JP3801861B2 - Hot working method for B-containing austenitic stainless steel - Google Patents

Hot working method for B-containing austenitic stainless steel Download PDF

Info

Publication number
JP3801861B2
JP3801861B2 JP2000378687A JP2000378687A JP3801861B2 JP 3801861 B2 JP3801861 B2 JP 3801861B2 JP 2000378687 A JP2000378687 A JP 2000378687A JP 2000378687 A JP2000378687 A JP 2000378687A JP 3801861 B2 JP3801861 B2 JP 3801861B2
Authority
JP
Japan
Prior art keywords
weld
stainless steel
build
less
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000378687A
Other languages
Japanese (ja)
Other versions
JP2001239364A (en
Inventor
信彦 平出
和博 小川
信二 柘植
良明 野口
悟 西村
明彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000378687A priority Critical patent/JP3801861B2/en
Publication of JP2001239364A publication Critical patent/JP2001239364A/en
Application granted granted Critical
Publication of JP3801861B2 publication Critical patent/JP3801861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、核燃料輸送用容器、使用済み核燃料貯蔵ラック等原子力関連機器の中性子遮断材として用いられるB含有オーステナイト系ステンレス鋼の熱間加工方法に関する。
【0002】
【従来の技術】
Bの優れた熱中性子吸収作用を利用して、Bを添加したオーステナイト系ステンレス鋼が、熱中性子の制御材および遮断材として、核燃料輸送容器、使用済核燃料保管ラック等に用いられている。一般に、原子力発電所で使用された使用済核燃料は、再処理工場にて処理されるまで、発電所内のプール内に保管される。限られた敷地内でできるだけ多くの使用済核燃料を保管したいとのニーズから、B含有オーステナイト系ステンレス鋼に添加されるB量は増加し、かつ板厚は薄くなる傾向にある。
【0003】
Bのオーステナイト中への固溶量は非常に小さく、添加したBのほとんどがFe、Crを含むボライドとして析出する。このボライドの存在により、熱間加工性、耐食性が劣化するが、B量の増加と共にその傾向は顕著になる。
【0004】
一般に、B含有オーステナイト系ステンレス鋼の鍛造、圧延等の熱間加工は、加熱炉によるスラブの加熱と、鍛造や圧延等の加工とを繰り返して被加工材の温度低下を防止することにより熱間加工性を確保しながら行われている。B含有量が多いほど熱間加工性に劣るので、被加工材の温度低下を防止するためには加熱−加工の繰り返し回数が増加する。したがって、含有B量の増加や鋼の薄肉加工は製造コスト高を招くことになる。
【0005】
上記問題を解決するために、これまでに種々検討されてきた。特開昭61−201726号公報には、B含有ステンレス鋼塊をそのままか、あるいは長方形状に整形後、鋼塊の少なくとも4主面を鉄筒にて密着包囲し、分塊圧延または鍛造により圧着させてから熱間圧延する方法が開示されている。
【0006】
特開昭63−220904号公報では、母材のB含有オーステナイト系ステンレス鋼材を、それよりも変形抵抗の小さい鋼材によりパックした後、1100℃以上1175℃以下で加熱し、T(℃)=53×B(質量%)+870以上の温度で仕上圧延する方法が開示されている。
【0007】
これらの方法により耳割れを防止することができるが、必要な板厚精度を確保することが困難になると共に、パック材の包み込み作業および圧延後の解体作業が必要となり、製造コスト高になる問題がある。
【0008】
板厚精度や、パック材の包み込みおよび解体作業の問題を回避できる方法として、特開平4−253506号公報には、母材のB含有オーステナイト系ステンレス鋼材の側面を、母材よりも変形抵抗の小さい鋼材をフレーム材として溶接により被覆して圧延する、耳割れの発生を防止することのできる熱間圧延方法が開示されている。この方法では、精度の高い開先形状を有するフレーム材を用意し、かつ熱間加工時に剥離しないように溶接する必要がある。したがって、通常鋳造したインゴット(鋼塊)や分塊鍛造スラブ等は厚さが80mm以上もあるので、これらを熱間加工に適用するのは困難である。
【0009】
そのほか、特開平1−195243号公報や特開平5−263133号公報には、耳割れ防止を目的として、1ヒートあたりの圧下率、下限温度等を規制して、加熱−圧延を繰り返すことにより所定の厚さのB含有オーステナイト系ステンレス鋼板を得る方法が開示されている。これらの方法もやはり、ヒート回数の増加によるコストアップが問題となると共に、機構上再加熱が不可能な高生産性タンデム圧延機への適用が困難である。
【0010】
また、鋼片の側面に熱間加工性の良好な金属材料を肉盛り溶接して圧延する方法が知られている。この方法によれば、圧延後トリマー等により肉盛り溶接部を比較的容易に除去できる利点がある。しかしながら、この肉盛り溶接方法においては、MAG、SAWといった高能率な溶接方法では、溶接金属中の酸素量が高くなり、溶接割れが発生しやすい。溶接割れが発生すると、それが起点となって耳割れの発生に繋がる場合があり、完全に耳割れを防止することができなかった。
【0011】
特に大面積の被圧延材側面へ肉盛り溶接するには、TIG等に比べMAG、SAWといった高能率な溶接方法を採用しなければ、溶接作業費を抑えることができない。
【0012】
【発明が解決しようとする課題】
本発明の課題は、高B含有オーステナイト系ステンレス鋼を、熱間加工中に再加熱することなく、所定の板厚まで耳割れを発生させることなく加工できる熱間加工方法を提供することにある。より具体的には、高能率の溶接方法により鋼片の側面に肉盛り溶接を行っても溶接割れの発生がなく、かつ熱間加工中の被圧延材の耳割れの発生を防止することのできる、高B含有オーステナイト系ステンレス鋼片の熱間加工方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、下記(1)〜(3)のB含有オーステナイト系ステンレス鋼の熱間加工方法を要旨としている。
【0014】
(1)Bを0.3〜2.5質量%含有するオーステナイト系ステンレス鋼片を熱間加工するに際し、その鋼片の側面に、質量%でNi:4%以下、B:0.1〜0.4%を含有するステンレス鋼からなる厚さ3mm以上の肉盛り溶接被覆層を設けて熱間加工するB含有オーステナイト系ステンレス鋼の熱間加工方法。
【0015】
(2)Bを0.3〜2.5質量%含有するオーステナイト系ステンレス鋼片を熱間加工するに際し、その鋼片の側面に、質量%でNi:4%以下、B:0.4%以下、Ti:0.01〜2%を含有するステンレス鋼からなる厚さ3mm以上の肉盛り溶接被覆層を設けて熱間加工するB含有オーステナイト系ステンレス鋼の熱間加工方法。
【0016】
(3)肉盛り溶接被覆層が、さらに質量%でAl:0.003〜0.4%を含有するステンレス鋼からなる肉盛り溶接被覆層である(2)記載のB含有オーステナイト系ステンレス鋼の熱間加工方法。
【0017】
ここで、鋼片とは、連続鋳造スラブ、分塊鋳造スラブ、分塊圧延スラブおよび鋳造したインゴット(鋼塊)をいう。
【0018】
本発明者らは、スラブをパックする方法に比べ経済的な、被圧延材の側面に肉盛り溶接被覆層を設ける方法を採用することとし、肉盛り溶接被覆に好適な金属材料を開発するため、種々の試験を行い検討した結果、下記の知見を得た。
【0019】
a)肉盛り溶接被覆層の溶接割れの感受性および熱間加工性は、肉盛り溶接被覆層のNiおよびBの含有量が影響しており、
b)肉盛り溶接被覆層にTi、Alを含有させると、溶接割れ防止効果、耳割れ防止効果が一層顕著になる。
【0020】
以下、上記知見を得るに至った試験について説明する。
【0021】
(試験1)
溶接割れの発生がなく、耳割れ防止に有効な溶接被覆材料を選定するにあたり、まず既存材料を中心に検討した。
【0022】
被圧延材として、Bを1質量%含有する幅140mm、厚さ80mm、長さ200mmのオーステナイト系ステンレス鋼の分塊鋳造スラブを用いた。また、溶接被覆材料として、オーステナイト系ステンレス鋼のSUS308L、フェライト系ステンレス鋼のSUS436L、2相(オーステナイト−フェライト)ステンレス鋼のSUS329J4Lおよび高純度Feを用いて、上記スラブ片側側面全面にTIG2層溶接にて5mm厚の肉盛溶接被層を設けた。反対側の側端面は無垢とした。
【0023】
溶接条件は、電流:160A、電圧:17V、溶接速度:10cm/分とした。肉盛り溶接後に、断面の浸透探傷試験により溶接割れの有無を確認したところ、SUS329J4L、高純度Feには割れが認められたが、SUS308L、SUS436Lには割れは認められなかった。
【0024】
このように肉盛り溶接したスラブを、ワークロール直径が450mmのリバース式熱間圧延機を用いて圧延を行った。スラブの加熱温度は溶融脆性を避けるため1180℃とした。パススケジュールは下記の通りであった。
【0025】
80→60→45→35→28→21→16→12→9→7→5→4(mm)目視により耳割れ状況を確認しながら圧延を実施し、両側面に耳割れが発生したパスで圧延を中止した。無垢側の側面に関しては、被圧延材の表面積が増加すると共に温度低下も大きくなる7パス目で、耳割れ発生が認められた。
【0026】
肉盛り被覆を施した側面においては、被覆材料がSUS329J4L、高純度Feの場合には8パス目で耳割れが発生し、高純度Feでは、5mm程度の耳割れが認められた。高純度FeのようにB含有オーステナイト系ステンレス鋼に比べ変形抵抗が小さい材料においても、溶接割れが存在する場合には、耳割れ防止効果が十分に得られないことが判明した。一方、被覆材料がSUS308L、SUS436Lの場合には11パス後でも耳割れが認められず、耳割れ防止に有効な溶接被覆材料であることが判明した。
【0027】
(試験2)
試験1の結果を踏まえ、溶接被覆材料として、SUS308L、SUS436Lを中心としたCr含有ステンレス鋼を中心にさらに詳細に検討した。肉盛り被覆層中のNi、B量等は溶接施工時の希釈率によって変化するため、肉盛り溶接被覆層の化学成分は、溶接割れ、耳割れ防止には重要と考え、以下の試験を実施した。
【0028】
素材には、B含有量を種々変化させた板厚150mm、幅150mm、長さ150mmのオーステナイト系ステンレス鋼の分塊鍛造スラブを用いた。組成の異なる溶接材料にてスラブ側面に肉盛り溶接して、溶接割れ、熱間加工性を評価した。なお、素材および溶接材料のCr量は19〜20質量%とした。(以下、化学組成の%表示は全て質量%とする。)
溶接方法はTIGに比べ高能率なMAG溶接とし、電流:220A、電圧:25V、溶接速度:15cm/分の条件にて、スラブ側面に10〜15mm厚の肉盛り溶接を行った。
【0029】
溶接割れは、断面を浸透深傷して評価した。熱間加工性の評価には高温引張試験を用いた。肉盛り溶接金属部から径10mm、長さ130mmの試験片を切り出し、1150℃に加熱後、100℃/分の速度で冷却し、900℃にて引張試験を行った。引張試験の歪速度は1/Sとし、試験後直ちに急冷して試験片の絞り(断面収縮率、単位%)を求めた。
【0030】
図1は、分析により求めた肉盛り溶接金属のNi、B量と、スラブ拘束溶接割れ性との相関を示す図である。図1から、溶接割れの発生は、Ni、B量により依存し、一定の範囲にあるとき、優れた溶接割れ抵抗性を示すことが分かる。
【0031】
図2は、肉盛り溶接金属のNi量およびB量と、高温引張試験結果における絞りとの相関を示す。図2から、Ni:4%以下、B:0.4%以下の範囲にある肉盛り溶接被覆層は、900℃の絞りが60%以上あり、優れた熱間加工性を示すことが分かる。
【0032】
(試験3)
試験2の結果を踏まえ、熱延による耳割れ評価試験を実施した。被圧延材として、Bを1%含有する幅140mm、厚さ80mm、長さ200mmのオーステナイト系ステンレス鋼の分塊鍛造スラブを用いた。溶接材料として、フェライト系ステンレス鋼であるSUS430鋼、SUS436L鋼を用い、上記スラブの片側側面全面に希釈率を変化させて肉盛り溶接を実施した。溶接方法及び条件は試験2と同一とし、肉盛り溶接被覆層の厚さを3mmとした。その反対側の側面は無垢とした。
【0033】
溶接部断面を浸透探傷試験により溶接割れを評価したが、いずれも割れは認められなかった。
【0034】
このように肉盛り溶接したスラブを、試験1と同一の条件にて熱間圧延を実施した。試験1と同様、目視により耳割れ状況を確認しながら圧延し、両側面に耳割れが発生したパスで圧延を中止した。
【0035】
無垢側の側面に関しては、試験1と同様、被圧延材の表面積が増加すると共に温度低下も大きくなる7パス目で、耳割れ発生が認められた。希釈率の大きい、すなわち、肉盛り溶接金属中のNi、B量が多いほど、少ないパス回数で耳割れが発生した。無垢材と同じ7パス目で耳割れ発生したものは、肉盛り溶接金属中のNi、B量は4%、0.4%を超えており耳割れ防止効果が得られなかった。
【0036】
肉盛り溶接金属がNi:4%以下、B:0.4%以下の場合、9パス以降で耳割れ発生が認められ、耳割れ防止効果が得られた。一方、Tiを含有するSUS436L鋼を溶接材料として用い、肉盛り溶接金属のNi:4%以下、B:0.4%以下の場合には、11パス圧延しても耳割れの発生が認められず、優れた耳割れ防止効果が得られた。
【0037】
そこで、さらにTi量を広く変化させたフェライト系ステンレス鋼を溶接材料に用い、前記同様、スラブ側面に肉盛り溶接して熱間圧延による耳割れ評価を実施した。すると、0.01〜2%の範囲でTiを含有する場合には良好な耳割れ防止効果、溶接割れ防止効果が得られた。特にこれらの効果は0.03〜1%の範囲内にあるとき顕著であった。肉盛り溶接金属層に含まれるB量が0.1%に満たない場合、溶接割れが発生しやすい傾向があるが、Tiを含有する場合には、特に溶接割れは起こることはなかった。これは、肉盛り溶接部組織が非常に微細であり、これにより良好な耳割れ防止効果が得られたと考えられる。さらに詳細に観察したところ、Ti窒化物、Ti硼化物の生成が認められ、これらが核となり微細な凝固組織が形成されたと推定した。
【0038】
【発明の実施の形態】
B含有オーステナイト系ステンレス鋼片:
被熱間加工材のオーステナイト系ステンレス鋼中のB量は、0.3〜2.5%とする。0.3%未満では熱中性子吸収能が十分でない。B添加量の増加と共に熱中性子吸収能は向上するが、2.5%を超えると、常温での延性及び靱性の劣化が顕著になる。そのためB含有量は0.3〜2.5%とした。
【0039】
本発明が、対象とするB含有オーステナイト系ステンレス鋼の、前記B以外の元素は、C:0.08%以下、Si:1%以下、Mn:2%以下、P:0.04%以下、S:0.01%以下、Cr:16〜25%、Ni:7〜15%とすることが好ましい。また、必要に応じてMo:1.5%以下、Cu:0.5%以下、Al:0.3%以下を単独または組み合わせて含有させることが好ましい。十分な溶接性を確保する観点から、N:0.05%以下とすることが好ましい。
【0040】
ステンレス鋼片とは、前述したように連続鋳造スラブ、分塊鍛造スラブ、分塊圧延スラブおよび鋳造したインゴット(鋼塊)をいう。これらの鋼片は一般に直方体であり、その長手方向に延びるように熱間圧延や鍛造等の熱間加工が施される。鋼片の側面とは、加工面(圧延の場合、ロールと接触する面)以外の面であり、通常は長手方向の2側面の全面に肉盛り溶接被覆層を設ければよい。なお、鋼片のコーナー部を面取り加工する場合があるが、この場合にはコーナー部や加工面側に回り込ませて肉盛り溶接被覆層を設けてもよい。
【0041】
肉盛り溶接被覆:
肉盛り溶接被覆層は、Ni:4%以下、B:0.1〜0.4%を含有するステンレス鋼とした。なお、必要に応じTi:0.01〜2%、Al:0.003〜0.4%を含有させる場合は、B量を0.4%以下(0.1%以下も含む)とすることができる。
【0042】
Ni:4%、B:0.4%を超えると熱間加工性が十分でない。また、Ni:4%以下、B:0.4%以下のような範囲でも、Bが0.1%以上ない場合には、肉盛り溶接時の凝固割れ感受性が増加し、溶接割れが起こりやすくなる。なお、Ti:0.01〜2%を含有させる、あるいは、Tiに加えさらにAl:0.003〜0.4%を含有させる場合には、Bが0.1%に満たなくても、溶接割れが起こることはない。
【0043】
肉盛り溶接被覆層中のNiおよびB量を上記のような範囲とするには、溶接材料および溶接条件を調整する必要がある。すなわち、溶接材料として、Ni量が3%以下、B量が0.3%以下のフェライト系ステンレス鋼を用いるのが好ましい。Bを含有することなくNi量が3%以下のフェライト系ステンレス鋼を用いる場合には、例えば、SAW(バンドアーク溶接を含む)では、Bを添加したフラックスを用いて、肉盛り溶接被覆層中のNiおよびB量をコントロールすればよい。また、MAGの場合は溶接材料中にこれらの合金元素を含んだフラックス入りワイヤを用いることによって、肉盛り溶接被覆層のNiおよびB量をコントロールすればよい。被覆アーク溶接棒の場合も同様である。
【0044】
また、肉盛り溶接時に熱量を下げることにより被熱間加工時のB含有ステンレス鋼が肉盛り溶接層に溶け込むのをできるだけ少なくするのがよい。
【0045】
肉盛り溶接層に良好な溶接割れ抵抗性、熱間加工性を付与するには、少なくとも0.01%以上のTiを含有させるのが好ましい。一方、2%を超えると、耳割れ防止効果が飽和すると共に、溶接性および靱性に悪影響を与えるため、含有させる場合は0.01〜2%とした。また、1%を超えると溶接割れ防止効果も飽和する。したがって、Ti量は0.01〜1%とすることが好ましい。顕著な耳割れ防止効果、溶接割れ効果を得るためには、Ti量を0.03〜0.5%とすることが好ましい。
【0046】
Alは、脱酸元素として、Tiによる凝固組織の微細化に有効に作用するため、必要に応じて含有させる。その効果を得るには、少なくとも、0.003%以上含有させる必要があり、0.4%を超えて含有させると、靱性に悪影響を及ぼすため、Al量は0.003〜0.4%とすることが好ましい。より好ましくは、0.01〜0.2%である。
【0047】
なお、肉盛り溶接被覆層にTi、Alを含有させる場合は、肉盛り溶接被覆層のBが0.1%未満であっても、十分な溶接割れ防止効果が得られる。
【0048】
肉盛り溶接被覆層をステンレス鋼に限定した理由は、溶接金属中のフェライト量を確保すると共に、素材のB含有オーステナイト系ステンレス鋼と同程度の耐酸化性、耐食性を付与するためである。このため、一般に12%以上のCr量を含有する鋼がステンレス鋼とよばれるが、肉盛り溶接被覆層のCr量としては、16%以上、25%以下であることが好ましく、より好ましくは18%以上である。
【0049】
肉盛り溶接被覆層が上に示した量のNi、B、そして必要に応じTi、Alを含むステンレス鋼であれば、本発明の目的は達成される。しかし、肉盛り溶接被覆層に、他の元素が含まれていてもかまわない。以下に、肉盛り溶接被覆層に含まれていてもよい元素とその含有量について述べる。
【0050】
C:耐食性の観点から、0.06%以下であることが好ましい。
【0051】
N:溶接性の観点から、0.06%以下であることが好ましい。
【0052】
Si、Mn:Si、Mnは脱酸のため添加される。両元素とも2%以下であることが好ましい。
【0053】
P、S:P、Sは鋼の特性を損なう元素である。それぞれ、0.1%以下、0.03%以下であることが好ましい。
【0054】
Mo:耐食性を高めるために必要に応じて添加することが好ましい。添加量は1.5%以下とすることが好ましい。
【0055】
Nb、V:耐食性を高めるために必要に応じて添加することができる。添加量は1%以下とすることが好ましい。
【0056】
O:肉盛り溶接被覆層中のOは、溶接金属材料に比べ不可避的に増加する。Oは靱性を損なう効果があるため、0.2%以下に制御することが好ましい。
【0057】
また、肉盛り溶接被覆層の金属組織は、フェライト組織、或いは、フェライトとオーステナイトからなる組織であることが好ましい。フェライトとオーステナイトからなる組織の場合、オーステナイト相は50%以下であることが好ましい。
【0058】
肉盛り溶接被覆層の結晶粒径は、小さい方がよい。具体的には結晶粒径は0.5mm以下とすることが好ましい。B、Ti、Alを本発明の範囲とすることで容易に結晶粒径を0.5mm以下にすることができる。
【0059】
肉盛り溶接方法としては、TIG、MAG、SAW(バンドアーク溶接を含む)等が適用され、必要に応じてこれらを組み合わせて使用できる。MAG、SAWは溶接効率がよいので、これらの溶接方法が推奨される。
【0060】
被覆層の厚さとしては、耳割れ防止の観点のみならず、溶接施工性を考慮に入れ、3mm以上とした。厚みを増加させると耳割れ防止効果はより確実となるため、被覆厚さは5mm以上あることが好ましい。一方、過度に厚く被覆することは溶接作業コストが増大することから好ましくない。被覆厚さは50mm以下とすることが好ましい。被覆厚さは40mm以下とすることがより好ましく、15mm以下とすることが最も好ましい。
【0061】
熱間加工:
熱間加工は、分塊鍛造、厚板圧延および熱延鋼帯圧延等をいう。鋼片の加熱温度は溶融脆性を生じない範囲での高い温度に設定する。B含有オーステナイト系ステンレス鋼の場合、1100〜1200℃とするのが好適である。熱間鍛造あるいは熱間圧延における仕上温度は高い方が耳割れ防止にとって好ましい。しかし、溶接被覆材の熱間変形能が許す限り、600〜900℃の低温仕上げとすることも可能である。
【0062】
【実施例】
まず、表1に示す化学組成を有するステンレス鋼を溶製し、鍛造および熱間加工により連続鋳造スラブ、分塊鍛造スラブ、分塊圧延スラブおよび鋼塊(インゴット)の各鋼片とした。
【0063】
【表1】

Figure 0003801861
前記各鋼片の厚さは表2に示すとおりで、長さは全て2000mmとした。
【0064】
【表2】
Figure 0003801861
各鋼片の長手方向側面に表3に示す化学組成を有するフェライト系ステンレス鋼溶接材料を、表4に示す条件でMAGまたはSAWにより肉盛り溶接した。各肉盛り溶接層中のNi、B、TiおよびAl含有量を分析により求めた結果を表2に示す。
【0065】
【表3】
Figure 0003801861
【表4】
Figure 0003801861
次に、肉盛り被覆層を設けた鋼片を熱間圧延または熱間鍛造により再加熱することなく表2に示す仕上げ板厚まで加工して鋼板とした。表2に示すように、No.6、8、9、11〜15および17をSAWで肉盛り溶接を、それ以外は、肉盛り溶接をしなかった16を除き、MAGで肉盛り溶接を施した。また、No.4、5、10、11、18および19には厚板圧延を、それ以外は熱延鋼帯圧延を施した。なお、熱間圧延または熱間鍛造における加熱温度は1150℃とした。
【0066】
SAWによる肉盛り溶接のうち、溶接材料がaまたはbの場合には、B、Ti、Alを含むフラックスを使用することにより、肉盛り溶接被覆層のB、Ti、Al含有量を調整した。具体的には、No.9ではB、Ti、Al全てを含むフラックス、No.11および12ではBを含むフラックス、No.15ではTi、Alを含むフラックスを使用した。なお、No.17ではB、Ti、Alを含まないフラックスを使用している。
【0067】
溶接割れは、断面を浸透探傷して評価した。また、熱間加工後耳割れの有無を目視観察した。
【0068】
表2から明らかなように、肉盛り溶接被覆層のNi、B量がそれぞれ4%以下、0.1〜0.4%の時、耳割れの発生がなく良好な鋼板が得られた。また、B量fが0.1%に満たない場合でも、肉盛り溶接被覆層にTi、あるいはTiに加えAlが含まれている時には、耳割れの発生がなく良好な鋼板が得られた。
【0069】
さらに肉盛り溶接被覆層にTiが含まれているもの(No.1〜4、6〜9、13〜15)とTiが含まれていないもの(No.5、10〜12)を比較すると、Tiを0.01〜2%含有する場合には、Tiを含有しない場合に比べ、圧下率(加工度)を大きくしても耳割れ発生が認められなかった。さらに、肉盛り溶接被覆層にTiが含まれているものの中でも、Alが含まれているもの(No.8、9、13、15)は、Alが含まれていないもの(No.1〜4、6、7、14)に比べ、さらに圧下率(加工度)を大きくしても耳割れ発生が認められなかった。
【0070】
一方、溶接被覆しなかったNo.16、肉盛り溶接被覆層の化学組成が本発明で規定する範囲を外れているNo.17、18、肉盛り溶接被覆厚さの小さいNo.19では、耳割れが発生し、良好な品質の鋼板が得られなかった。
【0071】
【発明の効果】
本発明の熱間加工方法によれば、難加工材の高B含有オーステナイト系ステンレス鋼片を、熱間加工の途中で再加熱しなくとも耳割れの発生がなく工業的に安定して歩留まりよく加工することができる。したがって、近年高まっている核燃料輸送用容器、使用済核燃料貯蔵ラック等原子力関連機器の中性子遮断材のニーズに対し、特性の優れた鋼板を比較的安価に供給できる。
【図面の簡単な説明】
【図1】Ni、B含有量とスラブ拘束溶接割れ性との相関を示す図である。
【図2】高温引張試験結果における絞りとNi、B含有量との相関を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot working method for B-containing austenitic stainless steel used as a neutron blocking material for nuclear equipment such as a nuclear fuel transport container and a spent nuclear fuel storage rack.
[0002]
[Prior art]
Utilizing the excellent thermal neutron absorption effect of B, austenitic stainless steel to which B is added is used in nuclear fuel transport containers, spent nuclear fuel storage racks and the like as thermal neutron control materials and blocking materials. In general, spent nuclear fuel used at a nuclear power plant is stored in a pool within the power plant until it is processed at a reprocessing plant. Due to the need to store as much spent nuclear fuel as possible in a limited site, the amount of B added to B-containing austenitic stainless steel tends to increase and the plate thickness tends to decrease.
[0003]
The amount of B dissolved in the austenite is very small, and most of the added B precipitates as a boride containing Fe and Cr. The presence of this boride deteriorates hot workability and corrosion resistance, but the tendency becomes remarkable as the amount of B increases.
[0004]
In general, hot working such as forging and rolling of B-containing austenitic stainless steel is performed by repeatedly heating the slab with a heating furnace and processing such as forging and rolling to prevent the temperature of the workpiece from decreasing. This is done while ensuring processability. Since the hot workability is inferior as the B content increases, the number of repetitions of heating and working increases in order to prevent the temperature of the workpiece from decreasing. Therefore, an increase in the content of B and a thin-wall processing of the steel lead to high manufacturing costs.
[0005]
Various studies have been made so far to solve the above problems. In JP-A-61-201726, a B-containing stainless steel ingot is shaped as it is or after being shaped into a rectangular shape, and at least four main surfaces of the steel ingot are tightly surrounded by an iron tube and crimped by split rolling or forging. A method of performing hot rolling after it has been disclosed is disclosed.
[0006]
In JP-A-63-220904, a B-containing austenitic stainless steel material as a base material is packed with a steel material having a lower deformation resistance than that, and then heated at 1100 ° C. to 1175 ° C., and T (° C.) = 53 A method of finish rolling at a temperature of × B (mass%) + 870 or more is disclosed.
[0007]
Ear cracks can be prevented by these methods, but it is difficult to ensure the required plate thickness accuracy, and the packaging material must be wrapped and disassembled after rolling, resulting in high manufacturing costs. There is.
[0008]
As a method for avoiding problems of sheet thickness accuracy, packing material wrapping and dismantling work, JP-A-4-253506 discloses that the side surface of the B-containing austenitic stainless steel material is more resistant to deformation than the base material. A hot rolling method is disclosed in which a small steel material is covered and rolled by welding as a frame material and can prevent the occurrence of ear cracks. In this method, it is necessary to prepare a frame material having a highly accurate groove shape and weld it so as not to peel off during hot working. Therefore, since normally ingots (steel ingots), forged slabs, and the like have a thickness of 80 mm or more, it is difficult to apply them to hot working.
[0009]
In addition, in JP-A-1-195243 and JP-A-5-263133, for the purpose of preventing ear cracks, a reduction rate per one heat, a lower limit temperature, etc. are regulated and repeated by heating and rolling. A method for obtaining a B-containing austenitic stainless steel sheet having a thickness of 5 mm is disclosed. These methods also have a problem of cost increase due to an increase in the number of heats, and are difficult to apply to a high-productivity tandem rolling mill that cannot be reheated due to the mechanism.
[0010]
Further, a method is known in which a metal material having good hot workability is welded and rolled on the side surface of a steel piece. According to this method, there is an advantage that the build-up weld can be removed relatively easily by a trimmer after rolling. However, in this build-up welding method, in the highly efficient welding methods such as MAG and SAW, the amount of oxygen in the weld metal becomes high and weld cracks are likely to occur. When a weld crack occurs, it may become a starting point and lead to the occurrence of an ear crack, and the ear crack cannot be completely prevented.
[0011]
In particular, in order to build up and weld to the side of a rolled material having a large area, the welding work cost cannot be reduced unless a highly efficient welding method such as MAG or SAW is employed as compared with TIG or the like.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a hot working method capable of working a high B content austenitic stainless steel to a predetermined plate thickness without causing re-heating during hot working and without generating an ear crack. . More specifically, there is no occurrence of weld cracking even when overlay welding is performed on the side surface of the steel slab by a high-efficiency welding method, and it is possible to prevent the occurrence of ear cracks in the rolled material during hot working. An object of the present invention is to provide a method for hot working a high B content austenitic stainless steel piece.
[0013]
[Means for Solving the Problems]
The gist of the present invention is the hot working method for B-containing austenitic stainless steels (1) to (3) below.
[0014]
(1) When hot-working an austenitic stainless steel piece containing 0.3 to 2.5% by mass of B, Ni: 4% or less in terms of mass% on the side of the steel piece, B: 0.1 to 0.1% A hot working method for B-containing austenitic stainless steel, which is hot-worked by providing a build-up weld coating layer made of stainless steel containing 0.4% and having a thickness of 3 mm or more.
[0015]
(2) When hot-working an austenitic stainless steel piece containing 0.3 to 2.5% by mass of B, Ni: 4% or less and B: 0.4% in mass% on the side surface of the steel piece Hereinafter, a hot working method for B-containing austenitic stainless steel, which is hot-worked by providing a build-up weld coating layer made of stainless steel containing Ti: 0.01 to 2% and having a thickness of 3 mm or more.
[0016]
(3) The B-containing austenitic stainless steel according to (2), wherein the build-up weld coating layer is a build-up weld coat layer made of stainless steel further containing Al: 0.003 to 0.4% by mass%. Hot working method.
[0017]
Here, the steel slab refers to a continuous cast slab, a block cast slab, a block rolled slab, and a cast ingot (steel ingot).
[0018]
In order to develop a metal material suitable for build-up weld coating, the present inventors adopt a method of providing a build-up weld coating layer on the side surface of the material to be rolled, which is more economical than the method of packing slabs. As a result of various tests and studies, the following findings were obtained.
[0019]
a) The weld cracking susceptibility and hot workability of the overlay weld coating layer are affected by the contents of Ni and B in the overlay weld coating layer,
b) When Ti and Al are contained in the build-up weld coating layer, the effect of preventing weld cracking and the effect of preventing ear cracking are further prominent.
[0020]
Hereinafter, the test that has led to the above knowledge will be described.
[0021]
(Test 1)
In selecting a weld coating material that does not generate weld cracks and is effective in preventing ear cracks, we first focused on existing materials.
[0022]
As the material to be rolled, an austenitic stainless steel slab cast slab containing 1% by mass of B and having a width of 140 mm, a thickness of 80 mm, and a length of 200 mm was used. Moreover, SUS308L of austenitic stainless steel, SUS436L of ferritic stainless steel, SUS329J4L of two-phase (austenite-ferrite) stainless steel and high-purity Fe are used as welding coating materials, and TIG two-layer welding is performed on the entire side surface of one side of the slab. A 5 mm thick overlay weld layer was provided. The opposite side facet was solid.
[0023]
The welding conditions were: current: 160 A, voltage: 17 V, welding speed: 10 cm / min. After the build-up welding, the presence or absence of weld cracks was confirmed by a penetration inspection test of the cross section. As a result, cracks were observed in SUS329J4L and high-purity Fe, but no cracks were observed in SUS308L and SUS436L.
[0024]
The slab thus welded and welded was rolled using a reverse hot rolling mill having a work roll diameter of 450 mm. The heating temperature of the slab was 1180 ° C. in order to avoid melt brittleness. The pass schedule was as follows.
[0025]
80->60->45->35->28->21->16->12->9->7->5-> 4 (mm) Rolling while visually checking the state of the ear cracks, Rolling was stopped. Regarding the solid side surface, the occurrence of an ear crack was observed at the seventh pass, where the surface area of the material to be rolled increases and the temperature drop also increases.
[0026]
On the side where the overlay coating was applied, when the coating material was SUS329J4L and high-purity Fe, ear cracks occurred at the eighth pass, and with high-purity Fe, ear cracks of about 5 mm were observed. Even in the case of a material having a small deformation resistance as compared with B-containing austenitic stainless steel such as high-purity Fe, it has been found that the effect of preventing the ear cracking cannot be sufficiently obtained if there is a weld crack. On the other hand, when the coating material was SUS308L or SUS436L, no ear crack was observed even after 11 passes, and it was found that the material was a weld coating material effective in preventing ear cracks.
[0027]
(Test 2)
Based on the results of Test 1, the weld coating materials were examined in more detail mainly on Cr-containing stainless steel centering on SUS308L and SUS436L. Since the amount of Ni, B, etc. in the overlay coating layer changes depending on the dilution rate during welding, the chemical components of the overlay weld coating layer are considered important for preventing weld cracks and ear cracks, and the following tests were conducted. did.
[0028]
The material used was a forged slab of austenitic stainless steel having a thickness of 150 mm, a width of 150 mm, and a length of 150 mm with various B contents. Overlay welding was carried out on the side surface of the slab with welding materials having different compositions, and weld cracking and hot workability were evaluated. The Cr content of the material and the welding material was 19 to 20% by mass. (Hereinafter, “%” for the chemical composition is “% by mass”.)
The welding method was high- efficiency MAG welding compared to TIG, and overlay welding with a thickness of 10 to 15 mm was performed on the side surface of the slab under the conditions of current: 220 A, voltage: 25 V, and welding speed: 15 cm / min.
[0029]
The weld crack was evaluated by penetrating the cross section deeply. A high temperature tensile test was used for evaluation of hot workability. A test piece having a diameter of 10 mm and a length of 130 mm was cut out from the build-up weld metal part, heated to 1150 ° C., cooled at a rate of 100 ° C./min, and subjected to a tensile test at 900 ° C. The strain rate in the tensile test was set to 1 / S, and immediately after the test, the sample was rapidly cooled to determine the drawing of the test piece (cross-sectional shrinkage, unit%).
[0030]
FIG. 1 is a diagram showing a correlation between the amounts of Ni and B of build-up weld metal obtained by analysis and slab restraint weld cracking properties. As can be seen from FIG. 1, the occurrence of weld cracks depends on the amounts of Ni and B, and exhibits excellent weld crack resistance when in a certain range.
[0031]
FIG. 2 shows the correlation between the Ni amount and B amount of the build-up weld metal and the drawing in the high-temperature tensile test result. From FIG. 2, it can be seen that the build-up weld coating layer in the range of Ni: 4% or less and B: 0.4% or less has a drawing at 900 ° C. of 60% or more and exhibits excellent hot workability.
[0032]
(Test 3)
Based on the result of Test 2, an ear cracking evaluation test by hot rolling was performed. As a material to be rolled, a forged slab of austenitic stainless steel containing 1% B and having a width of 140 mm, a thickness of 80 mm, and a length of 200 mm was used. As welding materials, SUS430 steel and SUS436L steel, which are ferritic stainless steels, were used, and overlay welding was performed by changing the dilution rate over the entire one side surface of the slab. The welding method and conditions were the same as in Test 2, and the thickness of the overlay weld coating layer was 3 mm. The other side was innocent.
[0033]
Weld cracks were evaluated for penetration cross-sections by penetration testing, but no cracks were observed.
[0034]
The slab welded and welded in this manner was hot-rolled under the same conditions as in Test 1. In the same manner as in Test 1, rolling was performed while visually confirming the state of the ear cracks, and the rolling was stopped at a path where the ear cracks occurred on both sides.
[0035]
On the solid side surface, as in Test 1, occurrence of ear cracks was observed at the seventh pass where the surface area of the material to be rolled increased and the temperature drop also increased. Ear cracks occurred with a smaller number of passes as the dilution ratio was larger, that is, the amount of Ni and B in the build-up weld metal was larger. In the case where the ear crack occurred in the same seventh pass as the solid wood, the amount of Ni and B in the build-up weld metal exceeded 4% and 0.4%, and the effect of preventing the ear crack was not obtained.
[0036]
When the build-up weld metal was Ni: 4% or less and B: 0.4% or less, the occurrence of ear cracking was observed after 9 passes, and the effect of preventing ear cracking was obtained. On the other hand, when SUS436L steel containing Ti is used as a welding material and the build-up weld metal is Ni: 4% or less and B: 0.4% or less, the occurrence of ear cracks is observed even after 11-pass rolling. Therefore, an excellent ear cracking prevention effect was obtained.
[0037]
Therefore, ferritic stainless steel with a wide variation in Ti content was used as the welding material, and as described above, the weld cracking was performed on the side surface of the slab and the ear cracking evaluation was performed by hot rolling. Then, when Ti was contained in the range of 0.01 to 2%, good ear crack prevention effect and weld crack prevention effect were obtained. In particular, these effects were remarkable when they were in the range of 0.03 to 1%. When the amount of B contained in the build-up weld metal layer is less than 0.1%, weld cracks tend to occur, but when Ti is contained, weld cracks did not occur particularly. It is considered that this is because the build-up weld structure is very fine, and a good ear crack prevention effect is obtained. When observed in more detail, it was estimated that Ti nitrides and Ti borides were formed, and these formed nuclei and formed a fine solidified structure.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
B-containing austenitic stainless steel piece:
The amount of B in the austenitic stainless steel of the hot work material is 0.3 to 2.5%. If it is less than 0.3%, the thermal neutron absorption ability is not sufficient. The thermal neutron absorption ability is improved with an increase in the amount of B added, but when it exceeds 2.5%, the ductility and toughness at room temperature deteriorate significantly. Therefore, the B content is set to 0.3 to 2.5%.
[0039]
Elements other than the B of the B-containing austenitic stainless steel targeted by the present invention are: C: 0.08% or less, Si: 1% or less, Mn: 2% or less, P: 0.04% or less, S: 0.01% or less, Cr: 16 to 25%, Ni: 7 to 15% are preferable. Moreover, it is preferable to contain Mo: 1.5% or less, Cu: 0.5% or less, Al: 0.3% or less individually or in combination as needed. From the viewpoint of securing sufficient weldability, N: 0.05% or less is preferable.
[0040]
As described above, the stainless steel piece refers to a continuously cast slab, a block forged slab, a block rolled slab, and a cast ingot (steel ingot). These steel slabs are generally rectangular parallelepiped, and are subjected to hot working such as hot rolling or forging so as to extend in the longitudinal direction. The side surface of the steel slab is a surface other than the processed surface (the surface in contact with the roll in the case of rolling), and usually a build-up weld coating layer may be provided on the entire two side surfaces in the longitudinal direction. In some cases, the corner portion of the steel slab is chamfered. In this case, a build-up weld coating layer may be provided around the corner portion or the processed surface side.
[0041]
Overlay weld coating:
The overlay welding coating layer was made of stainless steel containing Ni: 4% or less and B: 0.1-0.4%. If necessary, if Ti: 0.01-2% and Al: 0.003-0.4% are included, the B content should be 0.4% or less (including 0.1% or less). Can do.
[0042]
If Ni exceeds 4% and B exceeds 0.4%, the hot workability is not sufficient. Further, even in the range of Ni: 4% or less and B: 0.4% or less, if B is not 0.1% or more, the susceptibility to solidification cracking during build-up welding increases, and weld cracking is likely to occur. Become. In addition, when Ti: 0.01 to 2% is contained or when Al: 0.003 to 0.4% is further contained in addition to Ti, welding is performed even if B is less than 0.1%. No cracking occurs.
[0043]
In order to make the amounts of Ni and B in the build-up weld coating layer in the above ranges, it is necessary to adjust the welding material and welding conditions. That is, it is preferable to use a ferritic stainless steel having a Ni content of 3% or less and a B content of 0.3% or less as a welding material. In the case of using ferritic stainless steel containing 3% or less of Ni without containing B, for example, in SAW (including band arc welding), a flux added with B is used in the overlay welding coating layer. The amount of Ni and B may be controlled. In the case of MAG, the amount of Ni and B in the build-up weld coating layer may be controlled by using a flux-cored wire containing these alloy elements in the welding material. The same applies to a coated arc welding rod.
[0044]
Further, it is preferable to reduce as much as possible that the B-containing stainless steel melts into the build-up weld layer during hot working by lowering the amount of heat during build-up welding.
[0045]
In order to impart good weld crack resistance and hot workability to the build-up weld layer, it is preferable to contain at least 0.01% Ti. On the other hand, if it exceeds 2%, the effect of preventing ear cracking is saturated and adversely affects weldability and toughness. If it exceeds 1%, the effect of preventing weld cracking is saturated. Therefore, the Ti amount is preferably 0.01 to 1%. In order to obtain a remarkable ear crack prevention effect and a weld crack effect, the Ti content is preferably 0.03 to 0.5%.
[0046]
Al is effectively contained as a deoxidizing element in refining the solidified structure by Ti, and is thus contained as necessary. In order to obtain the effect, it is necessary to contain at least 0.003% or more, and if it exceeds 0.4%, the toughness is adversely affected, so the Al amount is 0.003 to 0.4%. It is preferable to do. More preferably, it is 0.01 to 0.2%.
[0047]
In addition, when Ti and Al are contained in the build-up weld coating layer, even if the build-up weld coat layer has a B content of less than 0.1%, a sufficient weld cracking prevention effect can be obtained.
[0048]
The reason why the build-up weld coating layer is limited to stainless steel is to secure the amount of ferrite in the weld metal and to provide the same oxidation resistance and corrosion resistance as the B-containing austenitic stainless steel of the material. For this reason, steel containing a Cr amount of 12% or more is generally called stainless steel, but the Cr amount of the build-up weld coating layer is preferably 16% or more and 25% or less, more preferably 18 % Or more.
[0049]
The object of the present invention can be achieved if the build-up weld coating layer is a stainless steel containing Ni and B in the amounts shown above, and optionally Ti and Al. However, other elements may be contained in the build-up weld coating layer. Below, the element which may be contained in the overlay welding coating layer, and its content are described.
[0050]
C: From the viewpoint of corrosion resistance, it is preferably 0.06% or less.
[0051]
N: From the viewpoint of weldability, it is preferably 0.06% or less.
[0052]
Si, Mn: Si and Mn are added for deoxidation. Both elements are preferably 2% or less.
[0053]
P, S: P and S are elements that impair the properties of steel. It is preferably 0.1% or less and 0.03% or less, respectively.
[0054]
Mo: It is preferable to add as needed in order to improve corrosion resistance. The amount added is preferably 1.5% or less.
[0055]
Nb, V: Can be added as necessary to enhance corrosion resistance. The addition amount is preferably 1% or less.
[0056]
O: O in the build-up weld coating layer inevitably increases as compared with the weld metal material. Since O has an effect of impairing toughness, it is preferably controlled to 0.2% or less.
[0057]
Moreover, it is preferable that the metal structure of the overlay welding coating layer is a ferrite structure or a structure made of ferrite and austenite. In the case of a structure composed of ferrite and austenite, the austenite phase is preferably 50% or less.
[0058]
The crystal grain size of the overlay weld coating layer is preferably small. Specifically, the crystal grain size is preferably 0.5 mm or less. By making B, Ti, and Al within the scope of the present invention, the crystal grain size can be easily reduced to 0.5 mm or less.
[0059]
As the overlay welding method, TIG, MAG, SAW (including band arc welding) or the like is applied, and these can be used in combination as necessary. Since MAG and SAW have good welding efficiency, these welding methods are recommended.
[0060]
The thickness of the coating layer was set to 3 mm or more in consideration of not only ear crack prevention but also weldability. When the thickness is increased, the effect of preventing ear cracks is more certain, and therefore the coating thickness is preferably 5 mm or more. On the other hand, an excessively thick coating is not preferable because the welding operation cost increases. The coating thickness is preferably 50 mm or less. The coating thickness is more preferably 40 mm or less, and most preferably 15 mm or less.
[0061]
Hot working:
Hot working means partial forging, thick plate rolling, hot-rolled steel strip rolling, and the like. The heating temperature of the steel slab is set to a high temperature within a range not causing melt brittleness. In the case of B-containing austenitic stainless steel, the temperature is preferably 1100 to 1200 ° C. A higher finishing temperature in hot forging or hot rolling is preferable for preventing ear cracks. However, a low temperature finish of 600 to 900 ° C. is possible as long as the hot deformability of the weld dressing permits.
[0062]
【Example】
First, stainless steel having the chemical composition shown in Table 1 was melted, and each steel piece of a continuous cast slab, a block forged slab, a block rolled slab, and a steel ingot (ingot) was formed by forging and hot working.
[0063]
[Table 1]
Figure 0003801861
The thickness of each steel piece was as shown in Table 2, and the length was all 2000 mm.
[0064]
[Table 2]
Figure 0003801861
A ferritic stainless steel welding material having the chemical composition shown in Table 3 was welded to the longitudinal side surface of each steel piece by MAG or SAW under the conditions shown in Table 4. Table 2 shows the results obtained by analyzing the contents of Ni, B, Ti and Al in each build-up weld layer.
[0065]
[Table 3]
Figure 0003801861
[Table 4]
Figure 0003801861
Next, the steel slab provided with the overlay coating layer was processed to a finished plate thickness shown in Table 2 without reheating by hot rolling or hot forging to obtain a steel plate. As shown in Table 2, no. 6, 8, 9, 11 to 15 and 17 were subjected to overlay welding with SAW, and other than that, except for 16 which was not subjected to overlay welding, overlay welding was performed with MAG. No. Thick plate rolling was applied to 4, 5, 10, 11, 18, and 19, and hot rolling steel strip rolling was applied to the rest. The heating temperature in hot rolling or hot forging was 1150 ° C.
[0066]
Among the build-up welding by SAW, when the welding material is a or b, the B, Ti, and Al contents of the build-up weld coating layer were adjusted by using a flux containing B, Ti, and Al. Specifically, no. No. 9 is a flux containing all of B, Ti and Al. 11 and 12, flux containing B, No. In No. 15, a flux containing Ti and Al was used. In addition, No. In No. 17, a flux not containing B, Ti, or Al is used.
[0067]
Weld cracks were evaluated by penetrating the cross section. Further, the presence or absence of ear cracks was visually observed after hot working.
[0068]
As is apparent from Table 2, when the Ni and B contents of the build-up weld coating layer were 4% or less and 0.1 to 0.4%, respectively, no cracking occurred and a good steel plate was obtained. Further, even when the B amount f was less than 0.1%, when the build-up weld coating layer contained Ti or Al in addition to Ti, a good steel plate was obtained with no generation of ear cracks.
[0069]
Furthermore, when the build-up weld coating layer contains Ti (No. 1-4, 6-9, 13-15) and the one not containing Ti (No. 5, 10-12), When Ti was contained in an amount of 0.01 to 2%, no ear crack was observed even when the rolling reduction (working degree) was increased as compared with the case where Ti was not contained. Further, among those in which the build-up weld coating layer contains Ti, those containing Al (No. 8, 9, 13, 15) do not contain Al (No. 1-4). , 6, 7, and 14), even if the rolling reduction (working degree) was further increased, no ear cracks were observed.
[0070]
On the other hand, no. No. 16, the chemical composition of the overlay weld coating layer is outside the range specified in the present invention. Nos. 17, 18 and No. with small build-up weld coating thickness. In No. 19, an ear crack occurred, and a steel plate with good quality could not be obtained.
[0071]
【The invention's effect】
According to the hot working method of the present invention, a high B content austenitic stainless steel piece, which is a difficult-to-work material, is industrially stable without yielding ear cracks without being reheated during hot working. Can be processed. Therefore, it is possible to supply steel plates with excellent characteristics at a relatively low cost to meet the recent needs for neutron blocking materials for nuclear equipment such as nuclear fuel transportation containers and spent nuclear fuel storage racks.
[Brief description of the drawings]
FIG. 1 is a diagram showing a correlation between Ni and B contents and slab restraint weld cracking properties.
FIG. 2 is a diagram showing a correlation between a drawing and Ni and B contents in a high-temperature tensile test result.

Claims (3)

Bを0.3〜2.5質量%含有するオーステナイト系ステンレス鋼片を熱間加工するに際し、その鋼片の側面に、質量%でNi:4%以下、B:0.1〜0.4%を含有するステンレス鋼からなる厚さ3mm以上の肉盛り溶接被覆層を設けて熱間加工することを特徴とするB含有オーステナイト系ステンレス鋼の熱間加工方法。When an austenitic stainless steel piece containing 0.3 to 2.5% by mass of B is hot worked, Ni: 4% or less, B: 0.1 to 0.4% by mass on the side surface of the steel piece. A hot working method for B-containing austenitic stainless steel, characterized by providing a weld weld coating layer having a thickness of 3 mm or more, which is made of stainless steel containing 2%, and hot working. Bを0.3〜2.5質量%含有するオーステナイト系ステンレス鋼片を熱間加工するに際し、その鋼片の側面に、質量%でNi:4%以下、B:0.4%以下、Ti:0.01〜2%を含有するステンレス鋼からなる厚さ3mm以上の肉盛り溶接被覆層を設けて熱間加工することを特徴とするB含有オーステナイト系ステンレス鋼の熱間加工方法。When hot-working an austenitic stainless steel piece containing 0.3 to 2.5% by mass of B, Ni: 4% or less, B: 0.4% or less, Ti: : A hot working method for B-containing austenitic stainless steel, characterized by providing hot working by providing a build-up weld coating layer made of stainless steel containing 0.01 to 2% and having a thickness of 3 mm or more. 肉盛り溶接被覆層が、さらに質量%でAl:0.003〜0.4%を含有するステンレス鋼からなる肉盛り溶接被覆層であることを特徴とする請求項2記載のB含有オーステナイト系ステンレス鋼の熱間加工方法。The B-containing austenitic stainless steel according to claim 2, wherein the build-up weld coating layer is a build-up weld coat layer made of stainless steel further containing Al: 0.003 to 0.4% by mass. Hot working method of steel.
JP2000378687A 1999-12-17 2000-12-13 Hot working method for B-containing austenitic stainless steel Expired - Fee Related JP3801861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378687A JP3801861B2 (en) 1999-12-17 2000-12-13 Hot working method for B-containing austenitic stainless steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35997599 1999-12-17
JP11-359975 1999-12-17
JP2000378687A JP3801861B2 (en) 1999-12-17 2000-12-13 Hot working method for B-containing austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2001239364A JP2001239364A (en) 2001-09-04
JP3801861B2 true JP3801861B2 (en) 2006-07-26

Family

ID=26581050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378687A Expired - Fee Related JP3801861B2 (en) 1999-12-17 2000-12-13 Hot working method for B-containing austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3801861B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155074B2 (en) 2002-09-11 2008-09-24 住友金属工業株式会社 Stainless steel material containing B and method for producing the same
ES2422011T3 (en) * 2005-09-15 2013-09-06 Sumitomo Metal Ind Production method of an original blank for a coated sheet, consisting of three layers of stainless steel
JP4633748B2 (en) * 2007-01-25 2011-02-16 株式会社大同キャスティングス Method for producing highly corrosion-resistant boiler cladding for waste incinerator and powder cladding material used therefor
JP2008208430A (en) * 2007-02-27 2008-09-11 Nippon Steel & Sumikin Stainless Steel Corp Soft austenitic stainless steel and manufacturing method therefor
CN101947549A (en) * 2010-09-10 2011-01-19 山东泰山钢铁集团有限公司 Production technology for inhibiting nickel-saving austenitic stainless steel hot-rolled plate edge crack

Also Published As

Publication number Publication date
JP2001239364A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
CN104662188B (en) Ferrite-group stainless steel
JP4258678B1 (en) Austenitic stainless steel
US8465604B2 (en) Ferritic stainless steel sheet having excellent corrosion resistance and method of manufacturing the same
TWI460292B (en) Ferritic stainless steel
JP5088244B2 (en) Stainless steel welded joint weld metal
US20180305797A1 (en) Ferritic stainless steel
JP4155074B2 (en) Stainless steel material containing B and method for producing the same
JP3801861B2 (en) Hot working method for B-containing austenitic stainless steel
JP3815114B2 (en) Hot working method for B-containing austenitic stainless steel
JP4613791B2 (en) Stainless steel material containing B and method for producing the same
JP3549368B2 (en) Flux-cored wire for welding of hot working jig
JP3858077B2 (en) Welding material and method for manufacturing welded joint
JP4241431B2 (en) Ferritic stainless steel
JP2002294404A (en) High carbon hot rolling steel material suitable for friction pressure welding and production method therefor
JP4305031B2 (en) Method for producing stainless steel material containing B
JP2009012071A (en) Weld metal of stainless steel weld joint, and its forming method
JP4331340B2 (en) Flux-cored wire for carbon dioxide gas used for low alloy steel
JP3685864B2 (en) Material for hot rolling of high B content austenitic stainless steel and hot rolling method
JP4220088B2 (en) Welded joint for steel structure and method for producing the same
JP4350257B2 (en) Materials for hot rolling of Fe-Cr and Fe-Cr-Ni stainless steels and methods for preventing ear cracks during hot rolling
JPH04272131A (en) Production of b-containing austenitic stainless steel
JP4573392B2 (en) Austenitic stainless steel hot rolling material and hot rolling method
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength
JP4214334B2 (en) Hot rolling method for stainless steel
Westin Henry Granjon Prize Competition 2009 Winner Category B:“Materials Behaviour and Weldability” Pitting Corrosion Resistance of GTA Welded Lean Duplex Stainless Steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees