JP3447149B2 - Drilling control device - Google Patents

Drilling control device

Info

Publication number
JP3447149B2
JP3447149B2 JP16523795A JP16523795A JP3447149B2 JP 3447149 B2 JP3447149 B2 JP 3447149B2 JP 16523795 A JP16523795 A JP 16523795A JP 16523795 A JP16523795 A JP 16523795A JP 3447149 B2 JP3447149 B2 JP 3447149B2
Authority
JP
Japan
Prior art keywords
passage
pressure
feed
rotation
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16523795A
Other languages
Japanese (ja)
Other versions
JPH0913868A (en
Inventor
勉 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP16523795A priority Critical patent/JP3447149B2/en
Publication of JPH0913868A publication Critical patent/JPH0913868A/en
Application granted granted Critical
Publication of JP3447149B2 publication Critical patent/JP3447149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トンネル掘削等に使用
される穿孔機械の穿孔制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drilling control device for a drilling machine used for tunnel excavation or the like.

【0002】[0002]

【従来の技術】一般に、岩盤の掘削に使用される穿孔機
械は、油圧で駆動される打撃機構、回転機構、及び送り
機構を備えており、打撃機構が穿孔用のロッドに打撃を
与え、回転機構が穿孔用のロッドに回転を与えると共
に、送り機構が穿孔用のロッドに推力を与えて岩盤に穿
孔する。この打撃機構、回転機構、及び送り機構は、従
来、図2に示すように、それぞれ独立した油圧回路で駆
動されていた。
2. Description of the Related Art Generally, a drilling machine used for rock excavation is equipped with a hydraulically driven striking mechanism, a rotating mechanism, and a feeding mechanism. The striking mechanism strikes a drilling rod to rotate it. The mechanism applies rotation to the drilling rod, and the feed mechanism applies thrust to the drilling rod to drill the rock. Conventionally, the striking mechanism, the rotating mechanism, and the feeding mechanism have been driven by independent hydraulic circuits, as shown in FIG.

【0003】この穿孔機械では、打撃用油圧ポンプ7
4、回転用油圧ポンプ75、送り用油圧ポンプ76、が
電動モータ77で駆動され、それぞれ、打撃機構71、
回転機構72、及び送り機構73に必要な圧油を供給す
る。打撃用油圧ポンプ74から吐出された圧油は、打撃
用バルブブロック78を介して打撃機構71に送られ
る。打撃用バルブブロック78内には打撃用リリーフ弁
79が設けられている。打撃用リリーフ弁79のドレン
ラインには、本穿孔選択弁80と座繰り穿孔選択弁81
とが設けられており、座繰り穿孔選択弁81の下流側に
は座繰り穿孔打撃圧を制御する座繰り用リリーフ弁82
が設けられている。
In this punching machine, a hydraulic pump 7 for impact is used.
4, the rotary hydraulic pump 75 and the feed hydraulic pump 76 are driven by the electric motor 77, and the striking mechanism 71,
The necessary pressure oil is supplied to the rotating mechanism 72 and the feeding mechanism 73. The pressure oil discharged from the striking hydraulic pump 74 is sent to the striking mechanism 71 via the striking valve block 78. A striking relief valve 79 is provided in the striking valve block 78. The perforation selection valve 80 and the counter boring selection valve 81 are provided in the drain line of the impact relief valve 79.
Is provided, and a relief valve 82 for counter boring that controls the counter boring percussion impact pressure is provided on the downstream side of the counter boring perforation selection valve 81.
Is provided.

【0004】回転用油圧ポンプ75から吐出された圧油
は、回転用バルブブロック83を介して回転機構72に
送られる。回転用バルブブロック83内には、上流側か
ら、回転用リリーフ弁84、回転状態切換弁85、回転
方向切換弁86が設けられている。回転状態切換弁85
からタンク87に連通する通路には、穿孔時及び引き抜
き時の回転速度を制御する流量調整弁88が設けられて
いる。
The pressure oil discharged from the rotary hydraulic pump 75 is sent to the rotary mechanism 72 via the rotary valve block 83. In the rotation valve block 83, a rotation relief valve 84, a rotation state switching valve 85, and a rotation direction switching valve 86 are provided from the upstream side. Rotation state switching valve 85
A flow rate adjusting valve 88 for controlling the rotation speeds at the time of punching and pulling out is provided in the passage communicating with the tank 87 from the tank.

【0005】送り用油圧ポンプ76から吐出された圧油
は、ブーム制御弁89、送り用バルブブロック90を経
て送り機構73に送られる。ブームの操作と穿孔とは同
時には行われないので、穿孔作業中には、送り用油圧ポ
ンプ76から吐出された圧油は、全量送り機構73に供
給される。送り用バルブブロック90内には、上流側か
ら送り用リリーフ弁91、送り状態切換弁92、送り方
向切換弁93が設けられている。送り状態切換弁92か
らタンク87に連通する通路には、穿孔時及び引き抜き
時の推力を制御する推力調整用リリーフ弁94が設けら
れている。
The pressure oil discharged from the feed hydraulic pump 76 is sent to the feed mechanism 73 via the boom control valve 89 and the feed valve block 90. Since the boom operation and the boring are not performed at the same time, the pressure oil discharged from the feed hydraulic pump 76 is supplied to the full-volume feed mechanism 73 during the boring operation. In the feed valve block 90, a feed relief valve 91, a feed state switching valve 92, and a feed direction switching valve 93 are provided from the upstream side. A thrust adjusting relief valve 94 for controlling the thrust at the time of punching and pulling out is provided in the passage communicating from the feed state switching valve 92 to the tank 87.

【0006】また、回転機構72の正転側の通路に、圧
力スイッチ95を設けて、穿孔時の岩盤の状態の変化に
より回転抵抗が増加した場合に生ずる回転圧の異常な上
昇を検出し、打撃の停止、及び送りの停止または送り方
向の逆転を行うよう制御することができる。
Further, a pressure switch 95 is provided in the forward passage of the rotating mechanism 72 to detect an abnormal increase in the rotating pressure caused by an increase in the rotating resistance due to a change in the condition of the rock mass during drilling, It is possible to control to stop the impact and stop the feeding or reverse the feeding direction.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この穿
孔機械では、回転圧の上昇によって打撃の停止、及び送
りの停止または送り方向切換の制御のみを行うものであ
るため、回転抵抗の変化に対応して適切に推力や打撃力
を変化させることができない。各油圧ポンプ74、7
5、76は、それぞれの機構の必要油量に合わせた容量
の定容量形油圧ポンプが用いられており、各機構が作動
しているか否かに拘わらず常に一定の圧油を吐出し続
け、打撃、回転、送りの各機構71、72、73が作動
状態にあるとき、各機構71、72、73に供給される
圧油がそれぞれのリリーフ弁79、84、91のセット
圧を超えると、戻り側へ切換えられるため、穿孔状態に
応じて打撃、回転、送りの各機構間で圧油を適切に配分
することができず、エネルギーの損失が大きくなる。
However, in this drilling machine, since only the impact is stopped and the feed is stopped or the feed direction is switched by the increase of the rotation pressure, it is possible to cope with the change of the rotation resistance. The thrust and striking force cannot be changed appropriately. Each hydraulic pump 74, 7
Nos. 5 and 76 are constant-capacity hydraulic pumps having a capacity matching the required oil amount of each mechanism, and constantly discharge a constant pressure oil regardless of whether each mechanism is operating, When the striking, rotating, and feeding mechanisms 71, 72, 73 are in the operating state, when the pressure oil supplied to the mechanisms 71, 72, 73 exceeds the set pressure of the respective relief valves 79, 84, 91, Since it is switched to the return side, pressure oil cannot be appropriately distributed among the striking, rotating, and feeding mechanisms according to the drilling state, resulting in a large energy loss.

【0008】また、打撃用油圧ポンプ74、回転用油圧
ポンプ75、送り用油圧ポンプ76、には、それぞれ配
管が必要で部品点数も多くなり、故障発生個所も増加す
るため、組み立てやメンテナンス作業が面倒である。こ
の発明は、穿孔機械の制御における上記問題を解決する
ものであって、穿孔状態の変化に応じて、打撃、回転、
送りの各機構に圧油を適切に配分し、穿孔能力とエネル
ギー効率を向上させることのできる穿孔制御装置を提供
することを目的とする。
Further, since the impact hydraulic pump 74, the rotary hydraulic pump 75, and the feed hydraulic pump 76 each require piping, the number of parts increases and the number of failure occurrence points increases, so that assembly and maintenance work is required. It is troublesome. The present invention is to solve the above problems in the control of a drilling machine, and strikes, rotates,
An object of the present invention is to provide a perforation control device capable of appropriately distributing pressure oil to each feeding mechanism and improving perforation capability and energy efficiency.

【0009】[0009]

【課題を解決するための手段】本発明は、油圧で駆動さ
れる打撃機構、回転機構、及び送り機構を備えた穿孔機
械において、打撃機構の打撃用高圧通路を油圧ポンプと
接続し、打撃用低圧通路をタンクと接続し、回転機構の
正転側通路と逆転側通路とを回転方向切換弁を介して打
撃用高圧通路から分岐した回転用作動通路と打撃用低圧
通路から分岐した回転用戻り通路とに接続し、送り機構
の前進側通路と後退側通路とを送り方向切換弁を介して
打撃用高圧通路から分岐した送り用作動通路と打撃用低
圧通路から分岐した送り用戻り通路とに接続し、前記回
転用作動通路の途中に回転流量調整弁を設け、前記前進
側通路の途中に送り用減圧弁を設け、前記後退側通路と
正転側通路とを連通路で接続し、この連通路に打撃機構
の作動時に連通側へ切換えられるパイロット切換弁と連
通流量調整弁とを設けることにより上記課題を解決して
いる。
SUMMARY OF THE INVENTION The present invention relates to a punching machine provided with a hydraulically driven striking mechanism, a rotating mechanism, and a feed mechanism, in which the striking high-pressure passage of the striking mechanism is connected to a hydraulic pump for striking. The low-pressure passage is connected to the tank, and the normal rotation-side passage and the reverse-rotation-side passage of the rotating mechanism are branched from the high-pressure passage for impact through the rotation direction switching valve, and the return for rotation is branched from the low-pressure passage for impact. The feed mechanism is connected to a passage, and the forward passage and the backward passage of the feed mechanism are connected to a feed operation passage branched from a high-pressure impact passage and a return passage branched from a low-pressure impact passage through a feed direction switching valve. A rotary flow rate adjusting valve is provided in the middle of the rotation working passage, a feed pressure reducing valve is provided in the middle of the forward passage, and the backward passage and the forward passage are connected by a communication passage. Communication side to the communication passage when the striking mechanism is activated Solves the above problems by providing a switching is a pilot switching valve communicating with the flow regulating valve.

【0010】油圧ポンプは可変容量形ポンプを用いるこ
とにより、より適切な制御を行うことができる。
A more appropriate control can be performed by using a variable displacement pump as the hydraulic pump.

【0011】[0011]

【作用】穿孔を開始するとき、穿孔操作を行うことによ
り、油圧ポンプから打撃機構の打撃用高圧通路に圧油が
供給され、打撃機構が作動する。また、打撃用高圧通路
から回転用作動通路、回転方向切換弁、正転側通路を経
て回転機構に圧油が供給され、回転機構が作動する。回
転機構の回転数は回転流量調整弁で制御される。さら
に、打撃用高圧通路から送り用作動通路、送り方向切換
弁、前進側通路を経て送り機構に圧油が供給され、送り
機構が作動する。送り機構の推力は送り用減圧弁で設定
される。
When the punching operation is started, the punching operation causes pressure oil to be supplied from the hydraulic pump to the high-pressure passage for striking of the striking mechanism, thereby operating the striking mechanism. Further, pressure oil is supplied to the rotating mechanism from the high-pressure impact passage through the rotating operation passage, the rotation direction switching valve, and the normal rotation side passage, and the rotating mechanism operates. The rotation speed of the rotating mechanism is controlled by the rotation flow rate adjusting valve. Furthermore, pressure oil is supplied from the high-pressure impact passage through the feed operation passage, the feed direction switching valve, and the forward passage to the feed mechanism, and the feed mechanism operates. The thrust of the feed mechanism is set by the feed pressure reducing valve.

【0012】穿孔操作が行なわれると、パイロット切換
弁が切換えられ、回転機構の正転側通路と送り機構の後
退側通路とが連通路を介して連通する。これによって、
送り機構の実際の推力は、送り機構の前進側通路の圧力
と、回転機構の正転側通路の圧力との差によって決定さ
れる。送り速度は、連通路の連通流量調整弁を調整する
ことにより制御される。
When the boring operation is performed, the pilot switching valve is switched, and the forward rotation side passage of the rotating mechanism and the backward passage of the feeding mechanism communicate with each other through the communication passage. by this,
The actual thrust of the feed mechanism is determined by the difference between the pressure in the forward passage of the feed mechanism and the pressure in the forward rotation passage of the rotating mechanism. The feed rate is controlled by adjusting the communication flow rate adjusting valve of the communication passage.

【0013】穿孔中に岩盤の状態が変化して回転抵抗が
増加すると、回転機構の正転側通路の圧力が上昇するの
で、送り機構の前進側通路の圧力との差が減少し、送り
機構の推力を低減させる。更に回転抵抗が増加して回転
機構の正転側通路の圧力が上昇し、送り機構の前進側通
路の圧力との差がなくなると、送り機構の推力が0とな
って前進を停止し、回転機構の正転側通路の圧力が更に
上昇して送り機構の前進側通路の圧力を超えると、送り
機構は後退を開始する。
When the rock mass changes during drilling to increase the rotational resistance, the pressure in the forward rotation side passage of the rotating mechanism rises, so the difference from the pressure in the forward side passage of the feeding mechanism decreases, and the feeding mechanism Reduce the thrust of. When the rotation resistance further increases and the pressure in the forward rotation side passage of the rotation mechanism rises, and there is no difference with the pressure in the forward movement side passage of the feed mechanism, the thrust of the feed mechanism becomes 0 and the forward movement is stopped and rotation When the pressure in the forward passage of the mechanism further rises and exceeds the pressure in the forward passage of the feed mechanism, the feed mechanism starts retreating.

【0014】回転抵抗が減少して回転機構の正転側通路
の圧力が正常に戻ると、送り機構の推力も正常に戻る。
また、回転機構の正転側通路の圧力が上昇すると、回転
用作動通路の流量が低下し、打撃機構への圧油の供給が
増加するので、打撃力が増大する。なお、孔掃除やロッ
ド後退などの非打撃時には、パイロット切換弁が連通路
を遮断し、送り機構の作動油は連通流量調整弁を通らず
に後退側通路から送り方向切換弁、送り用戻り通路、打
撃用低圧通路を経てタンクへ戻るので、打撃時に比べて
流量が増加し、送り機構の推力、送り速度は最大で作動
可能となり、孔掃除やロッドの回収等の作業が迅速に行
われる。
When the rotational resistance decreases and the pressure in the forward rotation side passage of the rotating mechanism returns to normal, the thrust of the feed mechanism also returns to normal.
Further, when the pressure in the normal rotation side passage of the rotating mechanism rises, the flow rate of the rotating working passage decreases, and the supply of pressure oil to the striking mechanism increases, so that the striking force increases. When there is no impact such as hole cleaning or rod retraction, the pilot switching valve shuts off the communication passage, and the hydraulic fluid of the feed mechanism does not pass through the communication flow rate adjustment valve, but goes from the retraction side passage to the feed direction switching valve and the feed return passage. Since it returns to the tank via the low-pressure passage for striking, the flow rate is increased compared to that at the time of striking, and the thrust and feed speed of the feed mechanism can be operated at maximum, and work such as hole cleaning and rod recovery can be performed quickly.

【0015】油圧ポンプに可変容量形ポンプを用いた場
合、その最大吐出量を回路内に設けたリリーフ弁が穿孔
時に作動しないように制御することにより、余分なエネ
ルギーの消費が避けられる。この最大吐出量の制御は、
打撃動作が選択されたときのみ行なわれる。
When a variable displacement pump is used as the hydraulic pump, excess energy is avoided by controlling the maximum discharge amount so that the relief valve provided in the circuit does not operate during perforation. This maximum discharge rate control is
It is performed only when the striking action is selected.

【0016】[0016]

【実施例】図1は、本発明の一実施例である穿孔制御装
置の油圧回路図である。この実施例において、穿孔機械
は、油圧で駆動される打撃機構1、回転機構2、及び送
り機構3を備えている。打撃機構1の打撃用高圧通路1
1は、穿孔選択パイロット弁14を介して油圧ポンプ4
と接続されており、打撃用低圧通路12はタンク5と接
続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a hydraulic circuit diagram of a punching control device according to an embodiment of the present invention. In this embodiment, the drilling machine comprises a hydraulically driven striking mechanism 1, a rotating mechanism 2 and a feed mechanism 3. High-pressure passage 1 for striking the striking mechanism 1
1 is a hydraulic pump 4 via a perforation selection pilot valve 14.
And the low-pressure passage 12 for striking is connected to the tank 5.

【0017】この打撃用高圧通路11の穿孔選択パイロ
ット弁14より上流側から分岐して、パイロット操作部
(図示略)へ圧油を供給するためのパイロット圧油供給
通路17がパイロット圧油供給ポートPrへ接続されて
おり、パイロット圧油供給通路17には、パイロット用
減圧弁18が設けられている。また、打撃用高圧通路1
1には、メインリリーフ弁13、打撃用リリーフ弁1
5、打撃用パイロット弁16が接続されている。
A pilot pressure oil supply passage 17 for branching from the upstream side of the perforation selection pilot valve 14 of the high-pressure impact passage 11 to supply pressure oil to a pilot operating portion (not shown) is a pilot pressure oil supply port. A pilot pressure reducing valve 18 is provided in the pilot pressure oil supply passage 17, which is connected to Pr. Also, the high-pressure passage 1 for striking
1, the main relief valve 13 and the impact relief valve 1
5, the striking pilot valve 16 is connected.

【0018】穿孔選択パイロット弁14は、パイロット
操作部で穿孔を選択することにより、穿孔用パイロット
ポートDPrから穿孔用パイロットライン41に供給さ
れるパイロット圧で打撃機構1と油圧ポンプ4とが連通
するように切換えられる。打撃用パイロット弁16は、
打撃機構1をOFFからONに切換える。油圧ポンプ4
は可変容量形ポンプであって、穿孔用パイロットポート
DPrから供給されるパイロット圧で吐出量が変化し、
パイロット圧が発生していないときには、吐出量が最低
となり、パイロット圧が発生して穿孔が開始されると吐
出量が増加するようになっている。
The perforation selection pilot valve 14 allows the striking mechanism 1 and the hydraulic pump 4 to communicate with each other by the pilot pressure supplied from the perforation pilot port DPr to the perforation pilot line 41 by selecting the perforation by the pilot operating portion. Can be switched to. The striking pilot valve 16 is
The striking mechanism 1 is switched from OFF to ON. Hydraulic pump 4
Is a variable displacement pump, the discharge amount of which changes with the pilot pressure supplied from the drilling pilot port DPr,
The discharge amount becomes the minimum when the pilot pressure is not generated, and the discharge amount is increased when the pilot pressure is generated and the perforation is started.

【0019】また、穿孔用パイロットライン41から分
岐して、軟岩穿孔制御を行うための軟岩穿孔用リリーフ
弁42と軟岩穿孔用パイロット弁43とを設けた軟岩穿
孔用ライン44がドレーンポートDrに接続されてい
る。軟岩穿孔で高い打撃圧が必要でないときには、パイ
ロット操作部で軟岩穿孔を選択することにより、軟岩穿
孔用パイロットポートSPLからのパイロット圧で軟岩
穿孔用パイロット弁43を切換え、軟岩穿孔用リリーフ
弁42で穿孔用パイロットライン41の圧力を低下させ
て、油圧ポンプ4の吐出量を抑制する。
Further, a soft rock drilling line 44 provided with a soft rock drilling relief valve 42 for controlling soft rock drilling and a soft rock drilling pilot valve 43 branching from the drilling pilot line 41 is connected to the drain port Dr. Has been done. When high impact pressure is not required for soft rock drilling, the soft rock drilling is selected by the pilot operation unit, and the pilot pressure from the soft rock drilling pilot port SPL is used to switch the soft rock drilling pilot valve 43, and the soft rock drilling relief valve 42 is used. The pressure of the drilling pilot line 41 is reduced to suppress the discharge amount of the hydraulic pump 4.

【0020】回転機構2の正転側通路21と逆転側通路
22とは、回転方向切換弁23を介して打撃用高圧通路
11から分岐した回転用作動通路24と打撃用低圧通路
12から分岐した回転用戻り通路25とに接続されてい
る。回転用作動通路24の途中には回転流量調整弁26
が設けられており、回転機構2の回転数がこの回転流量
調整弁26で制御される。
The normal rotation side passage 21 and the reverse rotation side passage 22 of the rotating mechanism 2 are branched from the high-pressure impact passage 11 and the low-pressure impact passage 12 via the rotation direction switching valve 23. It is connected to the return passage 25 for rotation. A rotary flow rate adjusting valve 26 is provided in the middle of the rotary working passage 24.
Is provided, and the rotation speed of the rotation mechanism 2 is controlled by the rotation flow rate adjusting valve 26.

【0021】回転方向切換弁23の切換えは、正転用パ
イロットポートRFPrと逆転用パイロットポートRR
Prとに供給されるパイロット圧で行われる。送り機構
3の前進側通路31と後退側通路32とは、電磁切換弁
36と送り方向切換弁33を介して打撃用高圧通路11
から分岐した送り用作動通路34と打撃用低圧通路12
から分岐した送り用戻り通路35とに接続されている。
打撃用高圧通路11から分岐した送り用作動通路34
は、途中で一旦ブーム用のポートBPからブーム制御部
(図示略)へ入り、ポートBNへ戻るようになっている
が、ブーム操作中にも送り機構3を作動できるように、
オリフィス38を設けたバイパス39が打撃用高圧通路
11との間に接続されている。
The rotation direction switching valve 23 is switched by switching the forward rotation pilot port RFPr and the reverse rotation pilot port RR.
It is performed with the pilot pressure supplied to Pr and. The forward passage 31 and the backward passage 32 of the feeding mechanism 3 are connected to each other through the electromagnetic switching valve 36 and the feeding direction switching valve 33, and the high-pressure impact passage 11 is provided.
Feed working passage 34 and impact low pressure passage 12 branched from the
It is connected to a return passage 35 for feeding which is branched from.
Feeding operation passage 34 branched from the impact high pressure passage 11
Is configured to enter the boom control section (not shown) from the boom port BP and return to the port BN during the operation, so that the feed mechanism 3 can be operated even during the boom operation.
A bypass 39 having an orifice 38 is connected to the high-pressure impact passage 11.

【0022】外部油圧利用ポートEは、エンジン駆動油
圧等の外部油圧で、ブーム操作等を可能にするものであ
る。前進側通路31の途中には送り用減圧弁37が設け
られており、送り機構の推力がこの送り用減圧弁37で
設定される。この送り用減圧弁37の設定圧力は、通常
穿孔時には穿孔用パイロットライン41と接続される高
圧送り用リリーフ弁45で、軟岩穿孔時には軟岩穿孔用
ライン44と接続される低圧送り用リリーフ弁46で制
御される。
The external hydraulic pressure utilization port E is used to enable boom operation and the like by external hydraulic pressure such as engine driving hydraulic pressure. A feed pressure reducing valve 37 is provided in the middle of the forward passage 31, and the thrust of the feed mechanism is set by the feed pressure reducing valve 37. The set pressure of the feed pressure reducing valve 37 is a high pressure feed relief valve 45 connected to the drilling pilot line 41 during normal drilling, and a low pressure feed relief valve 46 connected to the soft rock drilling line 44 during soft rock drilling. Controlled.

【0023】さらに、送り圧調整ポートRCを介して、
パイロット操作部に送り圧調整用のリリーフ弁(図示
略)が設けられており、高圧送り用リリーフ弁45また
は低圧送り用リリーフ弁46の圧力範囲内で送り圧力を
調整できる。送り方向切換弁23の切換えは、前進用パ
イロットポートFFPrと逆転用パイロットポートFR
Prとに供給されるパイロット圧で行われる。
Further, via the feed pressure adjusting port RC,
The pilot operating portion is provided with a relief valve (not shown) for adjusting the feed pressure, and the feed pressure can be adjusted within the pressure range of the high-pressure feed relief valve 45 or the low-pressure feed relief valve 46. The forward direction pilot port FFPr and the reverse direction pilot port FR are switched by switching the feed direction switching valve 23.
It is performed with the pilot pressure supplied to Pr and.

【0024】電磁切換弁36は、水量不足等の穿孔異常
の際に、電気信号により送り機構3を後退側に切換えて
安全を確保するためのものである。送り機構3の後退側
通路32と回転機構2の正転側通路21とは連通路6で
接続されており、この連通路6には、穿孔用パイロット
ポートDPrから穿孔用パイロットライン41に供給さ
れるパイロット圧で連通側へ切換えられるパイロット切
換弁61と連通流量調整弁62とが設けられている。
The electromagnetic switching valve 36 is for ensuring safety by switching the feeding mechanism 3 to the backward side by an electric signal in the case of an abnormal drilling such as insufficient water. The backward passage 32 of the feed mechanism 3 and the forward rotation passage 21 of the rotating mechanism 2 are connected by a communication passage 6, and the communication passage 6 is supplied from the drilling pilot port DPr to the drilling pilot line 41. A pilot switching valve 61 and a communication flow rate adjusting valve 62, which are switched to the communication side by the pilot pressure, are provided.

【0025】穿孔作業を行う際、まずブームを操作して
位置決めする。この場合には、油圧ポンプ4から吐出さ
れた圧油は、ブーム用のポートBPからブーム制御部へ
入り、この圧油でブームのアクチュエータを駆動してブ
ームを移動させた後、ポートBN、送り方向切換弁33
を経てタンク5に戻る。位置決め後穿孔を開始するとき
には、パイロット操作部で穿孔操作を行うと、穿孔用パ
イロットポートDPrから穿孔用パイロットライン41
に供給されるパイロット圧で穿孔選択パイロット弁14
は打撃機構1と油圧ポンプ4とが連通するように切換
え、打撃用パイロット弁16は、打撃機構1をOFFか
らONに切換える。そこで、油圧ポンプ4から打撃機構
1の打撃用高圧通路11に圧油が供給され、打撃機構1
が作動する。穿孔用パイロットポートDPrから穿孔用
パイロットライン41に供給されるパイロット圧は、油
圧ポンプ4の吐出量を増加させ、同時にパイロット切換
弁61を連通路6が連通するように切換える。
When performing the boring operation, the boom is first operated to position it. In this case, the pressure oil discharged from the hydraulic pump 4 enters the boom control unit from the boom port BP, drives the boom actuator with this pressure oil to move the boom, and then feeds the port BN. Direction switching valve 33
Return to tank 5 via. When the drilling operation is started by the pilot operating portion when the drilling is started after the positioning, the pilot line 41 for the drilling is opened from the pilot port DPr for the drilling.
Pilot selection pilot valve 14 with pilot pressure supplied to
Is switched so that the striking mechanism 1 and the hydraulic pump 4 communicate with each other, and the striking pilot valve 16 switches the striking mechanism 1 from OFF to ON. Therefore, pressure oil is supplied from the hydraulic pump 4 to the high-pressure passage 11 for striking the striking mechanism 1, and the striking mechanism 1
Works. The pilot pressure supplied from the drilling pilot port DPr to the drilling pilot line 41 increases the discharge amount of the hydraulic pump 4, and at the same time switches the pilot switching valve 61 so that the communication passage 6 communicates.

【0026】打撃用リリーフ弁15は、打撃機構1の最
高圧を決定するが、打撃機構1の特性として、打撃圧は
打撃油量によって決定される。このため、打撃用高圧通
路11に供給する油量を少なくすれば、打撃圧力を下げ
ることができる。そこで、打撃用リリーフ弁15から打
撃用低圧通路12側に排出される量が殆どないように油
圧ポンプ4の最大吐出量を調整することで余分な油圧を
消費することを避けることができる。
The impact relief valve 15 determines the maximum pressure of the impact mechanism 1. As a characteristic of the impact mechanism 1, the impact pressure is determined by the amount of impact oil. Therefore, the impact pressure can be lowered by reducing the amount of oil supplied to the high-pressure impact passage 11. Therefore, it is possible to avoid consuming extra hydraulic pressure by adjusting the maximum discharge amount of the hydraulic pump 4 so that the amount discharged from the impact relief valve 15 to the impact low pressure passage 12 side is almost zero.

【0027】岩盤が軟らかく高圧打撃が必要ない場合に
は、パイロット操作部で軟岩穿孔操作を行うと、軟岩穿
孔用パイロットポートSPLからのパイロット圧で軟岩
穿孔用パイロット弁43が切換えられ、軟岩穿孔用リリ
ーフ弁42を介して穿孔用パイロットライン41がドレ
ーンポートDrに接続されるので、軟岩穿孔用リリーフ
弁42が穿孔用パイロットライン41の圧力を低下させ
る。これで、油圧ポンプ4の吐出量が抑制され、打撃機
構1の打撃圧力を低下させる。
When the rock is soft and does not require high-pressure impact, when the soft rock piercing operation is performed by the pilot operating portion, the pilot valve 43 for soft rock piercing is switched by the pilot pressure from the pilot port SPL for soft rock piercing, and the soft rock piercing pilot valve 43 is switched. Since the pilot line 41 for drilling is connected to the drain port Dr via the relief valve 42, the relief valve 42 for drilling soft rock reduces the pressure in the pilot line 41 for drilling. With this, the discharge amount of the hydraulic pump 4 is suppressed, and the impact pressure of the impact mechanism 1 is reduced.

【0028】このように、軟岩を穿孔するときには、打
撃用リリーフ弁15から圧油をリリーフさせず、油圧ポ
ンプの吐出量を抑制するようにしているので、余分な油
圧を消費することを避けることができる。回転方向切換
弁23は正転側へ切換えられ、打撃用高圧通路11から
回転用作動通路24、回転方向切換弁23、正転側通路
21を経て回転機構2に圧油が供給され、回転機構2が
作動する。回転機構2の戻り油は、逆転側通路22、回
転方向切換弁23、回転用戻り通路25、打撃用低圧通
路12を経てタンク5に戻る。回転機構2の回転数は回
転流量調整弁26で制御される。
As described above, when piercing soft rock, pressure oil is not relieved from the impact relief valve 15 to suppress the discharge amount of the hydraulic pump, so that it is possible to avoid consuming extra hydraulic pressure. You can The rotation direction switching valve 23 is switched to the normal rotation side, and pressure oil is supplied from the high-pressure passage 11 for striking to the rotation mechanism 2 via the rotation operation passage 24, the rotation direction switching valve 23, and the normal rotation side passage 21. 2 works. Return oil of the rotating mechanism 2 returns to the tank 5 via the reverse rotation side passage 22, the rotation direction switching valve 23, the rotation return passage 25, and the striking low pressure passage 12. The rotation speed of the rotating mechanism 2 is controlled by the rotation flow rate adjusting valve 26.

【0029】さらに、打撃用高圧通路11の圧油は、ブ
ーム用のポートBPからブーム制御部へ入り、ポートB
N、送り用作動通路34、送り方向切換弁33、前進側
通路31を経て送り機構3に圧油が供給され、送り機構
3が作動する。送り機構3の推力は減圧弁37で設定さ
れる。このとき、パイロット切換弁61は連通路6が連
通するように切換えられているので、送り機構3の後退
側通路32は、回転機構2の正転側通路21と連通路6
で連通する。これによって、送り機構3の実際の推力
は、送り機構3の前進側通路31の圧力と、回転機構2
の正転側通路21の圧力との差によって決定される。送
り速度は、連通路6の連通流量調整弁62を調整するこ
とにより制御される。
Further, the pressure oil in the high-pressure striking passage 11 enters the boom control section from the boom port BP, and enters the port B.
Pressure oil is supplied to the feed mechanism 3 through the N, the feed operation passage 34, the feed direction switching valve 33, and the forward passage 31 to operate the feed mechanism 3. The thrust of the feed mechanism 3 is set by the pressure reducing valve 37. At this time, since the pilot switching valve 61 is switched so that the communication passage 6 is in communication, the backward passage 32 of the feed mechanism 3 is connected to the forward rotation passage 21 of the rotation mechanism 2 and the communication passage 6.
Communicate with. As a result, the actual thrust of the feed mechanism 3 depends on the pressure in the forward passage 31 of the feed mechanism 3 and the rotation mechanism 2
Is determined by the difference between the pressure in the normal rotation side passage 21 and The feed rate is controlled by adjusting the communication flow rate adjusting valve 62 in the communication passage 6.

【0030】穿孔中に岩盤の状態が変化して回転抵抗が
増加すると、回転機構2の正転側通路21の圧力が上昇
するので、送り機構3の前進側通路31の圧力との差が
減少し、送り機構3の推力を低減させる。更に回転抵抗
が増加して回転機構2の正転側通路21の圧力が上昇
し、送り機構3の前進側通路31の圧力との差がなくな
ると、送り機構3の推力が0となって前進を停止し、回
転機構2の正転側通路21の圧力が更に上昇して送り機
構3の前進側通路31の圧力を超えると、送り機構3は
後退を開始する。
When the rock mass changes during drilling and the rotation resistance increases, the pressure in the forward rotation side passage 21 of the rotation mechanism 2 rises, so the difference from the pressure in the forward movement side passage 31 of the feed mechanism 3 decreases. Then, the thrust of the feed mechanism 3 is reduced. When the rotation resistance further increases and the pressure in the forward rotation side passage 21 of the rotation mechanism 2 rises and there is no difference with the pressure in the forward movement side passage 31 of the feed mechanism 3, the thrust of the feed mechanism 3 becomes 0 and the forward movement is performed. When the pressure in the forward rotation side passage 21 of the rotation mechanism 2 further rises and exceeds the pressure in the forward movement side passage 31 of the feed mechanism 3, the feed mechanism 3 starts retreating.

【0031】回転抵抗が減少して回転機構2の正転側通
路21の圧力が正常に戻ると、送り機構3の推力も正常
に戻る。また、回転機構2の正転側通路21の圧力が上
昇すると、回転用作動通路24の流量が低下し、打撃機
構1への圧油の供給が増加するので、打撃力が増大す
る。
When the rotational resistance decreases and the pressure in the normal rotation side passage 21 of the rotating mechanism 2 returns to normal, the thrust of the feed mechanism 3 also returns to normal. When the pressure in the normal rotation side passage 21 of the rotating mechanism 2 rises, the flow rate of the rotating working passage 24 decreases, and the supply of pressure oil to the striking mechanism 1 increases, so that the striking force increases.

【0032】なお、孔掃除やロッド後退などの非打撃時
には、穿孔用パイロットポートDPrから穿孔用パイロ
ットライン41に供給されるパイロット圧が低下して、
パイロット切換弁61が連通路6を遮断し、送り機構3
の作動油は連通流量調整弁62を通らずに後退側通路3
2から送り方向切換弁33、送り用戻り通路35、打撃
用低圧通路12を経てタンク5へ戻るので、打撃時に比
べて流量が増加し、送り機構3の推力、送り速度は最大
で作動可能となり、孔掃除やロッドの回収等の作業が迅
速に行われる。
In addition, during non-striking such as hole cleaning or rod retreat, the pilot pressure supplied from the drilling pilot port DPr to the drilling pilot line 41 decreases,
The pilot switching valve 61 shuts off the communication passage 6, and the feed mechanism 3
Hydraulic fluid does not pass through the communication flow rate adjusting valve 62,
Since it returns from 2 to the tank 5 through the feed direction switching valve 33, the feed return passage 35, and the low-pressure passage 12 for striking, the flow rate is increased as compared with the time of striking, and the thrust and feed speed of the feed mechanism 3 can be operated at maximum. Work such as hole cleaning and rod recovery can be performed quickly.

【0033】[0033]

【発明の効果】以上説明したように、本発明の穿孔制御
装置は、穿孔状態の変化に応じて、打撃、回転、送りの
各機構に圧油を適切に配分し、穿孔能力とエネルギー効
率を向上させることができる。油圧ポンプに可変容量形
ポンプを用いると、その最大吐出量を回路内に設けたリ
リーフ弁が穿孔時に作動しないように制御することによ
り、余分なエネルギーの消費が避けられる。
As described above, the perforation control apparatus of the present invention appropriately distributes the pressure oil to each of the striking, rotating, and feeding mechanisms according to the change in the perforation state, thereby improving the perforation capacity and energy efficiency. Can be improved. When a variable displacement pump is used as the hydraulic pump, extra energy consumption can be avoided by controlling the maximum discharge amount so that the relief valve provided in the circuit does not operate during drilling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である穿孔制御装置の油圧回
路図である。
FIG. 1 is a hydraulic circuit diagram of a punching control device according to an embodiment of the present invention.

【図2】従来の穿孔制御装置の油圧回路図である。FIG. 2 is a hydraulic circuit diagram of a conventional punching control device.

【符号の説明】[Explanation of symbols]

1 打撃機構 2 回転機構 3 送り機構 4 油圧ポンプ 5 タンク 6 連通路 11 打撃用高圧通路 12 打撃用低圧通路 21 正転側通路 22 逆転側通路 23 回転方向切換弁 24 回転用作動通路 25 回転用戻り通路 26 回転流量調整弁 31 前進側通路 32 後退側通路 33 送り方向切換弁 34 送り用作動通路 35 送り用戻り通路 37 送り用減圧弁 61 パイロット切換弁 62 連通流量調整弁 1 striking mechanism 2 rotation mechanism 3 feeding mechanism 4 hydraulic pump 5 tanks 6 passages 11 High-pressure passage for striking 12 low pressure passage for impact 21 Forward rotation passage 22 Reverse passage 23 Directional switching valve 24 rotation working passage 25 rotation return passage 26 Rotary flow control valve 31 Forward passage 32 Backward passage 33 Feed direction switching valve 34 Working path for feeding 35 return passage 37 Pressure reducing valve for feeding 61 Pilot switching valve 62 Communication flow adjustment valve

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 油圧で駆動される打撃機構、回転機構、
及び送り機構を備えた穿孔機械において、 打撃機構の打撃用高圧通路を油圧ポンプと接続し、打撃
用低圧通路をタンクと接続し、 回転機構の正転側通路と逆転側通路とを回転方向切換弁
を介して打撃用高圧通路から分岐した回転用作動通路と
打撃用低圧通路から分岐した回転用戻り通路とに接続
し、 送り機構の前進側通路と後退側通路とを送り方向切換弁
を介して打撃用高圧通路から分岐した送り用作動通路と
打撃用低圧通路から分岐した送り用戻り通路とに接続
し、 前記回転用作動通路の途中に回転流量調整弁を設け、 前記前進側通路の途中に送り用減圧弁を設け、 前記後退側通路と正転側通路とを連通路で接続し、該連
通路に打撃機構の作動時に連通側へ切換えられるパイロ
ット切換弁と連通流量調整弁とを設けたことを特徴とす
る穿孔制御装置。
1. A hitting mechanism driven by hydraulic pressure, a rotating mechanism,
In a drilling machine equipped with a feed mechanism, the high-pressure passage for impact of the impact mechanism is connected to a hydraulic pump, the low-pressure passage for impact is connected to the tank, and the rotation direction is switched between the forward rotation side passage and the reverse rotation side passage of the rotation mechanism. It connects to the rotation working passage branched from the high-pressure striking passage and the rotation return passage branched from the low-pressure striking passage via a valve, and the forward side passage and the backward side passage of the feed mechanism are connected via the feed direction switching valve. Connected to the feed working passage branched from the high-pressure impact passage and the feed return passage branched from the low-pressure passage, and a rotary flow rate adjusting valve is provided in the middle of the rotary working passage, and in the middle of the forward passage. A feed pressure reducing valve is provided on the back side, and the retreat side passage and the normal rotation side passage are connected by a communication passage, and a pilot switching valve and a communication flow rate adjusting valve that are switched to the communication side when the striking mechanism is activated are provided in the communication passage. Characterized by Hole control device.
【請求項2】 油圧ポンプが可変容量形ポンプであるこ
とを特徴とする請求項1記載の穿孔制御装置。
2. The perforation control apparatus according to claim 1, wherein the hydraulic pump is a variable displacement pump.
JP16523795A 1995-06-30 1995-06-30 Drilling control device Expired - Fee Related JP3447149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16523795A JP3447149B2 (en) 1995-06-30 1995-06-30 Drilling control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16523795A JP3447149B2 (en) 1995-06-30 1995-06-30 Drilling control device

Publications (2)

Publication Number Publication Date
JPH0913868A JPH0913868A (en) 1997-01-14
JP3447149B2 true JP3447149B2 (en) 2003-09-16

Family

ID=15808475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16523795A Expired - Fee Related JP3447149B2 (en) 1995-06-30 1995-06-30 Drilling control device

Country Status (1)

Country Link
JP (1) JP3447149B2 (en)

Also Published As

Publication number Publication date
JPH0913868A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
CA1084900A (en) Controls for hydraulic percussion drill
US4356871A (en) Hydraulic control system for a rock drill
JPH0893002A (en) Hydraulic control device of excaving machine
US7895833B2 (en) Hydraulic drive apparatus
US5564455A (en) Hydraulic circuit for automatic control of a horizontal boring machine
JP2008536029A (en) Rock drilling control method, apparatus and valve
US4440236A (en) Hydraulic control system for a rock drill
US5913371A (en) Apparatus for controlling the feed drive of a boring mechanism for making earth bores
JP3383299B2 (en) Method and apparatus for controlling air supply to rock drill
JPH04231702A (en) Controller for additionally connecting hydraulic additional motor to main load motor in response to load
CN112983907B (en) Hydraulic control system for rock drilling impact
JP3447149B2 (en) Drilling control device
US5609088A (en) Hydraulic control system for excavations with an improved flow control valve
JP3514916B2 (en) Drilling control device for hydraulic crawler drill
JP3447160B2 (en) Rotary booster for drilling machine
KR920001909B1 (en) Brake circuit apparatus for hydraulic motor
JP3392553B2 (en) Hydraulic rock drill feed control
JP3450115B2 (en) Drilling control device
JPH07158377A (en) Drilling control device of crawler drill
JP3447108B2 (en) Drilling machine rotation control device
JP3803147B2 (en) Drilling pressure control device for drilling device
CA1090230A (en) Controls for hydraulic percussion drill
JP2006257713A (en) Oil pressure control circuit of work machine
JPS6335110Y2 (en)
CN113494492A (en) Hydraulic system for preventing drill rod from being stuck in solution cavity and rock drilling trolley

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees