
[0034]
The thrust of the feed mechanism 3 in this case is shown by the following equation.
F = A (P FF −kP RF )
here,
F: Thrust A: Output constant k: Area constant P FF : Feed forward oil passage pressure P RF : When a hydraulic motor is used for the pressure feed mechanism 3 of the rotating forward oil passage,
k = 1,
F = A (P FF −P RF )
It becomes.
[0035]
In this case, the thrust F of the feed mechanism 3 is determined by the pressure difference between the feed forward oil passage 6 and the rotation forward oil passage 5.
Since the control port FF of the flow rate control means 20 is connected to the forward forward oil passage 6 of the feed mechanism 3 and the spring port SP is connected to the forward normal oil passage 5 of the rotary mechanism 2, the control spool 22 is also fed. It moves with the pushing force generated by the pressure difference between the forward oil passage 6 for rotation and the forward rotation oil passage 5 for rotation.
[0036]
Therefore, it is possible to control so that the striking pressure is lowered when the pressure of the feed forward oil passage 6 is low due to a countersink hole or the like, and the striking pressure is gradually increased as the pressure of the feed forward oil passage 6 increases. Instead, when the drilling state deteriorates and the rotation resistance increases, the pressure in the forward rotation oil passage 5 increases, and the feed forward oil passage 6 and the forward rotation oil passage 5 of the feed mechanism 3 Since the pressure difference is reduced, the thrust is reduced and the impact pressure is also reduced.
[0037]
When a hydraulic cylinder is used for the feed mechanism 3,
k = Rod side pressure receiving area / Cylinder side pressure receiving area, and A can be calculated by the cylinder side pressure receiving area.
[0038]
This case can be dealt with by adjusting the spring force of the flow rate control means 20 and changing the machining of the orifice 26, but it is preferable to use a flow rate control means 20 as shown in FIG.
[0039]
In this flow rate control means 20, a sub-piston 37 is provided between the control spool 22 and the control hydraulic chamber 33, and the pressure receiving area of the control spool 22 on the spring oil chamber 36 side and the control hydraulic chamber 33 of the sub-piston 37. The ratio of the pressure receiving area on the side is set to be equal to the ratio of the rod side pressure receiving area and the cylinder side pressure receiving area of the feed mechanism 3. By using this flow rate control means 20, the same control as in the case of k = 1 can be performed.
[0040]
FIG. 10 is a longitudinal sectional view showing an example of the flow rate control means used in the invention of claim 3.
The flow rate control means 20 is provided with a pilot piston 41 that is movable to the left and right between the high pressure port PH and the high pressure oil chamber 23, and this pilot piston 41 is always provided by a pilot spring 42 provided on the left side of the body 21. The high pressure port PH and the high pressure oil chamber 23 are held at a position where the communication is blocked. A pilot oil chamber 43 communicating with the spring port SP is formed at the right end of the pilot piston 41, and the pilot piston 41 moves to the left by the pressure of the spring port SP so that the high pressure port PH and the high pressure oil chamber 23 are connected. Communicate.
[0041]
In the flow rate control unit 20, the spring port SP is connected to the normal rotation oil passage 5 for rotation of the rotation mechanism 2. Here, the flow rate control means 20 connects the high-pressure port PH and the high-pressure oil chamber 23 only when a predetermined pressure is generated in the normal rotation oil passage 5 for rotation, and therefore bypasses only when the rotation mechanism 2 is operating. The impact pressure is controlled by decreasing the flow rate of the oil passage 13.
[0042]
Therefore, the impact pressure can be maximized when performing operations that do not involve rotation, such as connection and recovery of drilling rods.
[0043]
【The invention's effect】
As described above, the striking pressure control device for a drilling device according to the present invention is a drilling device provided with a hydraulically driven striking mechanism, a rotation mechanism, and a feed mechanism. By connecting a return oil passage for striking with a bypass oil passage, and providing a flow rate control means for reducing the flow rate of the bypass oil passage by increasing the pressure of the forward oil passage for feeding of the feed mechanism in the middle of the bypass oil passage, The striking force is small when the thrust of the feed mechanism is small and the striking force is not sufficiently consumed by the rock drilling hole, and the striking force is small when the thrust of the feeding mechanism is large and the striking force is sufficiently consumed by the rock drilling hole. It is possible to prevent the consumables from being damaged by controlling the striking pressure so as to increase.
[0044]
Further, in a drilling device equipped with a hydraulically driven impact mechanism, a rotation mechanism, and a feed mechanism, the feed return oil passage of the feed mechanism is connected to the normal rotation oil passage of the rotation mechanism, and the impact mechanism strikes. The hydraulic oil path for impact and the return oil path for impact are connected by a bypass oil path, and the bypass oil is increased by increasing or decreasing the pressure difference between the forward oil path for feeding and the forward rotating oil path for rotation in the middle of the bypass oil path. By providing a flow rate control means to reduce the flow rate of the road, when the drilling state deteriorates and the rotation resistance increases, the thrust is controlled to be small, and the thrust of the feed mechanism is small and the striking force is sufficient The striking force is low so that the striking force is small when it is not consumed by the drill hole in the rock, and the thrust of the feed mechanism is large and the striking force is large when the striking force is sufficiently consumed by the rock hole. Control and prevent damage to consumables Kill.
[0045]
Furthermore, by enabling the flow rate control means to reduce the flow rate of the bypass oil passage only when a predetermined pressure is generated in the normal rotation oil passage for rotation, work that does not involve rotation due to connection and recovery of the drilling rod, etc. When performing, it can be stopped so that a flow control means does not operate.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram of a striking pressure control device for a drilling device according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a flow control means.
FIG. 3 is an explanatory diagram of an operating state of a control spool.
FIG. 4 is an explanatory diagram of an operating state of a control spool.
FIG. 5 is an explanatory diagram of an operating state of a control spool.
FIG. 6 is a graph showing a relationship between a control spool movement amount and a control spool pressing force.
FIG. 7 is a graph showing the relationship between the amount of control spool movement and the orifice opening area.
FIG. 8 is a hydraulic circuit diagram of a striking pressure control device for a drilling device according to another embodiment of the present invention.
FIG. 9 is a longitudinal sectional view of the flow rate control means.
FIG. 10 is a longitudinal sectional view of the flow rate control means.
FIG. 11 is a hydraulic circuit diagram of a conventional drilling device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Blowing mechanism 2 Rotating mechanism 3 Feeding mechanism 4 Blowing hydraulic oil path 5 Rotating forward oil path 6 Feeding forward oil path 7 Blowing return oil path 8 Rotating return oil path 9 Feeding return oil path 10 Hydraulic source 11 Tank 12 Blowing hydraulic pressure switching valve 13 Bypass oil passage 20 Flow rate control means 21 Body 22 Control spool 23 High pressure oil chamber 24 Low pressure oil chamber 25 Connection passage 26 Orifice 27 Oil hole 28 Spring 33 Control oil chamber 34 Oil groove 35 Movement speed control throttle 36 Spring oil chamber 37 Sub piston 41 Pilot piston 42 Pilot spring 43 Pilot oil chamber FF Control port PH High pressure port SP Spring port T Low pressure port

Claims (3)

油圧で駆動される打撃機構、回転機構、及び送り機構を備えたさく孔装置において、打撃機構の打撃用作動油路と打撃用戻り油路とをバイパス油路で接続し、バイパス油路の途中に、送り機構の送り用前進油路の圧力の増大によりバイパス油路の流量を減少させる流量制御手段を設けたことを特徴とするさく孔装置の打撃圧制御装置。In a drilling device equipped with a hydraulically driven striking mechanism, a rotating mechanism, and a feed mechanism, the striking mechanism hydraulic fluid passage and the striking return fluid passage are connected by a bypass oil passage, and the middle of the bypass oil passage A striking pressure control device for a drilling device, further comprising flow rate control means for reducing the flow rate of the bypass oil passage by increasing the pressure of the feed forward oil passage of the feed mechanism. 油圧で駆動される打撃機構、回転機構、及び送り機構を備えたさく孔装置において、送り機構の送り用戻り油路を回転機構の回転用正転油路と接続し、打撃機構の打撃用作動油路と打撃用戻り油路とをバイパス油路で接続し、バイパス油路の途中に、送り機構の送り用前進油路と回転用正転油路との圧力差の増大によりバイパス油路の流量を減少させる流量制御手段を設けたことを特徴とするさく孔装置の打撃圧制御装置。In a drilling device equipped with a hydraulically driven striking mechanism, a rotating mechanism, and a feeding mechanism, the feeding return oil path of the feeding mechanism is connected to the normal rotating oil path for rotation of the rotating mechanism, and the striking mechanism is operated for hitting. The oil passage and the return oil passage for impact are connected by a bypass oil passage, and in the middle of the bypass oil passage, the pressure difference between the forward oil passage for feeding and the normal oil passage for rotation of the feeding mechanism is increased. A striking pressure control device for a drilling device, characterized in that a flow rate control means for reducing the flow rate is provided. 流量制御手段が回転用正転油路の所定圧力発生時のみバイパス油路の流量を減少させるよう作動可能であることを特徴とする請求項1または請求項2記載のさく孔装置の打撃圧制御装置。3. The striking pressure control of the drilling device according to claim 1 or 2, wherein the flow rate control means is operable to decrease the flow rate of the bypass oil passage only when a predetermined pressure is generated in the normal rotation oil passage for rotation. apparatus.
JP25478696A 1996-09-26 1996-09-26 Drilling pressure control device for drilling device Expired - Fee Related JP3803147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25478696A JP3803147B2 (en) 1996-09-26 1996-09-26 Drilling pressure control device for drilling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25478696A JP3803147B2 (en) 1996-09-26 1996-09-26 Drilling pressure control device for drilling device

Publications (2)

Publication Number Publication Date
JPH10102972A JPH10102972A (en) 1998-04-21
JP3803147B2 true JP3803147B2 (en) 2006-08-02

Family

ID=17269871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25478696A Expired - Fee Related JP3803147B2 (en) 1996-09-26 1996-09-26 Drilling pressure control device for drilling device

Country Status (1)

Country Link
JP (1) JP3803147B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108612516B (en) * 2018-06-07 2024-02-20 中国铁建重工集团股份有限公司 Rock drilling machine and hydraulic control valve group thereof
CN110259372A (en) * 2019-06-19 2019-09-20 嘉兴缔华贸易有限公司 A kind of oil content exploring equipment

Also Published As

Publication number Publication date
JPH10102972A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
JP2008536029A (en) Rock drilling control method, apparatus and valve
US4355691A (en) Hydraulic drilling apparatus
JP4113671B2 (en) Rock drilling control system
ZA200503536B (en) Arrangement for controlling rock drilling
EP1558836A1 (en) Arrangement for controlling rock drilling
RU2120548C1 (en) Device for hydraulically driven drilling equipment
US20140144660A1 (en) Rock drill
JP3803147B2 (en) Drilling pressure control device for drilling device
JP3835576B2 (en) Piston stroke control mechanism of hydraulic drill
CA2591893C (en) Method for controlling pressure fluid operated percussion device, and percussion device
JPH1080878A (en) Hydraulic precussion device
JP3967182B2 (en) Stroke adjustment mechanism of hydraulic striking device
JP2007514106A (en) Fluid pressure control device
FI90277B (en) drilling
JP3514916B2 (en) Drilling control device for hydraulic crawler drill
JPS6125784A (en) Stroke variable mechanism of hydraulic type striking device
JP3655788B2 (en) Shockless valve and fluid pressure circuit
JP3447108B2 (en) Drilling machine rotation control device
JP2000130063A (en) Jamming prevention device for drill
JPS6335110Y2 (en)
JP3447160B2 (en) Rotary booster for drilling machine
JP3447149B2 (en) Drilling control device
AU2013100244B4 (en) Improved rock drill
JPH061639Y2 (en) Hydraulic circuit of construction machinery
JPH09217582A (en) Drilling control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees