JP3802685B2 - Magnetic steel sheet for magnetic shielding with excellent magnetic shielding performance and corrosion resistance - Google Patents
Magnetic steel sheet for magnetic shielding with excellent magnetic shielding performance and corrosion resistance Download PDFInfo
- Publication number
- JP3802685B2 JP3802685B2 JP21939098A JP21939098A JP3802685B2 JP 3802685 B2 JP3802685 B2 JP 3802685B2 JP 21939098 A JP21939098 A JP 21939098A JP 21939098 A JP21939098 A JP 21939098A JP 3802685 B2 JP3802685 B2 JP 3802685B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- steel sheet
- film
- corrosion resistance
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、磁気シールド性能に優れ、かつ、建築材料が一般的にさらされる腐食環境下で優れた耐食性を有する磁気シールド性能に優れた磁気シールド用鋼板に関するものである。
【0002】
【従来の技術】
NMRやリニアモーターカーにおける直流強磁場や、各種交通機関、建築鉄骨や鋼板、高圧線、送配電設備などからの都市磁気雑音(直流、変動、交流磁場)が精密機器や人体に与える影響が問題となっている。このような磁場の影響を防止するために、強磁性体を用いた磁気シールド技術が用いられる。これは、透磁率の高い材料、即ち、電磁鋼板や純鉄系材料、パーマロイなどを用いて、磁場の発生源や弱磁場要求のある空間を囲い、磁束を磁性体内に集中させ、弱磁場が要求される空間への磁束の侵入を防ぐものである。
【0003】
従来、磁場が問題視されてきたのはNMRなど屋内の装置であり、磁場の影響を受ける空間も制限されていたため、シールド技術は屋内に用いられる事が多かった。しかしながら近年、前述したような都市磁気雑音の問題が大きく取りざたされる様になってきている。都市磁気雑音の特徴は磁場の発生源が大規模で特定し難く、弱磁場が要求される空間も広大であることである。このため、磁気シールドは屋内だけでなく、屋外に配置するケースが増加してきている。
【0004】
一般に強磁性体を用いた磁気シールドでは、高いシールド性能を持ちかつ安価である電磁鋼板が用いられることが多い。シールド性能は透磁率が高いほど良好になるが、電磁鋼板には、板面内の透磁率が均一な無方向性電磁鋼板と、圧延方向の透磁率が良好な方向性電磁鋼板がある。対象の磁場の方向が変化する場合は無方向性電磁鋼板が、方向が変化しない場合は方向性電磁鋼板を用いることができる。これら電磁鋼板の表面には、モーターやトランスの鉄心用途を前提として、皮膜が形成されている。これらの皮膜は、鋼板間の絶縁性確保や、方向性電磁鋼板の場合には鋼板への張力付与を目的としていて、防錆能は十分に備えていない。また、これら皮膜上から、溶融亜鉛メッキなどの、一般的に建材に用いられている防錆処理を施すことは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、磁気シールド性に優れ、かつ、建築材料が一般的にさらされる腐食環境下でも優れた耐食性を有する磁気シールド用材料を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは先に述べた従来の問題点を解決すべく鋭意検討した結果、シールド性能に優れ、屋外使用に十分耐えうる磁気シールド材を発明した。本発明の要点は以下の通りである。
(1)圧延方向に直流磁場80A/mを印加した場合の圧延方向の磁束密度が1.2T以上、かつ仕上焼鈍後に表面に形成される皮膜の層間抵抗が200Ωcm2 /枚以下である電磁鋼板であって、前記皮膜の上に、さらに亜鉛を主成分としてクロム、ニッケル、コバルト、鉄、モリブデン、アルミニウム、マグネシウムのいずれかを合計で、0〜60%含む皮膜を5〜100g/m2 有することを特徴とする磁気シールド性能と耐食性に優れた磁気シールド用電磁鋼板。
(2)方向性電磁鋼板であり、その製造工程において、仕上焼鈍後に鋼板表面に生成されるフォルステライト皮膜量が0.5g/m2 以下であることを特徴とする前記(1)に記載の磁気シールド用電磁鋼板にある。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。
まず、シールド性能と材料の磁気特性について述べる。外部磁場Hoによって磁気シールド材が磁束密度Baに励磁されたとすると、シールド体の内側に漏洩する磁場は、用いている材料の磁化曲線上で材料をBaに励磁する磁場Hiに等しくなる。このことは、シールド後の磁場の目標を例えばHiと固定したとき、必要なシールド材料の厚さや重量は、印加磁場Hiに対する磁束密度であるBaの大きさが大きいほど小さくなる事を示している。本発明では、優れた磁気シールド性を有し、シールド体の重量増加やコスト増加を抑えるため、材料は、圧延方向に直流磁場80A/mを印加した場合の圧延方向の磁束密度が1.2T以上でなければならない。
【0008】
磁束密度が1.2T以下では、同等のシールド性能を得るのに必要なシールド体の重量が、1.2T以上の場合と比べて急激に増えるからである。重量の増加は、シールドを施工できる箇所が限られたり、設置箇所の骨組み強化が必要になる他、コストの上昇に繋がる。
次に防錆処理を施す前の鋼板の表面状態について説明する。無方向性電磁鋼板や方向性電磁鋼板の表面には、鋼板間の絶縁性確保のために、無機質あるいは半有機質の皮膜が形成されている。この皮膜だけでは、耐食性が十分ではないので、更に防錆処理が必要となる。
【0009】
しかし、先に述べたように、これらの皮膜上に、一般的に建材に用いられている防錆処理を施すことは困難であった。この様な鋼板に防錆処理を施す方法を鋭意検討した結果、皮膜の層間抵抗を200Ωcm2 /枚以下にする事により、防錆能を持つ皮膜を効率よく形成できることを突き止めた。層間抵抗が200Ωcm2 /枚以上では、防錆のための皮膜が形成されなかった。また、地鉄と皮膜の電気伝導度を向上し、良好な犠牲防食効果を得るため、層間抵抗を200Ωcm2 /枚以下にする事が好ましい。
【0010】
方向性電磁鋼板の場合、仕上焼鈍過程で生成するフォルステライト(Mg2 SiO4 )質一次皮膜と、焼き付け処理し生成するリン酸塩系の二次皮膜が鋼板表面に形成されている。この場合も、皮膜の層間抵抗を200Ωcm2 /枚以下にする事により、防錆能を持つ皮膜を形成できることには変わりがない。更にいえば、フォルステライト一次皮膜の皮膜量を0.5g/m2 以下とする事により、層間抵抗を低く抑えることができ、防錆能を持つ皮膜を効率よく形成することができる。
【0011】
防錆皮膜は鉄を犠牲防食する一般的な皮膜であれば特に限定するものではないが、塩水噴霧促進試験で120時間赤錆が出ない防錆能を有する皮膜を付与する必要がある。120時間以内に赤錆を生じる皮膜であると、屋外使用環境で数ヵ月で錆を生じ、外観の劣化を引き起こすのみならず極端な場合には透磁率が低下し、本来の目的である磁気シールド性能を発揮しなくなる。亜鉛を主成分として、クロム、ニッケル、コバルト、鉄、モリブデンを0〜60%含む皮膜を5〜100g/m2 形成するとこの条件を十分満足する。皮膜を付与する方法に関しても特に限定するものではなく、電気めっき・溶融めっきはもとより塗料中に亜鉛粉末を添加し、その犠牲防食性を利用する技術を用いても良い。
【0012】
【実施例】
圧延方向に直流磁場80A/mを印加した場合の圧延方向の磁束密度が1.65Tである方向性電磁鋼板(板厚0.35mm)と、1.2Tの無方向性電磁鋼板(0.35mm)を455mm×455mmの大きさに切断し、板の圧延方向を交叉させて重ねることによりシールドパネルとした。板を偶数枚で枚数を変化させ厚さの異なるパネルを用意した。同じ厚みのパネル6面で立方体のシールドボックスに組み上げ、シールドボックス外部からヘルムホルツコイルで磁場を印加し、ボックス内部中心に磁場センサを置き内部の磁場を測定した。各辺は無方向性電磁鋼板で目地を覆った。磁場はシールドボックスのない状態のボックス中心位置で80A/mとなるように印加した。
【0013】
パネルの厚みを変化させた場合の、シールド体全体の重量と内部の漏洩磁場の変化を表1に示す。同表には、比較例として、直流磁場80A/mを印加した場合の圧延方向の磁束密度が1.0Tと0.72Tの無方向性電磁鋼板を用いたときの結果も示す。
本発明例1,2では、シールド体総重量が10kg以下で内部漏洩磁場を10A/mを達成できるのに対して、比較例3、4では、同等のシールド性能を得るのにそれぞれ総重量25kg、30kgが必要である。
このように構造体として軽量でかつ磁気シールド性能に優れたシールド体を得るためには、圧延方向の磁束密度が1.2T以上の電磁鋼板を用いる必要がある。
【0014】
【表1】
【0015】
次にシールド体の防錆能を評価するために各種表面処理を施し、皮膜の密着性並びに耐食性を評価した。表面処理に際しては鋼板表面の影響を調査するため焼鈍条件等の鋼板の製造方法並びに鋼板製造後の後処理法を種々変化させ、生成するフォルステライト皮膜量と皮膜の層間抵抗を制御した。
表面処理方法としては電気めっき、溶融めっき並びに特開平7−48678号公報に開示されている水溶性クロム酸化合物と亜鉛粉末とを含有する焼付型皮膜を用いた。付与する皮膜の組成、付着量を変化させ皮膜の密着性並びに耐食性を評価した。尚、皮膜密着性はOT曲げ後のセロハンテープによる剥離状況で、耐食性はクロスカットを施し塩水噴霧試験(JIS Z−2371)120時間後の赤錆発生有無で評価した。
【0016】
【表2】
【0017】
表2から明らかなように製造工程において表面に形成される皮膜の層間抵抗並びにフォルステライト皮膜量を適正範囲に調整したのち、適正組成、目付量の表面処理を施した実施例1〜6では密着性が十分な防錆皮膜の付与が可能で実用に耐えうる耐食性が確保出来ている。
一方、鋼板の相関抵抗並びにフォルステライト皮膜を適正範囲に制御しなかった比較例7では防錆皮膜の密着性の確保が困難で、結果として十分な耐食性が得られていない。また鋼板の表面状態を適正範囲に制御しても、付与する防錆皮膜の量が適正範囲に入らなかった比較例8は防錆皮膜の密着性は確保出来ても耐食性は不十分なシールド体しか得られないことが分かる。
【0018】
【発明の効果】
以上述べたように、本発明により磁気シールド性に優れ、かつ、建築材料が一般的にさらされる腐食環境下でも優れた耐食性を有する磁気シールド用材料を提供することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel sheet for magnetic shielding which is excellent in magnetic shielding performance and excellent in magnetic shielding performance having excellent corrosion resistance in a corrosive environment to which building materials are generally exposed.
[0002]
[Prior art]
The problem is the influence of high-frequency magnetic fields in NMR and linear motor cars, and urban magnetic noise (direct current, fluctuation, alternating current magnetic field) from various transportation facilities, construction steel frames and steel plates, high-voltage lines, power transmission and distribution facilities, etc. on precision instruments and human bodies. It has become. In order to prevent the influence of such a magnetic field, a magnetic shield technique using a ferromagnetic material is used. This is because high magnetic permeability materials, such as magnetic steel sheets, pure iron materials, and permalloy, are used to surround magnetic field sources and spaces with weak magnetic field requirements, and concentrate magnetic flux in the magnetic body. It prevents magnetic flux from entering the required space.
[0003]
Conventionally, the magnetic field has been regarded as a problem for indoor devices such as NMR, and since the space affected by the magnetic field is limited, the shield technology is often used indoors. However, in recent years, the problem of urban magnetic noise as described above has been greatly addressed. The characteristics of urban magnetic noise are that the source of the magnetic field is large and difficult to identify, and the space where a weak magnetic field is required is vast. For this reason, the case where the magnetic shield is arranged not only indoors but also outdoors is increasing.
[0004]
In general, a magnetic shield using a ferromagnetic material often uses an electromagnetic steel plate having high shielding performance and being inexpensive. The shielding performance becomes better as the magnetic permeability is higher. However, the electromagnetic steel sheet includes a non-directional electromagnetic steel sheet having a uniform magnetic permeability in the plate surface and a directional electromagnetic steel sheet having a good permeability in the rolling direction. A non-oriented electrical steel sheet can be used when the direction of the target magnetic field changes, and a directional electrical steel sheet can be used when the direction does not change. A film is formed on the surface of these electromagnetic steel sheets on the assumption that the iron core is used in motors and transformers. These coatings are intended to ensure insulation between the steel plates and to impart tension to the steel plates in the case of grain-oriented electrical steel plates, and do not have sufficient anti-rust performance. Further, it has been difficult to apply a rust-proofing treatment generally used for building materials such as hot dip galvanizing from these films.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a magnetic shielding material having excellent magnetic shielding properties and excellent corrosion resistance even in a corrosive environment to which a building material is generally exposed.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the conventional problems described above, the present inventors have invented a magnetic shield material that is excellent in shielding performance and can withstand outdoor use. The main points of the present invention are as follows.
(1) A magnetic steel sheet having a magnetic flux density in the rolling direction of 1.2 T or more when a DC magnetic field of 80 A / m is applied in the rolling direction, and an interlayer resistance of a film formed on the surface after finish annealing is 200 Ωcm 2 / sheet or less. Further, a coating containing 0 to 60% in total of any one of chromium, nickel, cobalt, iron, molybdenum, aluminum, and magnesium containing zinc as a main component on the coating is 5 to 100 g / m 2. A magnetic shielding electrical steel sheet with excellent magnetic shielding performance and corrosion resistance.
(2) The grain-oriented electrical steel sheet, wherein in the production process, the amount of forsterite film produced on the steel sheet surface after finish annealing is 0.5 g / m 2 or less. It is in electrical steel sheets for magnetic shielding.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
First, shield performance and magnetic properties of materials will be described. If the magnetic shield material is excited to the magnetic flux density Ba by the external magnetic field Ho, the magnetic field leaking inside the shield body is equal to the magnetic field Hi for exciting the material to Ba on the magnetization curve of the material used. This indicates that when the target of the magnetic field after shielding is fixed to, for example, Hi, the necessary thickness and weight of the shielding material decrease as the magnitude of Ba, which is the magnetic flux density with respect to the applied magnetic field Hi, increases. . In the present invention, the material has an excellent magnetic shielding property, and the material has a magnetic flux density in the rolling direction of 1.2 T when a DC magnetic field of 80 A / m is applied in the rolling direction in order to suppress an increase in weight and cost of the shield body. It must be more than that.
[0008]
This is because, when the magnetic flux density is 1.2 T or less, the weight of the shield body necessary to obtain equivalent shielding performance increases rapidly compared to the case of 1.2 T or more. The increase in weight leads to an increase in cost as well as a limited number of places where the shield can be constructed, and the need to strengthen the framework of the installation location.
Next, the surface state of the steel sheet before the rust prevention treatment will be described. An inorganic or semi-organic film is formed on the surface of the non-oriented electrical steel sheet or grain-oriented electrical steel sheet in order to ensure insulation between the steel sheets. Since this film alone does not provide sufficient corrosion resistance, further rust prevention treatment is required.
[0009]
However, as described above, it has been difficult to apply rust prevention treatment generally used for building materials on these films. As a result of intensive studies on a method for subjecting such a steel sheet to a rust prevention treatment, it was found that a film having a rust prevention ability can be efficiently formed by setting the interlayer resistance of the film to 200 Ωcm 2 / sheet or less. When the interlayer resistance was 200 Ωcm 2 / sheet or more, a film for rust prevention was not formed. Further, in order to improve the electric conductivity between the base iron and the film and to obtain a good sacrificial anticorrosive effect, the interlayer resistance is preferably set to 200 Ωcm 2 / sheet or less.
[0010]
In the case of a grain-oriented electrical steel sheet, a forsterite (Mg 2 SiO 4 ) -based primary film generated in the finish annealing process and a phosphate-based secondary film generated by baking are formed on the steel sheet surface. In this case as well, it is still possible to form a film having anti-rust ability by setting the interlayer resistance of the film to 200 Ωcm 2 / sheet or less. More specifically, by setting the amount of the forsterite primary film to 0.5 g / m 2 or less, the interlayer resistance can be kept low, and a film having rust prevention ability can be efficiently formed.
[0011]
The rust preventive film is not particularly limited as long as it is a general film that sacrifices and protects iron, but it is necessary to provide a film having a rust preventive ability that does not produce red rust for 120 hours in the salt spray acceleration test. If it is a film that produces red rust within 120 hours, it will rust in a few months in an outdoor environment, causing deterioration of the appearance as well as lowering the magnetic permeability in extreme cases, which is the original magnetic shielding performance Will not work. This condition is sufficiently satisfied when a film containing zinc as a main component and containing 0 to 60% of chromium, nickel, cobalt, iron and molybdenum is formed at 5 to 100 g / m 2 . The method for applying the film is not particularly limited, and a technique of adding zinc powder to the paint as well as electroplating / hot dip plating and utilizing the sacrificial anticorrosive property may be used.
[0012]
【Example】
A directional electrical steel sheet (thickness 0.35 mm) having a magnetic flux density in the rolling direction of 1.65 T when a DC magnetic field of 80 A / m is applied in the rolling direction, and a 1.2 T non-oriented electrical steel sheet (0.35 mm). ) Was cut into a size of 455 mm × 455 mm, and a shield panel was obtained by crossing the rolling direction of the plates and overlapping them. Panels with different thicknesses were prepared by changing the number of even plates. A six-panel panel with the same thickness was assembled into a cubic shield box, a magnetic field was applied from outside the shield box with a Helmholtz coil, and a magnetic field sensor was placed at the center of the box to measure the internal magnetic field. Each side was covered with a non-oriented electrical steel sheet. The magnetic field was applied at 80 A / m at the box center position without the shield box.
[0013]
Table 1 shows changes in the weight of the entire shield body and the internal leakage magnetic field when the thickness of the panel is changed. As a comparative example, the table also shows the results when non-oriented electrical steel sheets having a magnetic flux density in the rolling direction of 1.0T and 0.72T when a DC magnetic field of 80 A / m is applied.
In the inventive examples 1 and 2, the total weight of the shield body is 10 kg or less and the internal leakage magnetic field can be 10 A / m, whereas in the comparative examples 3 and 4, the total weight is 25 kg to obtain the same shielding performance. , 30 kg is required.
Thus, in order to obtain a shield body that is lightweight as a structure and excellent in magnetic shield performance, it is necessary to use an electrical steel sheet having a magnetic flux density in the rolling direction of 1.2 T or more.
[0014]
[Table 1]
[0015]
Next, various surface treatments were performed to evaluate the rust prevention ability of the shield body, and the adhesion and corrosion resistance of the film were evaluated. During the surface treatment, in order to investigate the influence of the steel sheet surface, the steel plate production method under annealing conditions and the post-treatment method after steel plate production were variously changed to control the amount of forsterite film produced and the interlayer resistance of the film.
As the surface treatment method, electroplating, hot dipping, and a baking type coating containing a water-soluble chromic acid compound and zinc powder disclosed in JP-A-7-48678 were used. The composition and adhesion amount of the coating to be applied were changed to evaluate the adhesion and corrosion resistance of the coating. The film adhesion was evaluated by peeling with cellophane tape after OT bending, and the corrosion resistance was evaluated by the presence or absence of red rust after 120 hours of salt spray test (JIS Z-2371).
[0016]
[Table 2]
[0017]
As apparent from Table 2, after adjusting the interlaminar resistance and forsterite film amount of the film formed on the surface in the manufacturing process to an appropriate range, in Examples 1 to 6 in which surface treatment was performed with an appropriate composition and basis weight, adhesion was achieved. Corrosion resistance that can withstand practical use can be secured by applying a rust-proof film having sufficient properties.
On the other hand, in Comparative Example 7 in which the correlation resistance of the steel sheet and the forsterite film were not controlled within the proper ranges, it was difficult to ensure the adhesion of the rust preventive film, and as a result, sufficient corrosion resistance was not obtained. Moreover, even if the surface state of the steel sheet is controlled within an appropriate range, the amount of the rust preventive film to be applied does not fall within the proper range. In Comparative Example 8, the adhesion of the rust preventive film can be secured, but the shield body has insufficient corrosion resistance. You can only get it.
[0018]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a magnetic shielding material having excellent magnetic shielding properties and excellent corrosion resistance even in a corrosive environment to which building materials are generally exposed.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21939098A JP3802685B2 (en) | 1998-08-03 | 1998-08-03 | Magnetic steel sheet for magnetic shielding with excellent magnetic shielding performance and corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21939098A JP3802685B2 (en) | 1998-08-03 | 1998-08-03 | Magnetic steel sheet for magnetic shielding with excellent magnetic shielding performance and corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000059086A JP2000059086A (en) | 2000-02-25 |
JP3802685B2 true JP3802685B2 (en) | 2006-07-26 |
Family
ID=16734675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21939098A Expired - Fee Related JP3802685B2 (en) | 1998-08-03 | 1998-08-03 | Magnetic steel sheet for magnetic shielding with excellent magnetic shielding performance and corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3802685B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140060941A (en) * | 2012-11-13 | 2014-05-21 | 엘에스전선 주식회사 | Shield cable |
-
1998
- 1998-08-03 JP JP21939098A patent/JP3802685B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000059086A (en) | 2000-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2182091B1 (en) | Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film | |
JP6835208B2 (en) | Electrical steel sheet | |
US10669432B2 (en) | Electrical steel sheet and method of manufacturing the same | |
CN107250431B (en) | Electromagnetic steel sheet and method for producing electromagnetic steel sheet | |
JP2009041074A (en) | Insulation-film treatment liquid free from chromium for grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet provided with insulation film | |
EP3255177B1 (en) | Electrical steel sheet | |
JP6682888B2 (en) | Insulating coating agent for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for treating grain-oriented electrical steel sheet | |
JP2005240079A (en) | Grain oriented silicon steel sheet low in iron loss deterioration ratio | |
JP6558325B2 (en) | Treatment liquid for forming chromium-free tension coating, grain-oriented electrical steel sheet with chromium-free tension film, method for producing grain-oriented electrical steel sheet with chromium-free tension film, and core for transformer | |
US3649372A (en) | Reagent for forming an insulating coating on the surface of electrical steel sheets | |
JP3802685B2 (en) | Magnetic steel sheet for magnetic shielding with excellent magnetic shielding performance and corrosion resistance | |
JP2006503189A5 (en) | Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same | |
JP2006503189A (en) | Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same | |
KR100743027B1 (en) | Idle roller for coating insulated film | |
WO2020138069A1 (en) | Grain-oriented electrical steel sheet and method for manufacturing same | |
JP2000091113A (en) | Steel plate for magnetic shield | |
JP4122927B2 (en) | Oriented electrical steel sheet for magnetic shield with excellent coating adhesion and corrosion resistance | |
JP6805762B2 (en) | Non-oriented electrical steel sheet | |
JP7222450B1 (en) | Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating | |
WO2023139847A1 (en) | Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film | |
JP2007056303A (en) | Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic | |
TW202436633A (en) | Electromagnetic steel plate with insulating coating | |
JPH06145999A (en) | Non-oriented silicon steel sheet having extremely good film characteristic and its production | |
JP2020125537A (en) | Treatment agent for forming chromium free insulating coating, grain oriented silicon steel sheet having insulating coating and method for manufacturing the same | |
JPH0645903B2 (en) | Steel plate for printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060428 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |