JP3802312B2 - Air intake duct - Google Patents

Air intake duct Download PDF

Info

Publication number
JP3802312B2
JP3802312B2 JP2000156420A JP2000156420A JP3802312B2 JP 3802312 B2 JP3802312 B2 JP 3802312B2 JP 2000156420 A JP2000156420 A JP 2000156420A JP 2000156420 A JP2000156420 A JP 2000156420A JP 3802312 B2 JP3802312 B2 JP 3802312B2
Authority
JP
Japan
Prior art keywords
opening
intake
intake duct
tube wall
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000156420A
Other languages
Japanese (ja)
Other versions
JP2001336457A (en
Inventor
吉一 広瀬
敬博 古森
等 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2000156420A priority Critical patent/JP3802312B2/en
Priority to TW90111818A priority patent/TW576893B/en
Priority to US09/858,501 priority patent/US6622680B2/en
Publication of JP2001336457A publication Critical patent/JP2001336457A/en
Application granted granted Critical
Publication of JP3802312B2 publication Critical patent/JP3802312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンへ空気を供給する通路としての吸気ダクトに関し、詳しくは吸気時の騒音が低減された吸気ダクトに関する。
【0002】
【従来の技術】
自動車エンジンの吸気系では、吸気時にエアクリーナホースあるいは吸気ダクトなどの吸気ダクトにおいて騒音が発生するという問題がある。この吸気騒音は、特にエンジンの低速回転時に耳障りである。そこで従来より、図8に示すように、吸気ダクト 100にサイドブランチ 101及び/又はレゾネータ 102を設け、ヘルムホルツの共鳴理論などに基づいて計算される特定周波数の騒音を低減することが行われている。
【0003】
ところがサイドブランチ 101は、長いものでは約30cmの長さにもなり、レゾネータ 102の容積は大きいものでは14リットルもの大きさとなる。そのためこれらの吸音装置のエンジンルーム内に占めるスペースが大きくなり、他の部品の搭載の自由度が低くなるという不具合が生じる。
【0004】
そこで実開昭64-22866号公報には、吸気ダクト内にオリフィスを配置し、オリフィスの位置で吸気を絞ることで吸気騒音を低減することが開示されている。このように吸気通路を絞ることにより、音響質量が大きくなり、低音域の吸気音を低減することができる。
【0005】
また実開平3-43576号公報には、エアクリーナケースに並列に接続された2本の吸気ダクトと、2本の吸気ダクトからそれぞれ分岐した分岐管と、各分岐管が共に連結された共通のレゾネータを有し、一方の吸気ダクトにおける分岐管の接続部の上流側に運転状態に応じて選択的に開く開閉弁を備えた吸気音低減装置が開示されている。
【0006】
この実開平3-43576号公報に開示の装置によれば、エンジン回転数に応じて開閉弁を制御して吸気ダクトを1本又は2本に切り替えることにより、エンジン回転数に応じて吸入空気量を制御し、かつ吸気騒音を低減することができる。
【0007】
ところが上記した吸気通路を絞る方法では、エンジンの高速回転時に吸入空気量が不足して出力が低下するという不具合がある。
【0008】
また実開平3-43576号公報に開示の装置では、開閉弁を駆動するために電子制御回路、電磁開閉弁、あるいはダイヤフラムアクチュエータなどを用いているので、コスト面から好ましいものではない。また電子制御回路や電磁開閉弁などが必要であるため、複雑な装置となり高価となるばかりかメンテナンス工数も多大である。
【0009】
そこで特開平11−343938号公報には、熱可塑性樹脂繊維を含む不織布から加熱圧縮成形により形成された吸気ダクトが開示されている。このように吸気ダクトを不織布成形体から形成することにより、吸気音を効果的に低減することができる。また同公報には、吸気音が低減される理由として以下の三つの理由が考えられ、これらの相乗効果によって吸気騒音が低減されると考えられるとの記載がある。
(1)不織布は弾性体であるので制振作用を有し、管壁の振動による音波の発生が抑制される。
(2)不織布の繊維間の多数の隙間に入り込んだ音波は、隙間の粘性と熱伝導の作用によりそのエネルギーが弱まり、また音圧の変動に伴い繊維自身が共振して音エネルギーが減衰する。
(3)管壁の少なくとも一部がある程度の通気性を有することにより、音波の一部がその管壁を通過することで定在波の発生が抑制される。
【0010】
【発明が解決しようとする課題】
ところが不織布成形体は、一般の樹脂成形体に比べて高価であるため、不織布成形体から形成された吸気ダクトは従来の吸気ダクトに比べてきわめて高価となるという問題があった。
【0011】
本発明はこのような事情に鑑みてなされたものであり、不織布などの多孔質部材を最適に配置することによって吸気騒音を抑制するとともに、その使用量を低減し安価な吸気ダクトとすることを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明の吸気ダクトの特徴は、自動車の外気取り入れ口とエンジンのインテークマニホールドとの間に配置される吸気ダクトにおいて、管壁の所定部分には管壁の長手方向に長いスリット状の開口を一つもち、開口は全体が多孔質部材で覆われ、開口の短手方向の幅は管壁の周長の1/20以上かつ1/4以下であり、開口の長手方向の長さは管壁全長の1/4以下であり、開口の長手方向の中心は管壁の端部から管壁の全長の1/4の位置にあることにある。
【0013】
開口の長手方向の位置は、発生する共鳴波の腹位置と重なるように設定することが望ましい。また開口の長手方向の中心は、開口の長手方向の中心が管壁の外気取り入れ口に対向する端部から管壁の全長の1/4の位置にあることが望ましい。
【0014】
【発明の実施の形態】
吸気時に生じる騒音は、主として吸気ダクトの内部で発生する音波の定在波に起因し、定在波の周波数は吸気ダクト長、吸気ダクト径及び吸気ダクトの材質などによって決まる。そこで本発明では、管壁の一部に長尺状の開口を形成し、その開口全体を不織布などの多孔質部材で覆っている。これにより前述の三つの作用が奏され、吸気騒音が低減される。
【0015】
そして本発明では、開口の短手方向の幅を管壁の周長の1/20以上としている。このようなスリット状の開口に多孔質部材を配置することにより、理由は不明であるが吸気騒音を大きく低減することができる。開口の短手方向の幅が管壁の周長の1/20より小さくなると、多孔質部材を配置した効果を得にくくなり吸気騒音が大きくなってしまう。また開口の短手方向の幅の上限には特に制限がないものの、幅を大きくしても吸気騒音低減の効果はほとんど変化がなく、多孔質部材量の増大によりコストが上昇するという不具合がある。したがって、コストの問題に加えて成形工程あるいは不織布の接合工程などを考慮した現実的な開口幅としては、管壁の周長の1/20以上で1/4以下としている。
【0016】
また開口の長手方向の長さが長いほど吸気騒音を低減することができるが、多孔質部材の量が多くなるためコスト増大の不具合も大きくなってしまう。そのバランスを考慮すると、開口の長さは管壁の全長の1/4以下とする。
【0017】
開口の長手方向の中心は、管壁の端部から管壁の全長の1/4の位置にある。このようにすることにより、吸気騒音を一層低減することができる。吸気ダクト内では、吸気ダクトの長さの2倍と同じ波長の一次共鳴音、吸気ダクトの長さと同じ波長の二次共鳴音、吸気ダクトの長さの2/3の波長の三次共鳴音などが発生し、これらが吸気騒音となる。そして共鳴音を低減するには、各音波の節に相当する位置を外して開口を設けることが好ましい。つまり開口の長手方向の位置を、発生する共鳴波の腹位置と重なるように設定することが望ましい。開口の長手方向の中心を、管壁の端部から管壁の全長の1/4の位置とすれば、特に大きな音量となる一次共鳴音及び二次共鳴音を効果的に低減することができる。
【0018】
また開口の長手方向の中心は、管壁の外気取り入れ口に対向する端部から管壁の全長の1/4の位置とすることがさらに好ましい。こうすることで開口をエンジンからより遠ざけることができ、エンジンからの騒音が開口及び多孔質部材を透過して聞こえるのを抑制できるので、騒音を一層抑制することができる。
【0019】
多孔質部材は各種材質の繊維、紙あるいは発泡体などから形成されたものを用いることができるが、熱可塑性繊維から形成された不織布あるいは織布、編布などが特に望ましい。熱可塑性樹脂繊維製の不織布などを用いれば、複雑な形状の吸気ダクトであっても、熱プレス成形などで容易に賦形することができるので、開口の形状に容易に適合させることができる。また溶着によって管壁に接合できるので、開口を覆う工程の工数を低減することができる。なお熱可塑性樹脂繊維は不織布などの一部を構成していてもよいし、全体が熱可塑性樹脂繊維から構成されていてもよい。また熱可塑性ではない繊維に熱可塑性樹脂製のバインダを含浸させた布でも、熱可塑性樹脂繊維から形成された布と同様に熱プレス成形などによる賦形が可能である。
【0020】
多孔質部材の通気性が高すぎると、吸気ダクト内の音波が開口及び多孔質部材を透過して外部に漏れるため、騒音が増大するという不具合がある。そこで通気性の程度は、圧力差98Paのときの空気の通気量が1m2 当たり6000m3/h以下とすることが望ましい。なお通気量とは、試験体により区画された2室間の圧力差を98Paに設定した時に、試験体の単位面積あたりを通過する単位時間あたりの空気量をいう。単位面積当たり6000m3/h以下という限定は、もちろん圧力差が98Paの空気の場合の限定であり、吸気の圧力が異なれば通気量の限定数値も異なることはいうまでもない。
【0021】
圧力差98Paのときの空気の1m2 当たりの通気量が6000m3/hを超えると、開口及び不織布を通過する音波が多くなって透過音が大きくなる。また通気量がゼロであると、 200Hz以下の低周波数域の騒音の抑制作用が小さくなるが、従来の吸気ダクトに比べれば騒音を抑制することができる。通気量がゼロの多孔質部材とするには、多孔質部材の外側表面に膜状の表皮層を形成すればよい。内側表面に表皮層を形成しても通気量をゼロとすることはできるが、前述した(2)の理由による騒音の低減が困難となるので好ましくない。なお多孔質部材における圧力差98Paのときの空気の通気量は、ゼロより大きく4200m3/h未満であることが好ましく、0<通気量<3000m3/hの範囲が特に好ましい。
【0022】
また、経年変化、水分の浸入などにより不織布の厚さや特性が変化し、開口及び多孔質部材を透過する透過音及び吸気ダクト先端の吸気口から放射される出口音のバランスが崩れて吸気騒音を抑制する性能が変化する場合がある。
【0023】
そこで多孔質部材は所定機能が付与された機能層をもつことが望ましい。この機能層としては、撥水層、目詰まり防止層などが例示され、それぞれの機能を有する繊維をその部分に混在させた多孔質部材を用いることで容易に形成することができる。またそれぞれの機能をもつフィルムを多孔質部材に積層して用いてもよい。
【0024】
この機能層の位置は、多孔質部材の厚さ方向で適宜設定できる。例えば撥水層を用いる場合には、多孔質部材の表面層あるいは中間層に設けることが望ましい。これにより水分の浸入が防止され、多孔質部材の特性の変化が防止されるため吸気騒音低減効果を長期間維持することができる。またエアクリーナへの水の浸入も抑制されるので、エアクリーナエレメントの通気性が損なわれることによるエンジン不調も抑制できる。
【0025】
なお多孔質部材で開口を覆う方法としては、一体成形法、加熱溶着法、接着法、機械的係合法など、公知の種々の方法を採用することができる。多孔質部材を開口より大きな面積に形成して覆えばよいが、コスト面からは開口面積とほぼ同等のできるだけ小さな面積で開口全体を覆うようにすることが望ましい。
【0026】
【実施例】
以下、試験例及び実施例により本発明を具体的に説明する。
【0027】
(試験例1)
高密度ポリエチレンからなり内径65mm、長さ 650mmの直管状パイプ1の管壁の一部を長手方向に全長にわたってスリット状に切除し、その切除部分にPET(ポリエチレンテレフタレート)繊維製不織布2(目付量1000g/m2、厚さ方向の通気量 160〜 190m3/h)を接合して、図1に示す試験片を形成した。切除部分の周方向の長さ(幅)がゼロ%(切除部分無し)から 100%(パイプ全体が不織布)の範囲で、各種の試験片を形成した。
【0028】
次に図2に示す試験装置を用い、上記した各種試験片の吸音特性をそれぞれ調査した。この試験装置では、試験片の一端が遮音壁3を貫通し、試験片は全体が防音室内に配置されている。そして遮音壁3を貫通した試験片の一端の近傍にはスピーカ4が配置され、試験片の他端開口から10mm離れた位置にはマイク5が配置されている。なお図2では、試験片として後述の試験例2で作製した試験片を図示している。
【0029】
そしてスピーカ4からホワイトノイズを発し、マイクに5より試験片の他端開口から出る出口音の音圧レベルを、一次共鳴音及び二次共鳴音についてそれぞれ測定して、結果を図3に示す。
【0030】
図3より、切除部分の周方向の長さ(幅)がゼロからパイプ1の全周の1/20までは音圧レベルが急激に低下し、全周の1/20以上であれば音圧レベルは低い値で安定している。したがって切除部分の周方向の長さ(幅)は、パイプ1の全周の1/20以上とすることが望ましいことがわかる。
【0031】
(試験例2)
次に、高密度ポリエチレンからなり内径65mm、長さ 650mmのパイプ1の管壁を 100mmの長さだけ切除し、その切除部分にPET(ポリエチレンテレフタレート)繊維製不織布(目付量1000g/m2、厚さ 3.5mm、通気量16800m3/h・m2)からなり内径65mm、長さ 167mmの不織布筒2’を接合して、図4に示す試験片を形成した。切除部分の軸方向の中心位置(P)のパイプ1の端面からの距離(図2のX)を種々変更して各種の試験片を形成し、それぞれの試験片について試験例1と同様にして出口音の音圧レベルを測定した。なおマイク5の位置を試験片の側面として、不織布筒2’を透過する透過音についても測定した。結果をオーバーオール値で図5に示す。
【0032】
図5より、切除部分の長手方向の中心(P)が管壁の端部から管壁の全長の1/4の位置にあるときに極小値が認められ、管壁の全長の1/4の位置に設けることが特に望ましいことがわかる。
【0033】
そこで両試験例の結果を踏まえ、以下のように実施例の吸気ダクトを形成した。
【0034】
(実施例)
図6及び図7に本発明の一実施例の吸気ダクトを示す。この吸気ダクト10は、自動車の外気取り入れ口に配置される入口端部11と、エンジンのインテークマニホールドに固定される出口端部12を有する筒状をなし、入口端部11側の一側面に長手方向に長い開口13が形成され、開口13は不織布14で覆われている。この吸気ダクト10は高密度ポリエチレンからブロー成形により形成され、それの一部を切除して開口13が形成されている。
【0035】
開口13は、短手方向の幅である周方向の長さが吸気ダクト10の一般周長の1/4とされ、長さは吸気ダクト10全長の1/4であって、スリット状に形成されている。また開口13の長手方向の中心は、入口端部11から全長の1/4の位置にある。
【0036】
不織布14はPET(ポリエチレンテレフタレート)繊維製不織布(目付量1000g/m2、厚さ 3.5mm、通気量1680m3/h・m2)からなり、開口13より一回り大きな形状に裁断され熱溶着により開口13を覆って吸気ダクト10と一体化されている。
【0037】
本実施例の吸気ダクト10と、開口13をもたず全体が高密度ポリエチレンから形成された比較例の吸気ダクトについて、それぞれ試験例と同様の試験装置を用い、同様にして音圧レベルを測定した。その結果、本実施例の吸気ダクト10は比較例の吸気ダクトに比べて吸気音の音圧レベルが約70%低下し、吸気騒音を大きく低減できた。
【0038】
【発明の効果】
すなわち本発明の吸気ダクトによれば、吸気騒音をよく抑制できるとともに、不織布の使用量が低減されるのできわめて安価となる。
【図面の簡単な説明】
【図1】試験例1に用いた試験片の斜視図である。
【図2】試験例1及び試験例2で用いた試験装置の構成を示す説明図である。
【図3】試験例1の結果を示し、切除部分の幅と音圧レベルの関係を示すグラフである。
【図4】試験例2に用いた試験片の斜視図である。
【図5】試験例2の結果を示し、切除部分の中心位置と音圧レベルの関係を示すグラフである。
【図6】本発明の一実施例の吸気ダクトの斜視図である。
【図7】本発明の一実施例の吸気ダクトの要部断面図である。
【図8】従来の吸気ダクトの斜視図である。
【符号の説明】
10:吸気ダクト 11:入口端部 12:出口端部
13:開口 14:不織布
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake duct as a passage for supplying air to an engine, and more particularly to an intake duct with reduced noise during intake.
[0002]
[Prior art]
In an intake system of an automobile engine, there is a problem that noise is generated in an intake duct such as an air cleaner hose or an intake duct during intake. This intake noise is particularly disturbing when the engine rotates at a low speed. Therefore, conventionally, as shown in FIG. 8, a side branch 101 and / or a resonator 102 is provided in the intake duct 100 to reduce noise of a specific frequency calculated based on Helmholtz resonance theory or the like. .
[0003]
However, the side branch 101 is about 30 cm in length, and the resonator 102 has a large volume of 14 liters. For this reason, the space occupied in the engine room of these sound absorbing devices is increased, resulting in a problem that the degree of freedom of mounting other components is reduced.
[0004]
Therefore, Japanese Utility Model Laid-Open No. 64-22866 discloses that an orifice is arranged in the intake duct and the intake noise is reduced by restricting the intake air at the position of the orifice. By restricting the intake passage in this way, the acoustic mass is increased, and the intake sound in the low frequency range can be reduced.
[0005]
Japanese Utility Model Publication No. 3-43576 discloses two intake ducts connected in parallel to an air cleaner case, branch pipes branched from the two intake ducts, and a common resonator in which the branch pipes are connected together. And an intake noise reduction device that includes an opening / closing valve that selectively opens according to the operating state on the upstream side of the connecting portion of the branch pipe in one of the intake ducts.
[0006]
According to the device disclosed in Japanese Utility Model Laid-Open No. 3-43576, the intake air amount is changed according to the engine speed by controlling the on-off valve according to the engine speed and switching the intake duct to one or two. And intake noise can be reduced.
[0007]
However, the above-described method for narrowing the intake passage has a problem that the amount of intake air is insufficient when the engine rotates at a high speed and the output is reduced.
[0008]
Further, the apparatus disclosed in Japanese Utility Model Publication No. 3-43576 uses an electronic control circuit, an electromagnetic on-off valve, or a diaphragm actuator to drive the on-off valve, which is not preferable from the viewpoint of cost. In addition, since an electronic control circuit, an electromagnetic on-off valve, and the like are required, the apparatus becomes complicated and expensive, and the maintenance man-hour is also great.
[0009]
Japanese Patent Laid-Open No. 11-343938 discloses an air intake duct formed from a nonwoven fabric containing thermoplastic resin fibers by heat compression molding. By forming the intake duct from the nonwoven fabric molded body in this way, it is possible to effectively reduce intake noise. In addition, the publication describes that the following three reasons are considered as reasons for reducing the intake noise, and that the intake noise is considered to be reduced by a synergistic effect thereof.
(1) Since the nonwoven fabric is an elastic body, it has a vibration damping action, and the generation of sound waves due to vibration of the tube wall is suppressed.
(2) The sound wave that has entered a large number of gaps between the fibers of the nonwoven fabric is weakened due to the viscosity of the gaps and the effect of heat conduction, and the sound energy is attenuated due to the resonance of the fibers themselves as the sound pressure fluctuates.
(3) Since at least a part of the tube wall has a certain degree of air permeability, the generation of a standing wave is suppressed by a part of the sound wave passing through the tube wall.
[0010]
[Problems to be solved by the invention]
However, since the nonwoven fabric molded body is more expensive than a general resin molded body, the intake duct formed from the nonwoven fabric molded body has a problem that it is extremely expensive compared to a conventional intake duct.
[0011]
The present invention has been made in view of such circumstances, and suppresses intake noise by optimally arranging a porous member such as a non-woven fabric, and reduces the amount of use to provide an inexpensive intake duct. Objective.
[0012]
[Means for Solving the Problems]
A feature of the intake duct of the present invention that solves the above problem is that, in an intake duct disposed between an outside air intake of an automobile and an intake manifold of an engine, a predetermined portion of the tube wall has a slit that is long in the longitudinal direction of the tube wall. Jo openings one has, opening whole is covered by a porous member, widthwise direction of the width of the opening is 1/20 or more and 1/4 or less of the circumference of the tube wall, the opening longitudinal The length is equal to or less than ¼ of the total length of the tube wall, and the center in the longitudinal direction of the opening lies in the position of ¼ of the total length of the tube wall from the end of the tube wall .
[0013]
The position in the longitudinal direction of the opening is desirably set so as to overlap the antinode position of the generated resonance wave. The center in the longitudinal direction of the opening is preferably at a position that is 1/4 of the entire length of the tube wall from the end of the tube wall facing the outside air intake port.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Noise generated during intake is mainly due to standing waves of sound waves generated inside the intake duct, and the frequency of the standing wave is determined by the intake duct length, intake duct diameter, intake duct material, and the like. Therefore, in the present invention, an elongated opening is formed in a part of the tube wall, and the entire opening is covered with a porous member such as a nonwoven fabric. As a result, the above-described three actions are performed, and intake noise is reduced.
[0015]
In the present invention, the width in the short direction of the opening is set to 1/20 or more of the circumferential length of the tube wall. By arranging the porous member in such a slit-like opening, the intake noise can be greatly reduced although the reason is unknown. If the width in the short direction of the opening is smaller than 1/20 of the circumferential length of the tube wall, it is difficult to obtain the effect of disposing the porous member, and intake noise increases. The upper limit of the width in the short direction of the opening is not particularly limited, but even if the width is increased, the effect of reducing the intake noise hardly changes, and there is a problem that the cost increases due to the increase in the amount of the porous member. . Therefore, the actual opening width considering the molding process or the joining process of the nonwoven fabric in addition to the cost problem is set to 1/20 or less and 1/4 or less of the circumferential length of the tube wall .
[0016]
In addition, the longer the length of the opening in the longitudinal direction, the more the intake noise can be reduced. However, since the amount of the porous member increases, the problem of increasing the cost also increases. Considering the balance, the length of the opening is set to 1/4 or less of the entire length of the tube wall.
[0017]
The center in the longitudinal direction of the opening is at a position that is 1/4 of the total length of the tube wall from the end of the tube wall . By doing so, intake noise can be further reduced. In the intake duct, a primary resonant sound having the same wavelength as twice the length of the intake duct, a secondary resonant sound having the same wavelength as the length of the intake duct, a tertiary resonant sound having a wavelength that is 2/3 of the length of the intake duct, etc. Are generated and these become intake noise. In order to reduce the resonance noise, it is preferable to provide an opening by removing the position corresponding to the node of each sound wave. That is, it is desirable to set the position in the longitudinal direction of the opening so as to overlap the antinode position of the generated resonance wave. If the center in the longitudinal direction of the opening is set to ¼ of the total length of the tube wall from the end of the tube wall, it is possible to effectively reduce the primary resonance sound and the secondary resonance sound that are particularly loud. .
[0018]
Further, the center in the longitudinal direction of the opening is more preferably set at a position that is 1/4 of the total length of the tube wall from the end of the tube wall facing the outside air intake. By doing so, the opening can be further away from the engine, and noise from the engine can be suppressed from being heard through the opening and the porous member, so that the noise can be further suppressed.
[0019]
As the porous member, those formed from fibers of various materials, paper, foam, or the like can be used. Nonwoven fabrics, woven fabrics, knitted fabrics, and the like formed from thermoplastic fibers are particularly desirable. If a nonwoven fabric made of thermoplastic resin fibers or the like is used, even an intake duct having a complicated shape can be easily shaped by hot press molding or the like, so that it can be easily adapted to the shape of the opening. Moreover, since it can join to a pipe wall by welding, the man-hour of the process of covering opening can be reduced. The thermoplastic resin fiber may constitute a part of a nonwoven fabric or the like, or the whole may be composed of thermoplastic resin fibers. In addition, even a cloth in which a non-thermoplastic fiber is impregnated with a thermoplastic resin binder can be shaped by hot press molding or the like in the same manner as a cloth formed from a thermoplastic resin fiber.
[0020]
If the air permeability of the porous member is too high, the sound wave in the air intake duct passes through the opening and the porous member and leaks to the outside, which increases the noise. Therefore, it is desirable that the degree of air permeability is 6000 m 3 / h or less per 1 m 2 of air flow when the pressure difference is 98 Pa. The air flow rate means the amount of air per unit time passing through the unit area of the test specimen when the pressure difference between the two chambers partitioned by the test specimen is set to 98 Pa. Of course, the limitation of 6000 m 3 / h or less per unit area is a limitation in the case of air with a pressure difference of 98 Pa, and it goes without saying that the limit value of the air flow rate is different if the pressure of intake air is different.
[0021]
When the air flow rate per 1 m 2 of air at a pressure difference of 98 Pa exceeds 6000 m 3 / h, the number of sound waves that pass through the openings and the nonwoven fabric increases and the transmitted sound increases. If the airflow is zero, the noise suppression effect in the low frequency range of 200 Hz or less is reduced, but the noise can be suppressed as compared with the conventional intake duct. In order to obtain a porous member having zero ventilation, a film-like skin layer may be formed on the outer surface of the porous member. Even if a skin layer is formed on the inner surface, the air flow rate can be reduced to zero, but it is not preferable because it is difficult to reduce noise due to the reason (2) described above. Note aeration amount of air when the pressure difference 98Pa in the porous member is preferably larger 4200m less than 3 / h than zero, 0 <particularly preferred range of the air permeability of <3000 m 3 / h.
[0022]
In addition, the thickness and characteristics of the nonwoven fabric change due to aging, moisture intrusion, etc., and the balance between the sound transmitted through the opening and porous member and the sound emitted from the air intake at the tip of the air intake duct is disrupted, resulting in intake noise. Suppression performance may change.
[0023]
Therefore, it is desirable that the porous member has a functional layer provided with a predetermined function. Examples of the functional layer include a water-repellent layer, a clogging prevention layer, and the like, and the functional layer can be easily formed by using a porous member in which fibers having respective functions are mixed. Moreover, you may use the film which has each function laminated | stacked on a porous member.
[0024]
The position of this functional layer can be appropriately set in the thickness direction of the porous member. For example, when a water repellent layer is used, it is desirable to provide it on the surface layer or intermediate layer of the porous member. This prevents moisture from entering and prevents changes in the characteristics of the porous member, so that the intake noise reduction effect can be maintained for a long time. In addition, since water permeation into the air cleaner is also suppressed, engine malfunction due to a loss of air permeability of the air cleaner element can be suppressed.
[0025]
As a method of covering the opening with the porous member, various known methods such as an integral molding method, a heat welding method, an adhesion method, and a mechanical engagement method can be employed. The porous member may be formed so as to cover an area larger than the opening, but it is desirable to cover the entire opening with an area as small as possible, which is almost equal to the opening area, from the cost viewpoint.
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference to test examples and examples.
[0027]
(Test Example 1)
A portion of the wall of the straight pipe 1 made of high-density polyethylene having an inner diameter of 65 mm and a length of 650 mm is cut into a slit shape in the longitudinal direction, and a PET (polyethylene terephthalate) fiber nonwoven fabric 2 (weight per unit area) is cut in the cut portion. A test piece shown in FIG. 1 was formed by bonding 1000 g / m 2 and a gas flow rate in the thickness direction of 160 to 190 m 3 / h). Various test pieces were formed in the range of the circumferential length (width) of the cut portion from 0% (no cut portion) to 100% (the entire pipe was non-woven fabric).
[0028]
Next, using the test apparatus shown in FIG. 2, the sound absorption characteristics of the various test pieces described above were investigated. In this test apparatus, one end of the test piece penetrates the sound insulation wall 3, and the entire test piece is disposed in the soundproof room. A speaker 4 is disposed in the vicinity of one end of the test piece penetrating the sound insulating wall 3, and a microphone 5 is disposed at a position 10 mm away from the other end opening of the test piece. In addition, in FIG. 2, the test piece produced in the below-mentioned test example 2 is shown as a test piece.
[0029]
Then, white noise is emitted from the speaker 4 and the sound pressure level of the exit sound from the other end opening of the test piece from the microphone 5 is measured for each of the primary resonance sound and the secondary resonance sound, and the results are shown in FIG.
[0030]
From FIG. 3, the sound pressure level sharply decreases from zero in the circumferential direction (width) of the cut portion to 1/20 of the entire circumference of the pipe 1, and the sound pressure is greater than 1/20 of the entire circumference. Level is low and stable. Therefore, it can be seen that the circumferential length (width) of the cut portion is desirably 1/20 or more of the entire circumference of the pipe 1.
[0031]
(Test Example 2)
Next, the pipe wall of pipe 1 made of high-density polyethylene with an inner diameter of 65 mm and a length of 650 mm is cut by a length of 100 mm, and a PET (polyethylene terephthalate) fiber nonwoven fabric (weight per unit area: 1000 g / m 2 , thickness) is 3.5 mm, the ventilation amount 16800m 3 / h · m 2) from becomes an inner diameter 65 mm, by bonding nonwoven fabric tube 2 'of length 167 mm, to form a test piece shown in FIG. Various test pieces were formed by variously changing the distance (X in FIG. 2) from the end face of the pipe 1 at the central position (P) in the axial direction of the cut portion, and each test piece was the same as in Test Example 1. The sound pressure level of the exit sound was measured. In addition, the transmitted sound which permeate | transmits nonwoven fabric cylinder 2 'was also measured by making the position of the microphone 5 into the side surface of a test piece. The results are shown in FIG. 5 as overall values.
[0032]
FIG. 5 shows that a minimum value is recognized when the longitudinal center (P) of the excised portion is at a position 1/4 of the total length of the tube wall from the end of the tube wall, and it is 1/4 of the total length of the tube wall. It can be seen that it is particularly desirable to provide the position.
[0033]
Therefore, based on the results of both test examples, the intake duct of the example was formed as follows.
[0034]
(Example)
6 and 7 show an intake duct according to an embodiment of the present invention. The intake duct 10 has a cylindrical shape having an inlet end portion 11 arranged at an outside air intake of an automobile and an outlet end portion 12 fixed to an intake manifold of the engine, and is long on one side of the inlet end portion 11 side. A long opening 13 is formed in the direction, and the opening 13 is covered with a nonwoven fabric 14. The intake duct 10 is formed from high-density polyethylene by blow molding, and an opening 13 is formed by cutting a part thereof.
[0035]
The opening 13 has a circumferential length, which is the width in the short direction, of ¼ of the general circumferential length of the intake duct 10 and is ¼ of the entire length of the intake duct 10 and is formed in a slit shape. Has been. The center of the opening 13 in the longitudinal direction is at a position that is 1/4 of the entire length from the inlet end 11.
[0036]
Non-woven fabric 14 is made of PET (polyethylene terephthalate) fiber non-woven fabric (weight per unit of 1000g / m 2 , thickness 3.5mm, air flow 1680m 3 / h · m 2 ), cut into a shape that is slightly larger than the opening 13 and heat-welded It covers the opening 13 and is integrated with the intake duct 10.
[0037]
For the intake duct 10 of this example and the intake duct of the comparative example that is not formed of the opening 13 and is entirely made of high-density polyethylene, the sound pressure level was measured in the same manner using the same test apparatus as the test example. did. As a result, in the intake duct 10 of the present embodiment, the sound pressure level of the intake sound was reduced by about 70% compared to the intake duct of the comparative example, and the intake noise was greatly reduced.
[0038]
【The invention's effect】
That is, according to the intake duct of the present invention, the intake noise can be well suppressed and the amount of the nonwoven fabric used is reduced, so that it is extremely inexpensive.
[Brief description of the drawings]
FIG. 1 is a perspective view of a test piece used in Test Example 1. FIG.
FIG. 2 is an explanatory diagram showing a configuration of a test apparatus used in Test Example 1 and Test Example 2;
FIG. 3 is a graph showing the results of Test Example 1 and showing the relationship between the width of the excised part and the sound pressure level.
4 is a perspective view of a test piece used in Test Example 2. FIG.
FIG. 5 is a graph showing the result of Test Example 2 and showing the relationship between the central position of the excised part and the sound pressure level.
FIG. 6 is a perspective view of an intake duct according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view of an essential part of an intake duct according to an embodiment of the present invention.
FIG. 8 is a perspective view of a conventional intake duct.
[Explanation of symbols]
10: Intake duct 11: Inlet end 12: Outlet end
13: Opening 14: Nonwoven fabric

Claims (2)

自動車の外気取り入れ口とエンジンのインテークマニホールドとの間に配置される吸気ダクトにおいて、
管壁の所定部分には該管壁の長手方向に長いスリット状の開口を一つもち、該開口は全体が多孔質部材で覆われ、
該開口の短手方向の幅は該管壁の周長の1/20以上かつ1/4以下であり、該開口の長手方向の長さは該管壁全長の1/4以下であり、該開口の長手方向の中心は該管壁の端部から該管壁の全長の1/4の位置にあることを特徴とする吸気ダクト。
In the intake duct arranged between the outside air intake of the automobile and the intake manifold of the engine,
A predetermined portion of the tube wall has one slit-like opening that is long in the longitudinal direction of the tube wall, and the opening is entirely covered with a porous member,
The width in the short direction of the opening is 1/20 or more and 1/4 or less of the circumference of the tube wall, and the length in the longitudinal direction of the opening is 1/4 or less of the total length of the tube wall, An air intake duct characterized in that the center in the longitudinal direction of the opening is located at ¼ of the total length of the tube wall from the end of the tube wall .
前記開口の長手方向の中心は前記管壁の前記外気取り入れ口に対向する端部から前記管壁の全長の1/4の位置にあることを特徴とする請求項1に記載の吸気ダクト。  2. The intake duct according to claim 1, wherein the center of the opening in the longitudinal direction is at a position that is ¼ of the total length of the tube wall from an end portion of the tube wall facing the outside air intake port.
JP2000156420A 2000-05-17 2000-05-26 Air intake duct Expired - Fee Related JP3802312B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000156420A JP3802312B2 (en) 2000-05-26 2000-05-26 Air intake duct
TW90111818A TW576893B (en) 2000-05-17 2001-05-17 Air intake duct and manufacturing method therefor
US09/858,501 US6622680B2 (en) 2000-05-17 2001-05-17 Air intake duct and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156420A JP3802312B2 (en) 2000-05-26 2000-05-26 Air intake duct

Publications (2)

Publication Number Publication Date
JP2001336457A JP2001336457A (en) 2001-12-07
JP3802312B2 true JP3802312B2 (en) 2006-07-26

Family

ID=18661215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156420A Expired - Fee Related JP3802312B2 (en) 2000-05-17 2000-05-26 Air intake duct

Country Status (1)

Country Link
JP (1) JP3802312B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3919090B2 (en) * 2002-05-16 2007-05-23 豊田合成株式会社 Intake device
JP4535005B2 (en) * 2006-03-07 2010-09-01 豊田合成株式会社 Intake device
JP2008038725A (en) * 2006-08-04 2008-02-21 Toyota Boshoku Corp Air-intake duct of internal combustion engine
KR100901599B1 (en) * 2007-10-24 2009-06-08 현대자동차주식회사 Intake system of vehicle
JP5499460B2 (en) * 2008-11-14 2014-05-21 ヤマハ株式会社 Duct and vehicle structure
JP5886018B2 (en) * 2011-12-07 2016-03-16 株式会社イノアックコーポレーション Air intake duct
JP6044785B2 (en) * 2013-08-08 2016-12-14 トヨタ紡織株式会社 Air intake duct
JP6377868B1 (en) * 2017-07-05 2018-08-22 富士フイルム株式会社 Silencer system
CN110870002B (en) 2017-07-05 2023-07-07 富士胶片株式会社 Silencing system
JP6377867B1 (en) * 2017-07-05 2018-08-22 富士フイルム株式会社 Silencer system
JP7181167B2 (en) * 2019-08-23 2022-11-30 トヨタ自動車株式会社 air intake duct for vehicle

Also Published As

Publication number Publication date
JP2001336457A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
KR100674125B1 (en) Suction Duct
JP3802312B2 (en) Air intake duct
JP3508592B2 (en) Sound absorbing duct structure
US6305494B1 (en) Device for absorbing and/or damping sound waves
US8485153B2 (en) Air intake apparatus
WO2013035614A1 (en) Aspiration duct
JP3802267B2 (en) Intake pipe
WO2005045225A1 (en) Intake device of internal combustion engine
US6503303B2 (en) Enclosure for an air aspirating machine
JP2006276778A (en) Air intake duct
JP6449095B2 (en) Ventilation duct
JP2004285895A (en) Intake device
JP3835117B2 (en) Intake duct and manufacturing method thereof
JP6452540B2 (en) Air cleaner
JP2004278494A (en) Intake device
JPH11343939A (en) Intake duct
JPH10502720A (en) Muffler for air-operated reciprocating pump
JP2003328885A (en) Intake device
JP2010053763A (en) Duct
JP2006335125A (en) Duct of air-conditioner
JP2000088331A (en) Structure of duct
WO2017216824A1 (en) Air cleaner
JP2010275916A (en) Intake air duct
JPH09256834A (en) Noise absorption duct structural body
JP2008202519A (en) Duct

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees