JP3802659B2 - Power cable - Google Patents
Power cable Download PDFInfo
- Publication number
- JP3802659B2 JP3802659B2 JP23316197A JP23316197A JP3802659B2 JP 3802659 B2 JP3802659 B2 JP 3802659B2 JP 23316197 A JP23316197 A JP 23316197A JP 23316197 A JP23316197 A JP 23316197A JP 3802659 B2 JP3802659 B2 JP 3802659B2
- Authority
- JP
- Japan
- Prior art keywords
- conductors
- phase
- power cable
- magnetic field
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Insulated Conductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、周辺の磁界を低減させた電力ケーブルに関するものである。
【0002】
【従来の技術】
近年、電力ケーブルの周辺にできる磁界が問題視されておりその低減が要望されている。この磁界の特徴としては、50Hzまたは60Hzという非常に低い周波数であるため、遮蔽が難しいという点である。
【0003】
従来、3相交流の電力を送電するのに用いられる電力ケーブルとしては、図6に示すように、3相の各導体a、b、cを正三角形に配置したものや、図7に示すように3相の各導体a、b、cを同軸に配置したものや、図8に示すように、3相の導体a、b、cとしてそれぞれ2本の導体を使用し、各導体を半径rの同一円周上に相毎に交互にかつ等間隔に配置したものや、図9に示すように、3相の導体a、b、cとしてそれぞれ3本の導体を使用し、中心に3本の導体の内の各1本の導体を正三角形に配置し、かつ半径rの同一円周上に残りの各2本の導体を交互にしかも等間隔に配置したものや、図10に示すように3相の導体a、b、cとしてそれぞれ4本の導体を使用し、中心に4本の導体の内の各1本の導体を正三角形に配置し、かつ半径rの同一円周上に残りの各3本の導体を交互にしかも等間隔に配置したものが知られている。
【0004】
上記図6に示した電力ケーブルの周辺の磁界を計算すると次のようになる。すなわち図11に示すように、3相の各導体a、b、cから距離ra、rb、rc離れたP点の磁界の強さは次のようになる。ただし導体は直線状で無限長と仮定し、2次元で考える。またここで考える電流および磁界は交流なので、時間の関数として扱う。また各導体a、b、cには電流Ia(t)、Ib(t)、Ic(t)が流れているものとする。
Ha(t)=Ia(t)/2πra
Hb(t)=Ib(t)/2πrb
Hc(t)=Ic(t)/2πrc
【0005】
これらの合成値H(t)の一例として、Ha(t)が最大となった瞬間t1における磁界のベクトルを図示した。Hb(t1)およびHc(t1)は、Ha(t1)とほぼ逆方向を向き、大きさは最大振幅の1/2となっている。これはIa(t)、Ib(t)、Ic(t)の位相が120°ずつずれているためである。
【0006】
図12は上記の図7に示した電力ケーブルの周辺の磁界を計算したものである。条件等は上記図11に示したものと同様である。この電力ケーブルにおいては、ra=rb=rcであり、かつIa(t)、Ib(t)、Ic(t)の位相が120°ずつずれているため合成値H(t)は必ず零になる。このように、ra=rb=rcとすれば外部の磁界を零にすることができる。
【0007】
【発明が解決しようとする課題】
上記のように図6に示した電力ケーブルは、周辺の磁界が大きくなるという問題があり、また図7に示した電力ケーブルは、周辺の磁界を零にできるが、同等の容量の正三角形配列の電力ケーブルよりもサイズが大きくなってしまうと共に高電圧の場合絶縁が難しいという問題があった。さらに図8〜図10に示した電力ケーブルは、正三角形配列の電力ケーブルより周辺の磁界を低減することができるが、未だ不十分であるという問題があった。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決した電力ケーブルを提供するものであり、その構成は、3相交流の電力ケーブルにおいて、3相のうちの1相を2本以上の導体を使用して中心に配置し、該1相を中心とした1または複数の同一円周上に、他の2相の導体を配置してなり、他の2相の導体はそれぞれ2本以上の導体を使用し、相毎に交互にしかも等間隔で配置したことを特徴とするものである。
【0009】
上記のように3相の内の1相の2本以上の導体を中心に配置し、他の2相の導体を同一円周上に交互に等間隔で配置すると、観測点の距離が離れれば、各相を構成する複数本の導体と観測点との距離が3相共にほぼ等しいと見做すことができるので、図7に示した同軸配置の電力ケーブルに近い構成となる。このために周辺の磁界を低減することができるものである。
【0010】
【発明の実施の形態】
以下、本発明を図を参照して詳細に説明する。
図1は本発明に係る電力ケーブルの一実施の形態を示す概略構成図である。この電力ケーブルは、1相の導体aを2本使用すると共に他の2相b、cの導体もそれぞれ2本使用し、1相の2本の導体aを中心に配置し、r(m)離れた同一円周上に、他の相b、cのそれぞれ2本の導体を交互にしかも等間隔に配置したものである。
【0011】
図2は本発明に係る電力ケーブルの他の実施の形態を示す概略構成図である。この電力ケーブルは、1相の導体aを3本使用すると共に他の2相b、cの導体もそれぞれ3本使用し、1相の3本の導体aを中心に配置し、r(m)離れた同一円周上に、他の相b、cのそれぞれ3本の導体を交互にしかも等間隔に配置したものである。
【0012】
図3は本発明に係る電力ケーブルの他の実施の形態を示す概略構成図である。この電力ケーブルは、1相の導体aを4本使用すると共に他の2相b、cの導体もそれぞれ4本使用し、1相の4本の導体aを中心に配置し、r(m)離れた同一円周上に、他の相b、cのそれぞれ4本の導体を交互にしかも等間隔に配置したものである。
【0013】
図4は本発明に係る電力ケーブルの他の実施の形態を示す概略構成図である。この電力ケーブルは、1相の導体aを6本使用すると共に他の2相b、cの導体もそれぞれ6本使用し、1相の6本の導体aを中心に配置し、r(m)離れた同一円周上に、他の相b、cのそれぞれ6本の導体を2本を組として交互にしかも等間隔に配置したものである。
【0014】
【実施例】
実施例1
図1に示した構造の電力ケーブルを製作した。すなわち1相の2本の導体aを中心に配置し、0.3(m)離れた同一円周上に、他の相b、cのそれぞれ2本の導体を交互にしかも等間隔に配置したものである。電流値は100A/相とし、1相を構成する2本の導体に均等に電流を分担させた。測定点は線路中心を起点として直角方向に1〜10mとした。
【0015】
実施例2
図2に示した構造の電力ケーブルを製作した。すなわち1相の3本の導体aを中心に配置し、0.3(m)離れた同一円周上に、他の相b、cのそれぞれ3本の導体を交互にしかも等間隔に配置したものである。電流値は100A/相とし、1相を構成する3本の導体に均等に電流を分担させた。測定点は線路中心を起点として直角方向に1〜10mとした。
【0016】
実施例3
図3に示した構造の電力ケーブルを製作した。すなわち1相の4本の導体aを中心に配置し、0.3(m)離れた同一円周上に、他の相b、cのそれぞれ4本の導体を交互にしかも等間隔に配置したものである。電流値は100A/相とし、1相を構成する3本の導体に均等に電流を分担させた。測定点は線路中心を起点として直角方向に1〜10mとした。
【0017】
比較例1
図6に示した構造の電力ケーブルを製作した。すなわち3相の各導体a、b、cを正三角形に配置したものである。電流値は100A/相とした。測定点は線路中心を起点として直角方向に1〜10mとした。
【0018】
比較例2
図8に示した構造の電力ケーブルを製作した。すなわち3相の導体a、b、cとしてそれぞれ2本の導体を使用し、各導体を同一円周上に相毎に交互にかつ等間隔に配置したものである。電流値は100A/相とし、1相を構成する2本の導体に均等に電流を分担させた。測定点は線路中心を起点として直角方向に1〜10mとした。
【0019】
比較例3
図9に示した構造の電力ケーブルを製作した。すなわち3相の導体a、b、cとしてそれぞれ3本の導体を使用し、中心に3本の導体の内の各1本の導体を正三角形に配置し、かつ同一円周上に残りの各2本の導体を交互にしかも等間隔に配置したものである。電流値は100A/相とし、1相を構成する2本の導体に均等に電流を分担させた。測定点は線路中心を起点として直角方向に1〜10mとした。
【0020】
比較例4
図10に示した構造の電力ケーブルを製作した。すなわち3相の導体a、b、cとしてそれぞれ4本の導体を使用し、中心に4本の導体の内の各1本の導体を正三角形に配置し、かつ同一円周上に残りの各3本の導体を交互にしかも等間隔に配置したものである。電流値は100A/相とし、1相を構成する2本の導体に均等に電流を分担させた。測定点は線路中心を起点として直角方向に1〜10mとした。
【0021】
測定結果を図5に示す。図5から明らかなように本発明に係る電力ケーブルは周辺の磁界が低減されており、距離が離れるに従って減衰が著しいことが分かる。また1相当たりの導体数を増加させると距離減衰も大きくなることが分かる。このように1相当たりの導体数を増加させると距離減衰が大きくなる理由は、各相を構成する複数本の導体と観測点との距離が3相共にほぼ等しくなるので、同軸配置の電力ケーブルに近い構成になるためでる。したがって1相当たりの導体数を増加させることが好ましいが、導体数が多くなるとケーブル構造が複雑となるので、導体数は2〜6本、特に2〜4本が好ましい。なお磁束密度測定時にバックグランドノイズが0.8mGあったので、特に実施例2および実施例3のものは約3m程度で略バックグラウンドノイズまで磁界が低減されているものである。
【0022】
【発明の効果】
上記のように本発明に係る電力ケーブルは、3相交流の電力ケーブルにおいて、3相のうちの1相を2本以上の導体を使用して中心に配置し、該1相を中心とした1または複数の同一円周上に、他の2相の導体を配置してなり、他の2相の導体はそれぞれ2本以上の導体を使用し、相毎に交互にしかも等間隔で配置したことを特徴とするものである。したがって、周辺の磁界を有効に低減することができる。
【図面の簡単な説明】
【図1】 本発明に係る電力ケーブルの一実施の形態を示す要部説明図。
【図2】 本発明の他の実施の形態を示す要部説明図。
【図3】 本発明の更に他の実施の形態を示す要部説明図。
【図4】 本発明の更に他の実施の形態を示す要部説明図。
【図5】 測定結果を示すグラフ。
【図6】 従来の電力ケーブルの実施の形態を示す要部説明図。
【図7】 従来の電力ケーブルの他の実施の形態を示す要部説明図。
【図8】 従来の電力ケーブルの他の実施の形態を示す要部説明図。
【図9】 従来の電力ケーブルの他の実施の形態を示す要部説明図。
【図10】 従来の電力ケーブルの他の実施の形態を示す要部説明図。
【図11】 従来の電力ケーブルの磁界の説明図。
【図12】 従来の電力ケーブルの磁界の説明図。
【符号の説明】
a、b、c 導体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power cable having a reduced peripheral magnetic field.
[0002]
[Prior art]
In recent years, a magnetic field generated around a power cable has been regarded as a problem, and reduction thereof has been demanded. A characteristic of this magnetic field is that it is difficult to shield because it has a very low frequency of 50 Hz or 60 Hz.
[0003]
Conventionally, as a power cable used to power the power of three-phase alternating current, as shown in FIG. 6, each conductor a three-phase, and those disposed b, and c in an equilateral triangle, as shown in FIG. 7 each conductor a three-phase, and those disposed b, and c coaxially, as shown in FIG. 8, the three-phase conductors a, b, using two conductors respectively as c, each conductor radius r Are arranged alternately on the same circumference for each phase and at equal intervals, and as shown in FIG. 9 , three conductors are used as the three-phase conductors a, b and c, respectively, and three at the center. of each one conductor of the conductor arranged in an equilateral triangle, and and those disposed remaining conductors of the two alternately Moreover equidistantly on the same circumference of the radius r, as shown in FIG. 10 4 conductors are used for each of the three-phase conductors a, b, and c, and each one of the four conductors is arranged in an equilateral triangle at the center. And those placed remaining conductors of the three equidistantly Moreover alternately on the same circumference of the radius r are known.
[0004]
The magnetic field around the power cable shown in FIG. 6 is calculated as follows. That is, as shown in FIG. 11 , the strength of the magnetic field at point P separated from the three-phase conductors a, b, c by the distances ra, rb, rc is as follows. However, the conductor is assumed to be linear and infinitely long, and is considered in two dimensions. Since the current and magnetic field considered here are alternating current, they are treated as a function of time. It is assumed that currents Ia (t), Ib (t), and Ic (t) flow through the conductors a, b, and c.
Ha (t) = Ia (t) / 2πra
Hb (t) = Ib (t) / 2πrb
Hc (t) = Ic (t) / 2πrc
[0005]
As an example of the combined value H (t), a magnetic field vector at the instant t1 when Ha (t) is maximized is illustrated. Hb (t1) and Hc (t1) are directed almost in the opposite direction to Ha (t1), and the magnitude is ½ of the maximum amplitude. This is because the phases of Ia (t), Ib (t), and Ic (t) are shifted by 120 °.
[0006]
Figure 12 is obtained by calculating the magnetic field around the power cable shown in Figure 7 above. Conditions are the same as those shown in FIG 11. In this power cable, since ra = rb = rc and the phases of Ia (t), Ib (t), and Ic (t) are shifted by 120 °, the combined value H (t) is always zero. . Thus, if ra = rb = rc, the external magnetic field can be made zero.
[0007]
[Problems to be solved by the invention]
As described above, the power cable shown in FIG. 6 has a problem that the magnetic field around it becomes large, and the power cable shown in FIG. 7 can make the peripheral magnetic field zero, but an equilateral triangular array having the same capacity. There is a problem that the size is larger than that of the power cable and insulation is difficult at a high voltage. Further, although the power cables shown in FIGS. 8 to 10 can reduce the magnetic field around the power cables in the equilateral triangle arrangement, there is a problem that the power cables are still insufficient.
[0008]
[Means for Solving the Problems]
The present invention provides a power cable that solves the above-described problems. The configuration of the power cable is a three-phase AC power cable in which one of the three phases is arranged at the center using two or more conductors. The other two-phase conductors are arranged on one or a plurality of the same circumference centering on the one phase, and the other two-phase conductors each use two or more conductors, It is characterized by being arranged alternately and at equal intervals.
[0009]
If two or more conductors of one phase of the three phases are arranged at the center as described above, and other two-phase conductors are alternately arranged on the same circumference at equal intervals, the distance between the observation points is increased. since it can be regarded as almost equal both 3-phase distance between the plurality of conductors constituting the respective phases and the observation point, a structure close to a power cable of the coaxial arrangement shown in FIG. For this reason, the peripheral magnetic field can be reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of a power cable according to the present invention. This power cable uses two one-phase conductors a and two other two-phase conductors b and c, and arranges the two one-phase conductors a at the center, r (m) Two conductors of each of the other phases b and c are alternately arranged at equal intervals on the same circumference.
[0011]
FIG. 2 is a schematic configuration diagram showing another embodiment of the power cable according to the present invention. This power cable uses three one-phase conductors a and three other two-phase b and c conductors, and arranges three one-phase conductors a at the center, r (m) Three conductors of each of the other phases b and c are alternately arranged at equal intervals on the same circumference.
[0012]
FIG. 3 is a schematic configuration diagram showing another embodiment of the power cable according to the present invention. This power cable uses four one-phase conductors a and four other two-phase b and c conductors, and is arranged around the four one-phase conductors a, r (m) Four conductors of each of the other phases b and c are alternately arranged at equal intervals on the same circumference apart.
[0013]
FIG. 4 is a schematic configuration diagram showing another embodiment of the power cable according to the present invention. This power cable uses six one-phase conductors a and six other two-phase b and c conductors, and arranges six one-phase conductors a at the center, r (m) Two conductors of each of the other phases b and c are alternately arranged at equal intervals on the same circumference apart from each other.
[0014]
【Example】
Example 1
A power cable having the structure shown in FIG. 1 was produced. That is, two conductors a of one phase are arranged at the center, and two conductors of other phases b and c are alternately arranged at equal intervals on the same circumference separated by 0.3 (m). Is. The current value was set to 100 A / phase, and the current was equally distributed to the two conductors constituting one phase. The measurement point was set to 1 to 10 m in the perpendicular direction starting from the line center.
[0015]
Example 2
A power cable having the structure shown in FIG. 2 was produced. That is, the three conductors a of one phase are arranged at the center, and the three conductors of the other phases b and c are alternately arranged at equal intervals on the same circumference separated by 0.3 (m). Is. The current value was 100 A / phase, and the current was equally distributed to the three conductors constituting one phase. The measurement point was set to 1 to 10 m in the perpendicular direction starting from the line center.
[0016]
Example 3
A power cable having the structure shown in FIG. 3 was produced. That is, four conductors a of one phase are arranged at the center, and four conductors of other phases b and c are alternately arranged at equal intervals on the same circumference separated by 0.3 (m). Is. The current value was 100 A / phase, and the current was equally distributed to the three conductors constituting one phase. The measurement point was set to 1 to 10 m in the perpendicular direction starting from the line center.
[0017]
Comparative Example 1
A power cable having the structure shown in FIG. 6 was produced. That is, the three-phase conductors a, b, and c are arranged in an equilateral triangle. The current value was 100 A / phase. The measurement point was set to 1 to 10 m in the perpendicular direction starting from the line center.
[0018]
Comparative Example 2
A power cable having the structure shown in FIG. 8 was produced. That is, two conductors are used as the three-phase conductors a, b, and c, respectively, and the conductors are alternately arranged at equal intervals for each phase on the same circumference. The current value was set to 100 A / phase, and the current was equally distributed to the two conductors constituting one phase. The measurement point was set to 1 to 10 m in the perpendicular direction starting from the line center.
[0019]
Comparative Example 3
A power cable having the structure shown in FIG. 9 was produced. That is, three conductors are used as the three-phase conductors a, b, and c, each of the three conductors is arranged in an equilateral triangle at the center, and each remaining conductor on the same circumference. Two conductors are alternately arranged at equal intervals. The current value was set to 100 A / phase, and the current was equally distributed to the two conductors constituting one phase. The measurement point was set to 1 to 10 m in the perpendicular direction starting from the line center.
[0020]
Comparative Example 4
A power cable having the structure shown in FIG. 10 was produced. That is, four conductors are used as the three-phase conductors a, b, and c, one of the four conductors is arranged in an equilateral triangle at the center, and each remaining conductor on the same circumference. Three conductors are alternately arranged at equal intervals. The current value was set to 100 A / phase, and the current was equally distributed to the two conductors constituting one phase. The measurement point was set to 1 to 10 m in the perpendicular direction starting from the line center.
[0021]
The measurement results are shown in FIG. As is apparent from FIG. 5, the power cable according to the present invention has a reduced magnetic field around it, and the attenuation becomes more significant as the distance increases. It can also be seen that the distance attenuation increases as the number of conductors per phase is increased. The reason why the distance attenuation increases when the number of conductors per phase is increased in this way is that the distance between the plurality of conductors constituting each phase and the observation point is almost equal for all three phases. This is because the configuration is close to. Therefore, it is preferable to increase the number of conductors per phase. However, since the cable structure becomes complicated as the number of conductors increases, the number of conductors is preferably 2 to 6, particularly 2 to 4. Since the background noise was 0.8 mG at the time of measuring the magnetic flux density, the magnetic field was reduced to substantially background noise in about 3 m in particular in Examples 2 and 3.
[0022]
【The invention's effect】
As described above, the power cable according to the present invention is a three-phase AC power cable in which one of the three phases is arranged at the center using two or more conductors, Alternatively, other two-phase conductors are arranged on the same circumference, and the other two-phase conductors each use two or more conductors, and are alternately arranged at equal intervals for each phase. It is characterized by. Therefore, the surrounding magnetic field can be effectively reduced.
[Brief description of the drawings]
FIG. 1 is a main part explanatory view showing an embodiment of a power cable according to the present invention.
FIG. 2 is an explanatory diagram showing a main part of another embodiment of the present invention.
FIG. 3 is a main part explanatory view showing still another embodiment of the present invention.
FIG. 4 is a main part explanatory view showing still another embodiment of the present invention.
FIG. 5 is a graph showing measurement results.
FIG. 6 is a main part explanatory view showing an embodiment of a conventional power cable.
FIG. 7 is a main part explanatory view showing another embodiment of a conventional power cable.
FIG. 8 is a main part explanatory view showing another embodiment of a conventional power cable.
FIG. 9 is a main part explanatory view showing another embodiment of a conventional power cable.
FIG. 10 is a main part explanatory view showing another embodiment of a conventional power cable.
FIG. 11 is an explanatory diagram of a magnetic field of a conventional power cable.
FIG. 12 is an explanatory diagram of a magnetic field of a conventional power cable.
[Explanation of symbols]
a, b, c conductor
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23316197A JP3802659B2 (en) | 1997-08-29 | 1997-08-29 | Power cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23316197A JP3802659B2 (en) | 1997-08-29 | 1997-08-29 | Power cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1173822A JPH1173822A (en) | 1999-03-16 |
JP3802659B2 true JP3802659B2 (en) | 2006-07-26 |
Family
ID=16950686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23316197A Expired - Fee Related JP3802659B2 (en) | 1997-08-29 | 1997-08-29 | Power cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3802659B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007194263A (en) * | 2006-01-17 | 2007-08-02 | Nippon Steel Corp | Cable shield device |
-
1997
- 1997-08-29 JP JP23316197A patent/JP3802659B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1173822A (en) | 1999-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5068543A (en) | Low hazard extremely low frequency power transmission line | |
JPH0121691B2 (en) | ||
US20030001450A1 (en) | Single layer interspersed concentric stator winding apparatus and method | |
KR101616657B1 (en) | Main electric motor for railway vehicle | |
US5408049A (en) | Multiple-phase electrical system | |
JP3550847B2 (en) | Armature winding pattern of rotating electric machine | |
EP1244195A1 (en) | Winding scheme for a permanent magnet type three-phase ac rotary electric machine | |
JP3802659B2 (en) | Power cable | |
RU2046500C1 (en) | Fractional-slot three-phase stator winding | |
CN210957957U (en) | Motor stator wiring structure | |
JP3705309B2 (en) | Superconducting device | |
JPH1175317A (en) | Overhead line | |
JP3508957B2 (en) | Sheet coil type resolver | |
TWI737019B (en) | Wiring structure of motor stator | |
SU1663700A1 (en) | Aligned rotor winding of single-machine frequency converter | |
JPS5833618Y2 (en) | Coaxial low impedance power cable | |
SU1663699A1 (en) | Aligned rotor winding of electrical machine | |
SU687534A1 (en) | Combined winding of ac electric machines | |
RU2065652C1 (en) | Enclosed three-phase busduct | |
JPH06151213A (en) | Twist thin type voltage converter and its use | |
SU959224A1 (en) | Three-phase winding for ac electric machines | |
RU2046504C1 (en) | Combined rotor winding | |
RU2075149C1 (en) | Combined rotor winding for single electric machine frequency converter | |
JP2612990B2 (en) | DC power cable line | |
SU1700689A1 (en) | Matching winding of rotor of electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060428 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |