JP3802912B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP3802912B2
JP3802912B2 JP2004271131A JP2004271131A JP3802912B2 JP 3802912 B2 JP3802912 B2 JP 3802912B2 JP 2004271131 A JP2004271131 A JP 2004271131A JP 2004271131 A JP2004271131 A JP 2004271131A JP 3802912 B2 JP3802912 B2 JP 3802912B2
Authority
JP
Japan
Prior art keywords
image
endoscope
convergence angle
optical axis
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004271131A
Other languages
Japanese (ja)
Other versions
JP2005034654A (en
Inventor
裕 三澤
達三 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2004271131A priority Critical patent/JP3802912B2/en
Publication of JP2005034654A publication Critical patent/JP2005034654A/en
Application granted granted Critical
Publication of JP3802912B2 publication Critical patent/JP3802912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、内視鏡用の撮像装置に関し、特に撮像側で内視鏡の輻輳角を変更できる内視鏡用の撮像装置に関するものである。   The present invention relates to an imaging apparatus for an endoscope, and more particularly to an imaging apparatus for an endoscope that can change the convergence angle of the endoscope on the imaging side.

従来、管腔臓器、腹腔内や胸腔内の観察手段として内視鏡が広く用いられている。これら内視鏡のほとんどは画像観察手段を1つしか持っておらず、観察者は単眼でしか観察することができないために、観察対象の立体的観察ができずに正確な診断が困難であったり、内視鏡と併用して使用する器具を用いた観察対象への処置において距離感を得ることができずに処置が容易にできないという不具合があった。   Conventionally, endoscopes have been widely used as observation means for luminal organs, intraperitoneal cavity and thoracic cavity. Most of these endoscopes have only one image observation means, and the observer can only observe with a single eye, so that the observation object cannot be stereoscopically observed and accurate diagnosis is difficult. In addition, there is a problem that the treatment cannot be easily performed because a sense of distance cannot be obtained in the treatment of the observation target using the instrument used in combination with the endoscope.

これに対し、少なくとも2つの画像伝送光学系の対物レンズと観察対象点とのなす輻輳角を立体可視可能な角度となるように配置し、立体視が可能な内視鏡があるが、これらは輻輳角が固定されており、両画像伝送光学系の光軸が一致している付近では立体画像の観察は可能であるが、この領域をはずれると観察像が2重に観察されるなど立体画像が得られにくくなるという問題点があり、観察対象の距離に応じて輻輳角を任意に変えることが必要であることが分かっている。また、輻輳角が固定では術者の輻輳角の個人差との不一致より不自然な立体視を行わねばならないとの問題点がある。   On the other hand, there are endoscopes that are arranged so that the convergence angle between the objective lens of the at least two image transmission optical systems and the observation target point is a stereoscopically visible angle and can be stereoscopically viewed. Stereo images can be observed in the vicinity where the convergence angle is fixed and the optical axes of the two image transmission optical systems coincide with each other. Is difficult to obtain, and it has been found that it is necessary to arbitrarily change the convergence angle according to the distance of the observation target. In addition, if the convergence angle is fixed, there is a problem that an unnatural stereoscopic view must be performed rather than a mismatch between individual differences in the convergence angle of the surgeon.

この問題を解決するため、2本の硬性鏡をある輻輳角で配置しこの2本の硬性鏡の光軸が交わる点と観察部位との位置ずれ量を検出し、この位置ずれ量より硬性鏡の輻輳角を調整する手段を持つ装置が提案されている(特許文献1)。
特開平05−341206号公報
In order to solve this problem, two rigid mirrors are arranged at a certain convergence angle, and the amount of positional deviation between the point where the optical axes of the two rigid mirrors intersect and the observation site is detected. There has been proposed a device having means for adjusting the convergence angle (Patent Document 1).
JP 05-341206 A

しかしながら、特許文献1に記載の発明は、位置ずれを検出するためにレーザ光線を使用したり、3D−CCUを必要とするなど装置が複雑になる不利益を有する。更に、この方式では観察点が光軸の交点の前に位置しているか後ろの位置しているかの判定が難しく、自動補正をかけた場合適切な補正が行われずに使用しにくいことが考えられる。   However, the invention described in Patent Document 1 has a disadvantage that the apparatus becomes complicated, such as using a laser beam to detect misalignment or requiring a 3D-CCU. Furthermore, in this method, it is difficult to determine whether the observation point is located in front of or behind the intersection of the optical axes, and when automatic correction is applied, it may be difficult to use without performing appropriate correction. .

また、この方式であっても術者の輻輳角の個人差の問題を解決することは困難であると考えられる。注視点の奥行きの変化は、表示装置側で左右のディスプレイの像の重なり具合をずらすことによってもできるが、これではカメラの画角が有限であることから立体視が可能な領域は制限されてしまう。   Even with this method, it is considered difficult to solve the problem of individual differences in the angle of convergence of the surgeon. The gaze point depth can be changed by shifting the overlap of the left and right display images on the display device side, but this limits the area where stereoscopic viewing is possible due to the limited angle of view of the camera. End up.

本発明は上記問題点に鑑みてなされたものであり、注視の奥行きの変化あるいは立体感の変化を、撮像側で簡単に実現できる内視鏡用の撮像装置を提案するものである。   The present invention has been made in view of the above problems, and proposes an imaging apparatus for an endoscope that can easily realize a change in gaze depth or a change in stereoscopic effect on the imaging side.

また、本発明は、術者が立体画像を観察しながら術者自身の操作により被写体までの距離、あるいは立体感を変更できる立体内視鏡用の撮像装置を提案するものである。   The present invention also proposes an imaging apparatus for a stereoscopic endoscope in which the surgeon can change the distance to the subject or the stereoscopic effect by the operator's own operation while observing the stereoscopic image.

上記課題を解決するため、本発明による撮像装置は、画像を取り込む対物レンズを有する画像取込手段と、前記画像取込手段と結合され、取り込んだ画像を画像処理部に伝える可撓性をもった2つのイメージファイバーを有する画像伝送系と、拡張、収縮自在に構成され、前記画像伝送系を変形させて前記画像取込手段の輻輳角を変化させる光軸変更手段と、前記光軸変更手段を操作する操作手段とを備え、前記光軸変更手段は、遠方を観察する場合は収縮し、近位を観察する場合は突出するよう変形し、前記光軸変更手段が突出するように変形した際には、前記内視鏡の先端部の外径が拡張することを特徴とする。 In order to solve the above-described problems, an imaging apparatus according to the present invention has an image capturing unit having an objective lens for capturing an image, and flexibility to transmit the captured image to the image processing unit, coupled to the image capturing unit. An image transmission system having two image fibers, an optical axis changing unit configured to be expandable and contractable, and deforming the image transmission system to change a convergence angle of the image capturing unit, and the optical axis changing unit The optical axis changing means is deformed so that it contracts when observing a distance, and protrudes when observing the proximal, and is deformed so that the optical axis changing means protrudes. In this case, the outer diameter of the distal end portion of the endoscope is expanded .

その他の本発明の特徴は、以下の発明を実施するための最良の形態の記載及び添付図面により明らかになるものである。   Other features of the present invention will become apparent from the following description of the best mode for carrying out the invention and the accompanying drawings.

以上のように、本発明によれば、内視鏡で観察する被写体の注視点を外部より自在に制御できる。又、観察対象の位置、内視鏡の位置そして観察者の輻輳角の個人差に関わらず、輻輳点の奥行きを変化させることにより、最適な立体視が可能になる。   As described above, according to the present invention, the gazing point of a subject observed with an endoscope can be freely controlled from the outside. Further, regardless of individual differences in the position of the observation target, the position of the endoscope, and the vergence angle of the observer, optimum stereoscopic vision can be achieved by changing the depth of the vergence point.

以下、図面を参照しながら本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例の説明に先立ち、図2から図5までの第1の実施形態と、図6の第2の実施形態の説明の導入として、全体的なシステム構成を図1で説明する。図1に示す立体内視鏡システムは、立体内視鏡10と、2つの画像伝送光学系(イメージファイバ1)によって伝送される一対の画像をそれぞれ撮像レンズ15を通して受光し、TV信号へ変換するためのCCD等からなる一対の撮像素子12と、得られた一対のTV信号を立体画像として表示するためのステレオ画像表示装置13と、カメラ間距離(ベースライン)輻輳角の調整のための操作部50とを備える。   Prior to the description of the examples, the overall system configuration will be described with reference to FIG. 1 as an introduction of the description of the first embodiment of FIGS. 2 to 5 and the description of the second embodiment of FIG. The stereoscopic endoscope system shown in FIG. 1 receives a pair of images transmitted by a stereoscopic endoscope 10 and two image transmission optical systems (image fiber 1) through an imaging lens 15 and converts them into TV signals. A pair of image pickup elements 12 composed of a CCD, etc., a stereo image display device 13 for displaying the obtained pair of TV signals as a stereoscopic image, and an operation for adjusting the distance (baseline) convergence angle between the cameras. Part 50.

立体内視鏡10の先端部の撮像部は、対物レンズ2で被写体の画像をイメージファイバ上に結像し、これがファイバにより伝送され、撮像レンズ15を介して更に撮像素子12に結像する。撮像素子12から出力したTV信号はステレオ画像表示装置13に入力される。被写体を照らすライトガイド60(図4)は、ライトガイド接続口14で光源装置と接続され、光源装置より光供給を受ける。   The imaging unit at the distal end of the stereoscopic endoscope 10 forms an image of the subject on the image fiber with the objective lens 2, which is transmitted by the fiber, and further forms an image on the imaging element 12 through the imaging lens 15. The TV signal output from the image sensor 12 is input to the stereo image display device 13. The light guide 60 (FIG. 4) that illuminates the subject is connected to the light source device at the light guide connection port 14, and receives light supply from the light source device.

内視鏡の被覆材31は、ラテックスあるいはエラストマー材料などの曲がりやすい可撓性の材料から成る。先端部の被覆材30は、同種の材料を更に収縮性を高めたものであり、内部からの応力に応じ変形自在とする。参照番号32は、被覆材30,31と共働してイメージファイバ収納用のルーメンを形成する部材であり、材料とその特性は被覆材30,31にそれぞれ対応する。   The endoscope covering material 31 is made of a flexible material that is easily bent such as latex or an elastomer material. The coating material 30 at the tip is made of the same kind of material with further improved contractibility, and can be deformed according to the stress from the inside. Reference numeral 32 is a member that cooperates with the covering materials 30 and 31 to form a lumen for storing an image fiber, and the material and its characteristics correspond to the covering materials 30 and 31, respectively.

観察対象物の照明は、光源にライトガイド60を接続し、光を導光し、ライトガイド開放端から光りを出射し、観察対象を照明する。   For illuminating the observation object, the light guide 60 is connected to the light source, the light is guided, the light is emitted from the open end of the light guide, and the observation object is illuminated.

<第1の実施形態>
次に本実施形態において、カメラ間距離を調整する調整器40の構成と動作を添付図面を参照して説明する。
<First Embodiment>
Next, in the present embodiment, the configuration and operation of the adjuster 40 that adjusts the inter-camera distance will be described with reference to the accompanying drawings.

先ず、図2が示すように、調整器40は4辺(41、42、43および44)から成る枠体で、4つの関節を持つので加えられる応力により拡張、収縮自在である。4つの関節のうち、内視鏡10の軸方向3で対向する浮いた2つの関節29には、内側にネジ溝が切られたガイド20、22が関節を動き自在に付けられている。ロッド8からの力はガイドによって調整器40に伝えられる。ガイド20、22には、先端に左ねじ24、後端に右ネジ25が切られたロッド8が螺合されている。一方、他の関節27は、ルーメン部材32に接着材28で固定されている。   First, as shown in FIG. 2, the adjuster 40 is a frame composed of four sides (41, 42, 43 and 44) and has four joints, so that it can be expanded and contracted by applied stress. Of the four joints, two floating joints 29 that face each other in the axial direction 3 of the endoscope 10 are provided with guides 20 and 22 that are internally threaded so as to be movable. The force from the rod 8 is transmitted to the adjuster 40 by a guide. A rod 8 having a left screw 24 at the front end and a right screw 25 at the rear end is screwed into the guides 20 and 22. On the other hand, the other joint 27 is fixed to the lumen member 32 with an adhesive 28.

80は、術者がマニュアルでロッド8を回すために外部に取り付けられた回転ナットであり、ナットの回り方向にしたがって、ロッドが時計方向、反時計方向に回転する。82は、ナット80の回転をロッド8に伝えるネジである。図4は内視鏡の先端部の画像取り込み素子が納められているイメージ用窓、イメージ用窓の間隔を調整する調整器40、被写体を照射するライトガイド60の配置を示す。この図は、調整器40が閉じ、イメージ窓が最短の間隔にある状態を示している。   Reference numeral 80 denotes a rotating nut attached to the outside so that the operator can manually rotate the rod 8, and the rod rotates clockwise and counterclockwise according to the direction of rotation of the nut. A screw 82 transmits the rotation of the nut 80 to the rod 8. FIG. 4 shows an arrangement of an image window in which an image capturing element at the distal end portion of the endoscope is housed, an adjuster 40 for adjusting the interval between the image windows, and a light guide 60 for irradiating a subject. This figure shows a state in which the adjuster 40 is closed and the image windows are at the shortest interval.

このように構成される内視鏡の動作を説明する。図3は、枠体状の調整器40が閉じられ、ベースラインが未調整の段階を示す。ここで、ナット80を回し、術者がロッドを例えば右回転させると、ガイド20、22はそれらの取り付け部位の関節を互いに近付ける方向に移動させるので、枠体は徐々に菱形に変形し、ルーメン部材32に固定されている関節27は外方向に突き出て、ルーメン部材32、イメージファイバー1、被覆材30を関節27を中心に外方向に膨張させる。この結果、内視鏡先端部の外形が拡張し、イメージファイバ1に結合された対物レンズ2が作る画像取込手段(カメラ)の距離は広げられる。 The operation of the endoscope configured as described above will be described. FIG. 3 shows the stage where the frame-shaped adjuster 40 is closed and the baseline is not adjusted. Here, when the operator turns the nut 80 and rotates the rod to the right, for example, the guides 20 and 22 move the joints of their attachment parts closer to each other, so that the frame gradually transforms into a rhombus, The joint 27 fixed to the member 32 protrudes outward, and the lumen member 32, the image fiber 1, and the covering material 30 are expanded outward about the joint 27. As a result, the outer shape of the endoscope tip is expanded, and the distance of the image capturing means (camera) created by the objective lens 2 coupled to the image fiber 1 is increased.

一方、ロッド8を左回転せると、ガイド20、22はロッド8上を互いに離れる方向に移動し、調整器4は扁平に変形し、関節27はへこむので、関節27、27間の距離が狭まる。このため、イメージファイバ1に結合された対物レンズ2が作る画像取込手段(カメラ)の距離は短くなる。図5は、カメラ間距離を最大限にした状態を示す模式図であり、図から理解されるように、調整器が閉じた状態のときの対物レンズ(イメージファイバー)の間隔に対して、実際は2.5倍(理論上はほぼ3倍)の間隔を作ることができる。2つの対物レンズ(イメージファイバー)間の距離、すなわちカメラ間距離を変えることにより、被写体までの距離を変えて、注視点を変化させることができる。 On the other hand, when the rod 8 is rotated counterclockwise, the guides 20 and 22 move in a direction away from each other on the rod 8, the adjuster 4 is deformed flat, and the joint 27 is recessed, so that the distance between the joints 27 and 27 is reduced. . For this reason, the distance of the image capture means (camera) which the objective lens 2 couple | bonded with the image fiber 1 makes becomes short. FIG. 5 is a schematic diagram showing a state in which the distance between the cameras is maximized. As can be understood from the figure, the distance between the objective lenses (image fibers) when the adjuster is closed is actually An interval of 2.5 times (theoretically almost 3 times) can be created. By changing the distance between the two objective lenses (image fibers), that is, the distance between the cameras, it is possible to change the distance to the subject and change the gazing point.

図2の実施例では、観察者はライドガイド60で導光された照明光により照明された被写体をある注視点の下に観察している。ここで、撮影したい被写体への注視点を変更したいときは、ロッドを回し、関節27、27を外方向に突出させ、被覆材31をひろげ、カメラ間距離を大きくする。注視点を近位に設定するときは、関節27、27の押し出しを低下させるようにロッドを回せばよい。   In the embodiment of FIG. 2, the observer observes the subject illuminated by the illumination light guided by the ride guide 60 under a certain gazing point. Here, when it is desired to change the gazing point on the subject to be photographed, the rod is turned, the joints 27 and 27 are projected outward, the covering material 31 is expanded, and the distance between the cameras is increased. When setting the gaze point proximally, the rod may be turned so as to reduce the push-out of the joints 27 and 27.

<第2の実施形態>
図6は別の調整器70を使用して、輻輳角を変更する実施例を示す。先ず、図6が示すように、調整器70は5辺(71〜75)から成り、底辺71が固定の枠体である。この枠体は5つの関節で、拡張、収縮自在に組み立てられている。辺71が固定で、辺72と辺73、辺74と辺75が関節27を作る。辺73と辺75が関節29を作る。関節27は浮動(非固定)である。関節29には内側にネジ溝が切られたガイド22が、関節29に自由に取り付けられている。ガイド22には先端にネジが切られた操作ロッド8が螺合されている。辺72と辺74には、辺72と辺74には、対物レンズ2とイメージファイバ1が固定され、辺72、74の傾き角度でそれらの光軸が決定される。この2つの光軸の交わりが輻輳角をつくる。固定長の辺71はストローク(カメラ間距離)を固定する。
<Second Embodiment>
FIG. 6 illustrates an embodiment in which another adjuster 70 is used to change the convergence angle. First, as shown in FIG. 6, the adjuster 70 is composed of five sides (71 to 75), and the base 71 is a fixed frame. This frame is assembled with five joints so that it can expand and contract. Side 71 is fixed, side 72 and side 73, side 74 and side 75 form joint 27. Side 73 and side 75 make up joint 29. The joint 27 is floating (unfixed). A guide 22, which is internally threaded, is freely attached to the joint 29. An operating rod 8 having a threaded end is screwed into the guide 22. The objective lens 2 and the image fiber 1 are fixed to the sides 72 and 74, and the optical axes thereof are determined by the inclination angles of the sides 72 and 74. The intersection of these two optical axes creates a convergence angle. The fixed length side 71 fixes the stroke (inter-camera distance).

図6の例では、ナット80を回し、術者がロッドを例えば、右回転を伝えると、ロッド8によりガイド22は関節29を左に移動させるので、枠体は内側につぶれ、関節27を外方向に押し出す。この押し出しで、被覆材31イメージファイバ1は関節27を中心に変形し、角度がつく。したがって、辺72、74の交わり角度は大きくなり、撮像系の輻輳角を大きくする。   In the example of FIG. 6, when the operator turns the rod 80 and transmits the rod to the right, for example, the guide 22 moves the joint 29 to the left by the rod 8, the frame collapses inward and the joint 27 is removed. Extrude in the direction. By this extrusion, the covering material 31 image fiber 1 is deformed around the joint 27 and is angled. Therefore, the intersection angle between the sides 72 and 74 is increased, and the convergence angle of the imaging system is increased.

一方、ロッドを逆に回転させると、ガイド22はロッド8上を右に移動し、関節27の外方向への膨張を縮め、辺72、74の作る角度を小さくする。この結果、辺72、74の交わり角で決まる撮像系の輻輳角は小さくなる。このように、ロッドの操作で、術者の希望する立体感をもつ、立体画像の撮影と表示ができる。   On the other hand, when the rod is rotated in the reverse direction, the guide 22 moves to the right on the rod 8 to reduce the outward expansion of the joint 27 and reduce the angle formed by the sides 72 and 74. As a result, the convergence angle of the imaging system determined by the intersection angle of the sides 72 and 74 is reduced. In this way, by operating the rod, it is possible to capture and display a stereoscopic image having the stereoscopic effect desired by the operator.

図6の例では、ロッド8を回して、関節27、27の突出の度合いを変え、辺72、74の傾きを変更する。こうすれば、辺72、74の傾きに依存する内視鏡の輻輳角は自在に制御できるので、容易に立体感を変更できる。また、立体視できる画領域を変更できる。具体的に言えば、近位の観察対象を立体視しようとするときは、関節27、27を大きく突出させれば、輻輳角θは大きくなり、近位を立体的に観察するのに適した輻輳角となる。遠方を観察する場合は調整器をへん平に収縮させる。   In the example of FIG. 6, the rod 8 is rotated to change the degree of protrusion of the joints 27 and 27 and change the inclination of the sides 72 and 74. In this way, the angle of convergence of the endoscope depending on the inclination of the sides 72 and 74 can be freely controlled, so that the stereoscopic effect can be easily changed. In addition, the image area that can be stereoscopically viewed can be changed. Specifically, when the proximal observation target is to be stereoscopically viewed, if the joints 27 and 27 are protruded greatly, the convergence angle θ is increased, which is suitable for observing the proximal three-dimensionally. It becomes the convergence angle. When observing from a distance, retract the adjuster flatly.

なお、調整を行う輻輳角θの範囲は0度〜60度であることが好ましく、最適値は10度〜20度である。これにより、観察対象の位置、内視鏡の位置そして観察者の輻輳角の個人差に関わらず最適な立体視が可能である。
<実施形態の作用>
本実施形態によれば、立体内視鏡で観察対象を観察中に観察者がロッドを操作すると、操作量に応じて調整器が動作する。調整器は撮像装置のカメラ間距離あるいは輻輳角を調整する。輻輳が一定のまま、カメラ間距離を制御すれば、撮像装置と被写体の距離が変わり、注視点を変化させることができる。また、輻輳角の調整により、立体視できる領域を変更できる。もちろん、術者が立体画像を見ながら操作を行うことで、術者の個人差に合わせた輻輳角の調整が可能である。画像伝送光学系のイメージファイバの特性である柔軟性を利用することにより内視鏡を軟性化できるので、この特性により観察部位の用途の拡大を図ることができる。
In addition, it is preferable that the range of the convergence angle (theta) which adjusts is 0 degree-60 degree | times, and an optimal value is 10 degree-20 degree | times. As a result, optimal stereoscopic viewing is possible regardless of individual differences in the position of the observation target, the position of the endoscope, and the convergence angle of the observer.
<Operation of Embodiment>
According to the present embodiment, when the observer operates the rod while observing the observation target with the stereoscopic endoscope, the adjuster operates according to the operation amount. The adjuster adjusts the inter-camera distance or the convergence angle of the imaging apparatus. If the distance between the cameras is controlled while the congestion is constant, the distance between the imaging device and the subject can be changed, and the gazing point can be changed. In addition, the region that can be stereoscopically viewed can be changed by adjusting the convergence angle. Of course, the operator can adjust the convergence angle according to the individual difference of the operator by performing an operation while viewing the stereoscopic image. Since the endoscope can be softened by utilizing the flexibility that is the characteristic of the image fiber of the image transmission optical system, the use of the observation site can be expanded by this characteristic.

また、本実施形態におけるイメージファイバの素材は、多成分ガラス,石英,プラスチック等の可とう性のある材料で形成される。本発明の動力は、外部から伝達される回転力である。   In addition, the material of the image fiber in the present embodiment is formed of a flexible material such as multicomponent glass, quartz, or plastic. The power of the present invention is a rotational force transmitted from the outside.

なお、本発明は軟性鏡、硬性鏡を問わず全ての内視鏡に利用できる。   The present invention can be used for all endoscopes regardless of whether they are soft or rigid.

本発明の第1の実施形態を示す立体内視鏡のシステム構成を示す図である。1 is a diagram showing a system configuration of a stereoscopic endoscope showing a first embodiment of the present invention. カメラ間の距離を調整する実施形態の要部の一部断面図である。It is a partial cross section figure of the principal part of embodiment which adjusts the distance between cameras. 図2の第1の実施形態の調整器がほぼ閉じられている状態を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing a state in which the regulator of the first embodiment of FIG. 2 is substantially closed. 立体内視鏡の先端部の主要な要素の配置構成を示す図である。It is a figure which shows the arrangement configuration of the main elements of the front-end | tip part of a stereoscopic endoscope. カメラ間の間隔の拡張に伴い、立体内視鏡の先端部が変形した状態を示す図である。It is a figure which shows the state which the front-end | tip part of the stereoscopic endoscope deform | transformed with the expansion of the space | interval between cameras. 輻輳角を調整する第2の実施形態の要部の一部断面図である。It is a partial cross section figure of the principal part of 2nd Embodiment which adjusts a convergence angle.

Claims (1)

画像を取り込む対物レンズを有する画像取込手段と、
前記画像取込手段と結合され、取り込んだ画像を画像処理部に伝える可撓性をもった2つのイメージファイバーを有する画像伝送系と、
拡張、収縮自在に構成され、前記画像伝送系を変形させて前記画像取込手段の輻輳角を変化させる光軸変更手段と、
前記光軸変更手段を操作する操作手段とを備え、
前記光軸変更手段は、遠方を観察する場合は収縮し、近位を観察する場合は突出するよう変形し、前記光軸変更手段が突出するように変形した際には、前記内視鏡の先端部の外径が拡張することを特徴とする内視鏡用の撮像装置。
An image capturing means having an objective lens for capturing an image;
An image transmission system having two image fibers which are combined with the image capturing means and have flexibility to transmit the captured image to the image processing unit;
An optical axis changing unit configured to be expandable and contractible, and to change the convergence angle of the image capturing unit by deforming the image transmission system;
Operating means for operating the optical axis changing means,
The optical axis changing means contracts when observing a distant place, deforms so as to protrude when observing proximally, and deforms so that the optical axis changing means protrudes. An imaging apparatus for an endoscope, characterized in that the outer diameter of the distal end portion is expanded .
JP2004271131A 2004-09-17 2004-09-17 Imaging device Expired - Fee Related JP3802912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271131A JP3802912B2 (en) 2004-09-17 2004-09-17 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271131A JP3802912B2 (en) 2004-09-17 2004-09-17 Imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22769794A Division JP3779342B2 (en) 1994-09-22 1994-09-22 Imaging device

Publications (2)

Publication Number Publication Date
JP2005034654A JP2005034654A (en) 2005-02-10
JP3802912B2 true JP3802912B2 (en) 2006-08-02

Family

ID=34214438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271131A Expired - Fee Related JP3802912B2 (en) 2004-09-17 2004-09-17 Imaging device

Country Status (1)

Country Link
JP (1) JP3802912B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857320A (en) * 2011-10-14 2014-06-11 奥林巴斯株式会社 Stereoscopic endoscope device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101437437B (en) 2006-05-09 2012-01-11 皇家飞利浦电子股份有限公司 Imaging system for three-dimensional imaging of the interior of an object
WO2011023339A1 (en) * 2009-08-27 2011-03-03 Naviswiss Ag Endoscope and method for use thereof
DE112010006052T5 (en) 2010-12-08 2013-10-10 Industrial Technology Research Institute Method for generating stereoscopic views of monoscopic endoscopic images and systems using them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857320A (en) * 2011-10-14 2014-06-11 奥林巴斯株式会社 Stereoscopic endoscope device
CN103857320B (en) * 2011-10-14 2017-05-17 奥林巴斯株式会社 Stereoscopic endoscope device

Also Published As

Publication number Publication date
JP2005034654A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US6139490A (en) Stereoscopic endoscope with virtual reality viewing
JP3580869B2 (en) Stereoscopic endoscope
CA2671100C (en) Solid state variable direction of view endoscope
US8771177B2 (en) Wide angle flexible endoscope
JP6306580B2 (en) Variable 3D adapter assembly for cameras
JP3540375B2 (en) Observation and / or imaging device with an endoscope connected first and method of operating the same
US8992423B2 (en) Solid state variable direction of view endoscope
KR100556232B1 (en) Flexible dual endoscopy for laproscope
US9398840B2 (en) Endoscope with variable direction of view
JP6553130B2 (en) Stereo video endoscope optical system and method for operating stereo video endoscope and stereo video endoscope optical system
US10092169B2 (en) Solid state variable direction of view endoscope
JP6253857B1 (en) Stereoscopic endoscope and stereoscopic endoscope system
KR101874778B1 (en) Medical-use microscope system for supporting continuous zoom and continuous magnifying rate transition based on three dimensional image
JP3802912B2 (en) Imaging device
JP4814201B2 (en) Endoscope device and endoscope camera device
JP3779342B2 (en) Imaging device
JP2002085330A (en) Stereoscopic endoscope device
JPH09248276A (en) Sight line variable hard mirror device
JPH06160731A (en) Stereoscopic endoscope device
JP3554398B2 (en) Stereoscopic adapter for endoscope
EP2617349B1 (en) Wide angle flexible endoscope
JP3587890B2 (en) Imaging device
WO2021176717A1 (en) Endoscope device, processor for endoscopic image, and method for generating endoscopic image
WO2021152909A1 (en) Adapter for rigid endoscope
JP3315167B2 (en) Stereoscopic endoscope

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees