JP3801486B2 - Disinfecting seawater supply method and apparatus - Google Patents

Disinfecting seawater supply method and apparatus Download PDF

Info

Publication number
JP3801486B2
JP3801486B2 JP2001345448A JP2001345448A JP3801486B2 JP 3801486 B2 JP3801486 B2 JP 3801486B2 JP 2001345448 A JP2001345448 A JP 2001345448A JP 2001345448 A JP2001345448 A JP 2001345448A JP 3801486 B2 JP3801486 B2 JP 3801486B2
Authority
JP
Japan
Prior art keywords
seawater
water
filter medium
intake
disinfecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001345448A
Other languages
Japanese (ja)
Other versions
JP2003145145A (en
Inventor
祐公 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photoscience Japan Corp
Original Assignee
Photoscience Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photoscience Japan Corp filed Critical Photoscience Japan Corp
Priority to JP2001345448A priority Critical patent/JP3801486B2/en
Publication of JP2003145145A publication Critical patent/JP2003145145A/en
Application granted granted Critical
Publication of JP3801486B2 publication Critical patent/JP3801486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、漁港に併設される海産物市場などに適用される消毒海水供給方法およびその装置に係り、特に、海水をろ過及び消毒して供給できる消毒海水供給方法およびその装置に関する。
【0002】
【従来の技術】
漁港に併設される海産物市場(以下、海産物市場を「産地市場」という)では、海産魚介物、海産魚介物を扱う荷捌き場、せり場、魚箱等の洗浄のために、海水が使われることが多い。これは、主に、産地市場の立地条件による利便性と経済的な理由による。すなわち、利便性の観点では、海が近いので海水を容易に取水することができる、という理由による。経済的な観点では、海産魚介物、荷捌き場、せり場、魚箱等の洗浄水として水道水を使用した場合に、水道水は料金が高い、という理由による。また、水道水を使うと魚介物の鮮度が低下する、という理由もある。
【0003】
一方、産地市場では、海水を洗浄水として使用するので、衛生管理上の課題がある。例えば、海産物を発祥起源とする腸炎ビブリオなどによる食中毒患者の発生数が毎年数千人規模にのぼり、衛生管理水準の向上が要請されている。なお、欧米などの水産先進国では、既にHACCPが法規化されており、このため、国内でも衛生管理水準の向上が急務となっている。
【0004】
そこで、衛生的な海水、つまり腸炎ビブリオなどに汚染されていない海水を得るには、漁港湾内ではなく沖合いから取水する、という方法がある。しかしながら、この方法は現実にはほとんど導入されていない。これは、▲1▼産地市場の経営体である漁業協同組合の経営状態が厳しく、新規投資が難しいこと、▲2▼多くの産地市場では、沖合い取水装置などの機械装置類を管理する人材に乏しいこと、▲3▼沖合い取水には莫大な設置費用がかかること、などの事情による。
【0005】
衛生的な海水を得るための他の方法として、漁港湾内から取水した海水を消毒処理する、という方法がある。一例として、漁港湾内から取水した海水を塩素処理あるいはオゾン処理する、といった方法がとられる。
具体的には、塩素処理では、取水した海水に、液体の次亜塩素酸ナトリウムを添加する、あるいは固形塩素(サラシ粉)を溶解する、といった方法がとられる。この方法は古くから行われている手法であるが、有機物成分の共存下では、有害物質のトリハロメタンが副生物として生成することが知られている。そして、塩素剤自体も魚毒性が高く、海苔などの海藻類への影響も大きい。このため、塩素処理を施した海水が直接海に還流する産地市場では、適切な処理方法とはいえない。
オゾン処理では、海水中に高濃度の臭素イオンが存在するため、発ガン性物質の臭素酸が副生物として生成することが知られている。臭素酸は、活性炭処理により容易に除去できるが、活性炭をろ材として用いた場合には、その活性炭層で細菌などの微生物が発生してしまい、「殺菌、消毒」という本来の目的が達成できなくなる。また、残留するオゾン成分は、魚毒性が高く、塩素処理と同様に、産地市場では適切な処理方法とはいいがたい。
【0006】
また、海水を洗浄水として使用する場合には、濁りのない海水が必要とされる。このため、例えば、ろ材として砂を用いたろ過器に取水した海水を通してろ過する方法がとられる。この場合、次のような短所がある。▲1▼ろ材の粒径にバラツキがあり、ろ過効果に影響を及ぼす有効ろ層の厚みは、粒径が最も小さな、ごく薄い部分である。このため、ろ過能力の向上に限界がある。▲2▼有効ろ層の特性から、濁質負荷が高いときにはろ過処理量がごく少なくても、ろ過器が閉塞してしまう。▲3▼ろ過処理に要するポンプの揚程や容量は、有効ろ層の通水抵抗によって規定される。このため、砂をろ材として用いたろ過器に必要な処理ポンプは、大型の高揚程のものがもとめられる。▲4▼ろ材である砂の比重は2.5以上である。また、ろ過通水圧力が高くなる傾向があるため、ろ過器の容器は鋼板製であることが多い。すると、ろ材と容器とを合わせたろ過器の総体重量が非常に重いものになり、取扱に多くの人手を要し、高コストの要因になる。
【0007】
さらに、こうした設備を設けた産地市場でも、海水を取水する取水管内面に海水生物(例えば、「フジツボ、カキ殻」など)が付着するので、しだいに取水管に海水が通りにくくなり、数年で取水管の更新すなわち取り換えが必要になることが多い。これは、費用負担の点から大きな障害となり、産地市場での使用海水消毒機能の維持という観点から大きな問題である。
【0008】
【発明が解決しようとする課題】
本発明は、上記の点に鑑みて為されたもので、海水をろ過及び消毒して供給できる消毒海水供給方法およびその装置を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明に係る消毒海水供給方法は、海水を取水する工程と、取水した海水をろ材に通してろ過する工程と、前記取水した海水を前記ろ過の後又は前の少なくとも一方において紫外線で消毒する工程とを具備し、ろ過及び消毒済みの海水を供給することを特徴とする消毒海水供給方法において、メンテナンス時において、前記ろ過する工程及び前記紫外線で消毒する工程を実行せずに、前記海水を取水する工程で使用する海水取水口の付近にて殺菌剤を添加して該海水取水口を介して殺菌済み海水を取水する殺菌工程を実行し、前記取水した殺菌済み海水で前記ろ材を洗浄すること、及び前記取水した殺菌済み海水を前記ろ過及び消毒の際の海水の通水経路内に通水させて該通水経路内を殺菌すること、の少なくとも一方を行い、メンテナンス終了時において、前記殺菌工程を終了させ、前記海水を取水する工程、前記ろ過する工程、前記紫外線で消毒する工程を実行し、前記ろ過及び消毒済みの海水を前記通水経路内に通水させることで当該通水経路内に残留している前記殺菌済み海水を洗い流すことを特徴とするものである。
また、本発明に係る消毒海水供給装置は、海水を取水し通水する管路手段と、前記管路手段の途中に設けられ、前記取水した海水をろ材でろ過するろ過手段と、前記管路手段の途中に設けられ、前記取水した海水を前記ろ過の後又は前の少なくとも一方において紫外線で消毒する紫外線照射手段と、前記管路手段の海水取水口の付近にて殺菌剤を添加する殺菌剤添加手段とを具備する消毒海水供給装置であって、通常運転時において、前記管路手段を介して海水を取水して前記ろ過手段によるろ過及び前記紫外線照射手段による消毒を行い、ろ過及び消毒済みの海水を供給し、メンテナンス時において、前記殺菌剤添加手段により前記海水取水口の付近にて殺菌剤を添加すると共に、該海水取水口を介して殺菌済み海水を取水し、該取水した殺菌済み海水で前記ろ材を洗浄すること及び該取水した殺菌済み海水を前記管路手段の通水経路内に通水させて該通水経路内を殺菌すること、の少なくとも一方を行い、メンテナンス終了時において、前記殺菌剤添加手段による前記殺菌剤の添加を終了させ、前記管路手段を介して海水を取水して前記ろ過手段によるろ過及び前記紫外線照射手段による消毒を行い、ろ過及び消毒済みの海水を前記通水経路内に通水させることで当該通水経路内に残留している前記殺菌済み海水を洗い流すことを特徴とするものである。
上記消毒海水供給方法及び装置によれば、海水を取水し、その取水した海水をろ材でろ過し、そのろ過した海水を紫外線で消毒するので、ろ過及び消毒済みの海水を、塩素消毒などに比べて二次汚染のない安全な手法で、供給できる。したがって、本発明を海産物産地市場における洗浄用水の供給手段として適用するような場合、環境に優しい安全な手法で安価な海水を有効に利用することができる。また、紫外線照射工程又は手段を具備する一方で、それとは別途に、海水取水口の付近にて殺菌剤を添加する殺菌剤添加工程又は手段を具備し、メンテナンス時において、該殺菌剤添加工程又は手段による殺菌剤によってろ材の洗浄又は通水経路内の殺菌を行うことで、確実な洗浄又は通水経路内の殺菌を行うことができるようにしたものであり、更に、メンテナンス終了時においては、海水を取水して紫外線照射による消毒を行い、ろ過及び消毒済みの海水を通水経路内に通水させることで当該通水経路内に残留している殺菌済み海水を洗い流すようにしているので、海産物等食品の洗浄に際して高い安全性を確保することができるシステムを提供することができる。
【0010】
【発明の実施の形態】
添付図面を参照して本発明の実施の形態を説明する。
図1は、本発明に係る消毒海水供給装置の一実施例を示す概略構成図である。図1に示す消毒海水供給装置は、例えば、漁港に併設される産地市場に設けられる。
【0011】
図1において、消毒海水供給装置は、海水取水用の取水管1と、取水管路2と、ろ過器3と、紫外線消毒器4と、配水管路5と、殺菌剤添加装置6などを含む。取水管1は、海水取水口1aから海水Wを取水する。取水管路2は、取水用配管2a、除塵器F、除塵水用配管2b、取水処理用ポンプP1、給水用配管2cなどを備える。取水管路2では、取水処理用ポンプP1が駆動されることで、取水管1に海水Wを取水させ、その取水海水W1を、取水用配管2a、除塵器F、除塵水用配管2b、給水用配管2cを通じてろ過器3に供給する。
【0012】
ろ過器3は、FRP製のろ過容器3aと、所定のろ材からなるろ材層Cなどを備える。このろ過器3は、ろ過容器3a内において、通常運転時に取水海水W1をろ材層Cに通してろ過する。ろ過器3には、ろ材層Cでろ過したろ過海水W2をろ過水処理用配管3bを通じて紫外線消毒器4に供給する。ろ過容器3aの底部とろ過水処理用配管3bには、それぞれ、排水バルブを備える排水管3c,3dが設けられる。排水管3c,3dは、後述するろ過器機能回復運転時に使用される。
ろ材層Cは、一例として、適宜の浮上性ろ材を用いると好適である。浮上性ろ材としては、例えば、比重が1g/mlよりも軽い合成樹脂製(一例として、発泡スチロール製)の粒状のろ材を用いることができる。このろ材の粒径は、砂ろ材のそれよりも大きい。ろ材層Cは、粒径が一定の浮上性ろ材を多数用いて、ろ過効果に影響を及ぼす有効ろ過層の厚みすなわちろ材層Cの厚みを、ろ過容器3a内に供給される取水海水W1のろ過流量に対して最大のろ過能力を発揮できるように設定してある。このような浮上性ろ材を用いる際には、そのろ材を洗浄するためにろ過容器3a内に攪拌部材(図示せず)が設けられる。
【0013】
紫外線消毒器4は、ろ過器3の後段に配置され、該ろ過器3から供給されるろ過海水W2などを紫外線消毒する。この紫外線消毒器4は、ろ過器3から供給されるろ過海水W2などを通水する通水管4aと、該通水管4a内に設けられた紫外線照射用の紫外線ランプ(図示せず)などを備える。紫外線消毒器4では、通水管4a内に供給された海水W2に紫外線ランプで紫外線を照射して当該海水W2を消毒し、その消毒済み海水W3をタンク給水用配管4bを通じて配水管路5のクッションタンクTに供給する。紫外線消毒器4は、ろ過器3の後段に配置されているので、ろ過器3から供給される濁りのない海水W2に紫外線を均一に照射することができ、よって、紫外線照射による消毒効果を向上できる。
【0014】
配水管路5は、クッションタンクTと、配水用配管5aと、配水処理用ポンプP2などを備える。クッションタンクTは、紫外線消毒器4から供給される消毒済みろ過水海水W3を一時貯水するものである。配水用配管5aには、配水処理用ポンプP2や複数の給水栓(図示例では、3つの給水栓)V1〜V3などが設けられる。配水用配管5aは、クッションタンクTから配水処理用ポンプP2、給水栓V1〜V3を経て当該クッションタンクTに戻る閉ループ状の還流路をなすように構成される。給水栓V1〜V3は、市場内における必要な洗浄作業個所に適宜設けられており、洗浄用水を供給して、海産魚介物、荷捌き場、せり場、魚箱等を洗浄するために利用される。
【0015】
殺菌剤添加装置6は、メンテナンス時において、取水管1、該取水管1で取水する取水海水W1、その取水海水W1を通水する取水管路2や配水管路5などを消毒・殺菌するための殺菌剤を、取水管1の海水取水口1aの付近にて添加するものである。メンテナンス時においては、通常運転すなわち前記給水栓V1〜V3を介した洗浄用水の供給を中止し、ろ材層C内のろ材の洗浄あるいは管路全体の殺菌処理などを行う。殺菌剤添加装置6は、殺菌剤として過酸化水素水を収容した収容容器6aを有し、ポンプP3の駆動によって該容器6a内の過酸化水素水を配管6bを通して海水取水口1aの付近に排出する。後述するように、過酸化水素水が添加された殺菌剤添加海水W4が取水口1aから取水管路2に取り込まれ、ろ材の洗浄あるいは管路全体の殺菌処理などに使用される。
【0016】
本実施例に示す消毒海水供給装置は、図示しない制御盤を具備し、この制御盤には、装置全体を管理・運用するプログラムや各種データ(設定データ)などを記憶したメモリや、MPUなどからなる制御部などが格納されている。制御部には、運転モード切替えスイッチが電気的に接続されており、この運転モード切替えスイッチを操作することで、通常運転、ろ過機能回復運転、移行運転(ろ過機能回復運転から通常運転に移行する場合の移行運転)の3種類の運転モードに切り替えることができる。制御部は、3種類の運転モードに応じて、取水処理用ポンプP1、配水処理用ポンプP2、ポンプP3、ろ過器3の攪拌部材の駆動モータ(図示せず)や排水管3c,3dの排水バルブなどを適宜駆動制御する。通常運転は、海水を洗浄用水として使用する場合に行われるが、ろ過機能回復運転や移行運転は、海水を洗浄用水として使用しない時間帯や産地市場の休日などを利用して行われる。
【0017】
次に、本実施例に示す消毒海水供給装置の3種類の運転モードに応じた運転動作を、図1を参照して説明する。
先ず、通常運転について説明する。取水管路2では、取水処理用ポンプP1が駆動されることで、取水管1から海水Wを取水する。取水管1で取水した取水海水W1は、取水管路2の取水用配管2a、除塵器C、取水処理用ポンプP1、除塵水用配管2b及び給水用配管2cを通ってろ過器3に導入される。その際に、取水海水W1中に含まれる海生生物などの比較的粗大な除塵対象物質が除塵器Cで除塵される。このため、ろ過器3には、比較的微小なろ過対象物質を含む取水海水W1が供給される。
【0018】
ろ過器3では、ろ過容器3a内において、取水管路2から導入される取水海水W1をろ材層Cに下から上に通してろ過する。この場合、取水海水W1をろ材層Cに下から上に通すので、浮上性ろ材の表面に微小なろ過対象物質が付着する。ろ材の粒径は砂ろ材よりも大きくなるように作られているので、砂ろ材に比べてろ過抵抗が小さい。このため、取水管路2から導入される取水海水W1を効率よくろ過することができる。取水海水W1は、ろ材層Cを通ることで濁りのない清水のろ過海水W2とされる。そして、そのろ過海水W2は、ろ過水処理用配管3bを通って紫外線消毒器4の通水管4a内に導入される。
【0019】
紫外線消毒器4では、通水管4a内を通るろ過海水W2に紫外線ランプで紫外線を照射する。ろ過海水W2は、紫外線が照射されることで消毒・殺菌される。ろ過海水W2への紫外線の照射量は装置の処理能力に応じて適宜設定される。本例では、一例として、ろ過海水W2への紫外線の照射量を10mJ/cm2 としている。紫外線消毒器4で消毒・殺菌されたされた消毒済みろ過海水W3は、タンク給水用配管4bを通って配水管路5のクッションタンクTに導入される。
【0020】
配水管路5では、消毒済みろ過海水W3をクッションタンクTで貯水する。そして、配水処理用ポンプP2が駆動されることで、クッションタンクTから消毒済みろ過海水W3を配水用配管5aに給水する。これにより、給水栓V1〜V3を開放すれば、消毒済みろ過海水W3を海産魚介物、荷捌き場、せり場、魚箱等の洗浄水として使用することができる。
【0021】
洗浄水として使用されない消毒済みろ過海水W3は、給水用配管5aを通じてクッションタンクTに戻される。クッションタンクTでは、その消毒済みろ過海水W3を貯水する。このように、洗浄水として使用されない消毒済みろ過海水W3は、クッションタンクTに戻されるので、取水処理用ポンプP1や配水処理用ポンプP2の駆動を適宜制御することで、取水海水W1の取水量や消毒済みろ過海水W3の配水量の流量調整を容易に行うことができる。一例として、洗浄水の使用量に応じて取水処理用ポンプP1または配水処理用ポンプP2の稼働時間を適宜制御することで、クッションタンクTへの消毒済みろ過海水W3の給水量を調整するような流量制御が可能になる。
【0022】
次に、ろ過機能回復運転について説明する。通常運転を長時間継続した場合には、ろ過器3において、浮上性ろ材の表面に付着した付着物質によってろ材層Cが目詰まりを起こすので、ろ過器3のろ過機能が低下する。このため、ろ過器3のろ過機能を回復することを目的として、ろ過機能回復運転(すなわち、ろ材の洗浄処理)を行う。ろ過機能回復運転を行うに当たって、給水栓V1〜V3の全てを開放し、配水処理用ポンプP2を駆動し、配水管路5に残留していた消毒済みろ過海水W3を開放状態の給水栓V1〜V3から排出する。その後、給水栓V1〜V3の全てを閉塞する。これにより、殺菌剤添加海水W4を取水管路2〜配水管路5に満たして当該取水管路2〜配水管路5を消毒・殺菌することができる。
【0023】
殺菌剤添加装置6では、ポンプP3が駆動されることで、殺菌剤収容容器6aから過酸化水素水が配管6bを通して取水管1内に海水取水口1a付近から適量添加される。この過酸化水素水の添加量は装置の処理能力に応じて適宜設定される。一例として、過酸化水素水の添加量は2〜50ppm程度とすればよいが、望ましく10〜20ppmがよい。このとき同時に、ポンプP1を駆動して海水取水口1aから取水管路2内に過酸化水素水が添加された海水すなわち殺菌剤添加海水W4を取り込む。
【0024】
殺菌剤添加海水W4は、取水管路2の取水用配管2a、除塵器C、取水処理用ポンプP1、除塵水用配管2b及び給水用配管2cを通ってろ過器3に導入される。その際に、殺菌剤添加海水W4は、取水用配管2a、除塵器C、取水処理用ポンプP1、除塵水用配管2b及び給水用配管2cの内面を消毒・殺菌する。また、殺菌剤添加海水W4中に含まれる海生生物などの比較的粗大な除塵対象物質は除塵器Fで除塵される。
【0025】
ろ過器3では、ろ過容器3a内において、取水管路2から導入される殺菌剤添加海水W4を攪拌部材で攪拌する。これにより、浮上性ろ材が殺菌剤添加海水W4と共に攪拌されるので、この攪拌作用でろ材同士が衝突してろ材表面から付着物質が剥離する。このとき、ろ材はろ過容器3aの内面にも当たるので、そのろ過容器3a内面に付着している付着物質も当該内面から剥離する。これによって、ろ材だけでなく容器内面をも洗浄することができる。ろ材表面や容器内面から剥離した付着物質は殺菌剤添加海水W4中に浮遊する。このように、ろ材表面や容器内面から付着物質が剥離するので、ろ過器3のろ過機能を回復することができる。
殺菌剤添加海水W4に浮遊する付着物質のうち、比較的重い付着物質はろ過容器3aの底部に堆積し、比較的軽い付着物質は殺菌剤添加海水W4中に浮遊し続ける。そこで、排水管3cの排水バルブを開放して、該排水管3cから海水と共に底部に堆積している堆積付着物質を外部に排出する。同時に、排水管3dの排水バルブを開放して、ろ過容器3aの上部に浮遊している浮遊付着物質を該排水管3dから海水と共に外部に排出する。これにより、堆積付着物質や浮遊付着物質の混合量の少ない殺菌剤添加海水W4をろ過水処理用配管3bを介して外線消毒器4の通水管4a内に供給することができる。
【0026】
紫外線消毒器4では、殺菌剤添加海水W4が通水管4a内を通るので、当該通水管4a内を殺菌剤添加海水W4で消毒・殺菌することができる。通水管4a内の殺菌剤添加海水W4は、タンク給水用配管4bを介して配水管路5のクッションタンクTに導入される。
【0027】
配水管路5では、クッションタンクTが殺菌剤添加海水W4を貯水する。配水処理用ポンプP2の駆動を行うことで、殺菌剤添加海水W4をクッションタンクTから給水用配管5aに給水して当該クッションタンクTに戻す。これにより、取水管1〜配水管路5が殺菌剤添加海水W4で満たされるので、当該殺菌剤添加海水W4により取水管1〜配水管路5を消毒・殺菌することができる。
上述のろ過機能回復運転の最中、取水管1の海水取水口1a付近にて過酸化水素水を添加するので、その殺菌効果によって取水管1の内面にフジツボ、カキ殻などの海生生物が付着するのを防止でき、取水海水W1の取水能力を長期に渡って確保できる。
【0028】
次に、移行運転について説明する。
ろ過機能回復運転を行った場合には、殺菌剤添加海水W4が取水管1〜配水管路5に残留しているので、通常運転を行う前に、その殺菌剤添加海水W4を洗い流す必要がある。そのため、殺菌剤添加海水W4を洗い流すことを目的として、移行運転を行う。移行運転を行うに当たって、給水栓V1〜V3の全てを開放しておく。これにより、取水海水W1が取水管路2に供給されるのに伴い、上述のろ過機能回復運転で取水管1〜配水管路5に残留している殺菌剤添加海水W4を給水栓V1〜V3から洗い流すことができる。また、殺菌剤添加海水W4を給水栓V1〜V3から排出した後に、給水栓V1〜V3の全てを閉塞することで、配水管路5を消毒済みろ過海水W3で満たすことができる。
なお、移行運転においては、取水管1〜紫外線消毒器4の動作は、上述した通常運転と同様であるので、その動作説明は省略する。
【0029】
配水管路5では、クッションタンクTが消毒済みろ過海水W3を貯水する。そして、配水処理用ポンプP2が駆動されることで、配水管路5に残留していた殺菌剤添加海水W4を開放状態の給水栓V1〜V3から洗い流す。そして、給水栓V1〜V3を閉塞し、引き続き配水処理用ポンプP2の駆動を行うことで、消毒済みろ過海水W3をクッションタンクTから給水用配管5aに給水して当該クッションタンクTに戻す。これにより、配水管路5が消毒済みろ過海水W3で満たされるので、通常運転を行うことが可能となる。
【0030】
図2に、本発明の実施例で述べた殺菌剤(過酸化水素水)による消毒・殺菌処理を行う消毒海水供給装置Aと、殺菌剤による消毒・殺菌処理を行わない従来技術の消毒海水供給装置Bとの腸炎ビブリオ菌数の推移について比較実験を行った実測データを示す。この実験にあたっては、装置A及びBについて、原海水、ろ過海水、紫外線処理海水(図示例では、UV処理水)を採取し、腸炎ビブリオ菌数の分析を行った。図では、装置A及びBの稼働日付を横軸に示し、その稼働日付に応じて得られる腸炎ビブリオ菌数を縦軸に示す。なお、紫外線処理海水についての腸炎ビブリオ菌数は、同図の右側に示す本実施例の装置A(1年使用済みランプを使用)に特定の日(2001/10/8)に検出されただけで、その他の日についてはゼロであった。上記特定の日に腸炎ビブリオ菌数が検出された理由は、台風の影響で海水が著しく汚染されていた、という事情に基づく。
【0031】
図から明らかなように、本実施例の装置Aでは、原海水の腸炎ビブリオ菌数の最大値a1は、従来技術の装置Bにおける原海水の腸炎ビブリオ菌数の最大値b1よりも小さく、原海水の腸炎ビブリオ菌数の最小値a2も、従来技術の装置Bにおける原海水の腸炎ビブリオ菌数の最小値b2よりも小さい。また、ろ過海水の腸炎ビブリオ菌数の最大値a11は、従来技術の装置Bにおけるろ過海水の腸炎ビブリオ菌数の最大値b11よりも小さく、ろ過海水の腸炎ビブリオ菌数の最小値a12も、従来技術の装置Bにおけるろ過海水の腸炎ビブリオ菌数の最小値b12よりも小さい。このように、本実施例の装置Aにおける原海水及びろ過海水の腸炎ビブリオ菌数は、従来技術の装置Bにおける原海水及びろ過海水の腸炎ビブリオ菌数よりも減少しているので、過酸化水素水を用いて取水海水や該取水海水の通水経路内を消毒・殺菌処理した場合には、腸炎ビブリオ菌数が減少する、ということが判る。従って、過酸化水素水を取水海水に添加することで、海水を衛生的な洗浄水として供給できる、という優れた効果を奏する。
【0032】
本実施例の装置Aでは、実験に当たり、新品の紫外線ランプを使用したが、1年使用済みの紫外線ランプを本実施例の装置Aに使用した場合の腸炎ビブリオ菌数に対応する実測データを同図の右側に示す。この場合、図に示されるように、原海水及びろ過海水の腸炎ビブリオ菌数は、装置Aの稼働日数が長くなるに伴って増加する傾向にある。従って、海水を衛生的な洗浄水として供給には、新品の紫外線ランプを使用するとよい。
【0033】
本実施例に示す消毒海水供給装置では、ろ過器3において、ろ材層Cのろ材として浮上性ろ材を用いたが、これに限られるものでなく、ろ材層Cのろ材として砂ろ材を用いてよい。この場合には、ろ過容器3aの内部に、例えば、上部と下部とに出水口を具備する海水導入管を設け、この海水導入管の上部出水口と下部出水口とにそれぞれ出水口開閉用の制御バルブを設ける。そして、通常運転時及び移行運転時に、制御バルブを制御して、海水導入管の上部出水口を閉じると共に、下部出水口を開くことで、取水管路2から供給される取水海水W1を砂ろ材層に下から上に通してろ過する。また、ろ過機能回復運転時には、制御バルブを制御して、海水導入管の上部出水口を開くと共に、下部出水口を閉じることで、取水管路2から供給される殺菌剤添加海水W4を砂ろ材層に上から下に通してろ過する。このように、殺菌剤添加海水W4を砂ろ材層に上から下に通す、いわゆる「逆洗」を行うことで、殺菌剤添加海水W4がろ過容器3a内で取水海水W1の通水方向とは逆方向に通水して攪拌される。この逆洗による殺菌剤添加海水W4の攪拌作用によって砂ろ材を攪拌できるので、砂ろ材の表面に付着している付着物質が砂ろ材表面から剥離すると共に、ろ過容器3aの内面に付着している付着物質も当該内面から剥離する。これによって、砂ろ材だけでなく、ろ過容器3aの内面をも洗浄することができる。したがって、砂ろ材を用いた場合には、殺菌剤添加海水W4の逆洗を行うことで、ろ過器3のろ過機能を回復することができる。勿論、上記逆洗と攪拌部材とを併用して殺菌剤添加海水W4を攪拌するように構成してよい。
【0034】
また、紫外線消毒器4をろ過器3の後段に配置したが、同様な構成の紫外線消毒器4をろ過器3の前段すなわち取水管路2とろ過器3との間に配置してよいし、前段と後段の両方に配置してよい。
【0035】
また、上記実施例では、メンテナンス時に、殺菌剤添加海水W4を取水管路2からろ過器3を介して紫外線消毒器4に供給することで、ろ材洗浄処理と管路殺菌処理とを同時に行っているが、これに限らず、ろ過器3をバイパスさせて殺菌剤添加海水W4を流すことにより、取水管路2、紫外線消毒器4、配水管路5などの管路殺菌処理のみを行うようにしてもよい。
【0036】
以上、説明したように、本実施例に示す消毒海水供給装置は、取水海水W1をろ過し、そのろ過海水W2を消毒して配水するので、海水を衛生的な洗浄用水として供給できる。
【0037】
また、殺菌剤として過酸化水素水を使用するので、塩素処理、オゾン処理のように有害副生物質を生成することなく取水海水W1を消毒・殺菌できる。これによって、二次汚染の可能性を最小に抑えながら取水海水W1の消毒・殺菌が可能となる。また、塩素剤やオゾンに比べて魚毒性が低い過酸化水素水を使用することで、産地市場での海水消毒機能を高いレベルで維持することができる。また、取水管1の内面にフジツボ、カキ殻などの海生生物が付着するのを防止でき、取水管1による取水海水W1の取水能力を長期に渡って確保できる。
【0038】
また、ろ材として、砂ろ材の粒径よりも粒径が大きく、かつ、比重が1g/mlよりも軽い合成樹脂製の浮上性ろ材を用いるので、砂ろ材に比べてろ過抵抗が小さい。このため、砂ろ材を使用した場合と同じろ過流量をえるために必要なポンプの揚程が小さくなるので、取水処理用ポンプP1として小型で低コストのものを用いることができる。
【0039】
また、ろ過抵抗が小さいため、ろ過速度(単位ろ過面積あたりのろ過水量)が大きい。つまり、砂ろ材を使用した場合と同じろ過水量をえるためのろ過容器3aの直径が小さなものですむ。また、ろ過通水圧力も小さくてすむために、ろ過容器3aの材質をFRP製とすることができる。これは、海水を洗浄水として使用するろ過器3の用途から見れば、ろ過容器3aは耐蝕性に優れる、という利点がある。また、ろ材層Cをなすろ材やろ過容器3aはともに軽量の材質で製作できる工業製品であるので、ろ過器3の総体重量が非常に軽量になる。このため、ろ過器3それ自体の取扱が容易で、かつ、コスト的にも安価なものとなる、という利点がある。
【0040】
また、運転モード切替えスイッチを操作することで、通常運転、ろ過機能回復運転、移行運転を設定できるので、保守管理の技術者がいなくても装置の管理及び運用が容易であり、産地市場の条件に適合した消毒海水供給装置を提供できる。
【0041】
【発明の効果】
以上、述べたように、本実施例に係る消毒海水供給方法及び装置によれば、海水を取水し、その取水した海水をろ材でろ過し、そのろ過した海水を紫外線で消毒するので、ろ過及び消毒済みの海水を供給できる、という優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係る消毒海水供給装置の一実施例を示す概略構成図。
【図2】 図1に示す消毒海水供給装置における稼働日数に伴う腸炎ビブリオ菌数の変化の実験結果を、従来装置と比較して例示するグラフ。
【符号の説明】
1 取水管
2 取水管路
3 ろ過器
4 紫外線消毒器
5 配水管路
6 殺菌剤添加装置
F 除塵器
P1 取水処理用ポンプ
P2 配水処理用ポンプ
P3 殺菌剤添加処理用ポンプ
T クッションタンク
C ろ材層
V1〜V3 給水栓
W1 取水海水
W2 ろ過海水
W3 消毒済みろ過海水
W4 殺菌剤添加海水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a disinfecting seawater supply method and apparatus applied to a seafood market or the like attached to a fishing port, and more particularly, to a disinfecting seawater supply method and apparatus capable of supplying filtered and disinfected seawater.
[0002]
[Prior art]
In the marine products market attached to the fishing port (hereinafter referred to as the “production market”), seawater is used to clean marine seafood, cargo handling areas that handle marine seafood, docks, fish boxes, etc. There are many cases. This is mainly due to convenience and economic reasons due to the location conditions of the production market. That is, from the viewpoint of convenience, it is because the sea is close and seawater can be easily taken. From an economic point of view, when tap water is used as cleaning water for marine seafood, cargo handling areas, gills, fish boxes, etc., tap water is expensive. There is also a reason that the freshness of fishery products decreases when tap water is used.
[0003]
On the other hand, in the production area market, since seawater is used as washing water, there is a problem in hygiene management. For example, the number of patients with food poisoning due to Vibrio parahaemolyticus originated from marine products has risen to the thousands of people every year, and there is a need to improve the level of hygiene management. In advanced fisheries countries such as Europe and the United States, HACCP has already been stipulated, and for this reason, there is an urgent need to improve the level of sanitation management in Japan.
[0004]
Therefore, in order to obtain sanitary seawater, that is, seawater that is not contaminated with Vibrio parahaemolyticus, there is a method of taking water from offshore rather than in a fishing port. However, this method has hardly been introduced in reality. This is because (1) the management of the fishery cooperative, which is the management body of the production area market, is difficult and it is difficult to make new investments. (2) In many production areas, it is a human resource that manages machinery and equipment such as offshore water intake equipment. This is due to the fact that it is scarce and (3) offshore water intake requires enormous installation costs.
[0005]
Another method for obtaining sanitary seawater is to disinfect seawater taken from within the fishing port. As an example, a method of chlorinating or ozone-treating seawater taken from within a fishing port is taken.
Specifically, in chlorination, a method of adding liquid sodium hypochlorite or dissolving solid chlorine (salach powder) to the taken seawater is used. Although this method has been practiced for a long time, it is known that trihalomethane, a harmful substance, is produced as a by-product in the presence of organic components. The chlorine agent itself is highly toxic to fish and has a great influence on seaweeds such as laver. For this reason, it cannot be said that it is an appropriate processing method in the production center market where the chlorinated seawater returns directly to the sea.
Ozone treatment is known to produce carcinogenic bromic acid as a by-product because high concentrations of bromine ions are present in seawater. Bromic acid can be easily removed by activated carbon treatment, but when activated carbon is used as a filter medium, microorganisms such as bacteria are generated in the activated carbon layer, and the original purpose of “sterilization and disinfection” cannot be achieved. . In addition, the remaining ozone component is highly toxic to fish, and, like chlorination, it is difficult to say that it is an appropriate treatment method in the production market.
[0006]
Moreover, when using seawater as washing water, the seawater without turbidity is required. For this reason, for example, the method of filtering through the seawater taken in the filter using sand as a filter medium is taken. In this case, there are the following disadvantages. (1) The particle diameter of the filter medium varies, and the thickness of the effective filter layer that affects the filtration effect is the smallest part with the smallest particle diameter. For this reason, there is a limit in improving the filtration capacity. (2) Due to the characteristics of the effective filter layer, when the load of turbidity is high, the filter is clogged even if the amount of filtration treatment is very small. (3) The pump head and capacity required for the filtration treatment are defined by the flow resistance of the effective filter layer. For this reason, the processing pump required for the filter using sand as a filter medium is required to have a large high lift. (4) The specific gravity of sand as a filter medium is 2.5 or more. Moreover, since the filtration water pressure tends to be high, the container of the filter is often made of a steel plate. As a result, the total weight of the filter including the filter medium and the container becomes very heavy, which requires a lot of manpower to handle and causes a high cost.
[0007]
In addition, even in the production markets where these facilities are installed, seawater organisms (for example, “barnacles, oyster shells”, etc.) adhere to the inner surface of intake pipes that take in seawater. Therefore, it is often necessary to renew or replace the intake pipe. This is a big problem from the viewpoint of cost burden, and is a big problem from the viewpoint of maintaining the seawater disinfection function used in the production area market.
[0008]
[Problems to be solved by the invention]
This invention is made | formed in view of said point, and intends to provide the disinfection seawater supply method and its apparatus which can filter and disinfect and supply seawater.
[0009]
[Means for Solving the Problems]
  The disinfecting seawater supply method according to the present invention includes a step of taking seawater, a step of filtering the taken-up seawater through a filter medium, and a step of disinfecting the taken-up seawater with ultraviolet rays at least after or before the filtration. And supplying sterilized seawater that has been filtered and sterilizedIn the maintenance, without performing the step of filtering and the step of disinfecting with ultraviolet light, a bactericidal agent is added in the vicinity of the seawater intake used in the step of taking the seawater, and the seawater intake is opened. A sterilization step of taking sterilized seawater through, washing the filter medium with the sterilized seawater taken, and passing the sterilized seawater taken into the seawater passage during the filtration and disinfection At least one of passing water and sterilizing the inside of the water flow path, ending the sterilization process at the end of maintenance, taking the seawater, filtering, and disinfecting with ultraviolet light And the sterilized seawater remaining in the water passage is washed away by passing the filtered and disinfected seawater through the water passage.Is.
  Further, the disinfecting seawater supply device according to the present invention includes a pipe means for taking in and passing seawater, a filtering means provided in the middle of the pipe means for filtering the taken-up seawater with a filter medium, and the pipe line Ultraviolet irradiation means provided in the middle of the means for disinfecting the taken-up seawater with ultraviolet rays at least one after or before the filtration;A disinfecting seawater supply device comprising a disinfectant addition means for adding a disinfectant in the vicinity of the seawater intake port of the conduit means, which takes in seawater through the conduit means during normal operation. Then, filtering by the filtering means and disinfection by the ultraviolet irradiation means, supplying filtered and disinfected seawater, and at the time of maintenance, adding a disinfectant near the seawater intake by the disinfectant adding means Sterilized seawater is taken through the seawater intake, the filter medium is washed with the sterilized seawater taken, and the sterilized seawater thus taken is passed through the water passage of the conduit means. At least one of sterilizing the inside of the water flow path is performed, and at the end of the maintenance, the addition of the sterilizing agent by the sterilizing agent adding unit is ended, and seawater is taken in through the conduit unit. Perform disinfection by filtration and the ultraviolet light irradiation means by serial filtration means, washing out the sterilized seawater remaining in the water passage path by filtration and disinfected seawater it is passed through the water flow pathIt is characterized by this.
  According to the disinfecting seawater supply method and apparatus, seawater is taken, the seawater taken is filtered with a filter medium, and the filtered seawater is disinfected with ultraviolet rays. Therefore, the filtered and disinfected seawater is compared with chlorine disinfection. Can be supplied in a safe manner without secondary contamination. Therefore, when the present invention is applied as a means for supplying cleaning water in the seafood production area market, it is possible to effectively use inexpensive seawater by an environmentally friendly and safe technique.In addition, while having an ultraviolet irradiation step or means, it is provided with a bactericide addition step or means for adding a bactericide near the seawater intake, and at the time of maintenance, the bactericide addition step or means By sterilizing the filter medium or sterilizing in the water passage with the sterilizing agent by means, it is possible to perform reliable cleaning or sterilization in the water passage, and at the end of maintenance, Since the seawater is taken and disinfected by ultraviolet irradiation, the sterilized seawater remaining in the water passage is washed away by passing the filtered and disinfected seawater through the water passage. It is possible to provide a system that can ensure high safety when cleaning food such as seafood.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of a disinfecting seawater supply device according to the present invention. The disinfecting seawater supply device shown in FIG. 1 is provided, for example, in a production market that is attached to a fishing port.
[0011]
In FIG. 1, the disinfecting seawater supply device includes a water intake pipe 1, a water intake pipe 2, a filter 3, a UV disinfector 4, a water distribution pipe 5, a disinfectant addition apparatus 6, and the like. . The intake pipe 1 takes seawater W from the seawater intake 1a. The water intake pipe 2 includes a water intake pipe 2a, a dust remover F, a dust removal water pipe 2b, a water intake treatment pump P1, a water supply pipe 2c, and the like. In the intake pipe 2, the intake water treatment pump P <b> 1 is driven to cause the intake pipe 1 to take in the seawater W, and the intake seawater W <b> 1 is supplied to the intake pipe 2 a, the dust remover F, the dust removal water pipe 2 b, and the water supply It supplies to the filter 3 through the piping 2c for work.
[0012]
The filter 3 includes a filter container 3a made of FRP, a filter medium layer C made of a predetermined filter medium, and the like. The filter 3 filters the intake seawater W1 through the filter medium layer C during normal operation in the filtration container 3a. The filtered seawater W2 filtered by the filter medium layer C is supplied to the filter 3 through the filtered water treatment pipe 3b to the ultraviolet disinfector 4. Drain pipes 3c and 3d each having a drain valve are provided at the bottom of the filtration container 3a and the filtered water treatment pipe 3b, respectively. The drain pipes 3c and 3d are used during the filter function recovery operation described later.
As an example of the filter medium layer C, it is preferable to use an appropriate floating filter medium. As the floatable filter medium, for example, a granular filter medium made of a synthetic resin having a specific gravity lower than 1 g / ml (for example, made of polystyrene foam) can be used. The particle size of this filter medium is larger than that of the sand filter medium. The filter medium layer C uses a large number of floatable filter media having a constant particle size, and filters the intake water seawater W1 supplied into the filtration container 3a with the thickness of the effective filter layer affecting the filtration effect, that is, the thickness of the filter medium layer C. It is set so that the maximum filtration capacity can be demonstrated with respect to the flow rate. When such a floatable filter medium is used, a stirring member (not shown) is provided in the filtration container 3a in order to wash the filter medium.
[0013]
The ultraviolet sterilizer 4 is disposed at the subsequent stage of the filter 3 and sterilizes the filtered seawater W2 and the like supplied from the filter 3 with ultraviolet rays. The ultraviolet sterilizer 4 includes a water pipe 4a for passing the filtered seawater W2 supplied from the filter 3, and an ultraviolet lamp (not shown) for irradiating ultraviolet light provided in the water pipe 4a. . In the ultraviolet disinfector 4, the seawater W2 supplied into the water pipe 4a is irradiated with ultraviolet rays by an ultraviolet lamp to disinfect the seawater W2, and the disinfected seawater W3 is cushioned in the distribution pipe 5 through the tank water supply pipe 4b. Supply to tank T. Since the ultraviolet disinfector 4 is arranged at the subsequent stage of the filter 3, it can uniformly irradiate the non-turbid seawater W2 supplied from the filter 3 with ultraviolet rays, thereby improving the disinfection effect by the ultraviolet irradiation. it can.
[0014]
The water distribution pipe 5 includes a cushion tank T, a water distribution pipe 5a, a water distribution processing pump P2, and the like. The cushion tank T temporarily stores the sterilized filtered water seawater W3 supplied from the ultraviolet disinfector 4. The water distribution pipe 5a is provided with a water distribution processing pump P2, a plurality of water supply taps (three water supply taps in the illustrated example) V1 to V3, and the like. The water distribution pipe 5a is configured to form a closed loop return path from the cushion tank T to the cushion tank T through the water distribution processing pump P2 and the water supply taps V1 to V3. The water taps V1 to V3 are appropriately provided at the necessary cleaning work locations in the market, and are used to supply cleaning water to clean marine seafood, cargo handling areas, gills, fish boxes, etc. The
[0015]
The sterilizing agent adding device 6 disinfects and sterilizes the intake pipe 1, the intake seawater W1 taken by the intake pipe 1, the intake pipe 2 and the water distribution pipe 5 through which the intake seawater W1 passes during maintenance. Is added in the vicinity of the seawater intake 1 a of the intake pipe 1. At the time of maintenance, the normal operation, that is, the supply of cleaning water through the water supply taps V1 to V3 is stopped, and the filter medium in the filter medium layer C is cleaned or the entire pipeline is sterilized. The disinfectant addition device 6 has a storage container 6a that stores hydrogen peroxide as a disinfectant, and discharges the hydrogen peroxide in the container 6a to the vicinity of the seawater intake 1a through the pipe 6b by driving the pump P3. To do. As will be described later, the bactericidal agent-added seawater W4 to which hydrogen peroxide has been added is taken into the intake pipe 2 from the intake port 1a and used for cleaning the filter medium or sterilizing the entire pipe.
[0016]
The disinfecting seawater supply apparatus shown in the present embodiment includes a control panel (not shown). This control panel includes a program for managing and operating the entire apparatus, a memory storing various data (setting data), an MPU, and the like. The control part etc. which become are stored. An operation mode changeover switch is electrically connected to the control unit. By operating this operation mode changeover switch, normal operation, filtration function recovery operation, and transition operation (transition from filtration function recovery operation to normal operation are performed. The operation mode can be switched to three types of operation modes. The control unit is configured to discharge water from the water intake treatment pump P1, the water distribution treatment pump P2, the pump P3, the drive motor (not shown) of the stirring member of the filter 3 and the drain pipes 3c and 3d according to the three operation modes. Valves and the like are appropriately driven and controlled. The normal operation is performed when seawater is used as cleaning water, but the filtration function recovery operation and the transition operation are performed using a time zone during which seawater is not used as cleaning water or holidays in the production area market.
[0017]
Next, the operation | movement operation | movement according to three types of operation modes of the disinfection seawater supply apparatus shown in a present Example is demonstrated with reference to FIG.
First, normal operation will be described. In the intake pipe 2, the seawater W is taken from the intake pipe 1 by driving the intake treatment pump P <b> 1. The intake seawater W1 taken by the intake pipe 1 is introduced into the filter 3 through the intake pipe 2a, the dust collector C, the intake treatment pump P1, the dust removal water pipe 2b, and the feed water pipe 2c. The At that time, a relatively coarse dust removal target material such as marine organisms contained in the intake seawater W1 is removed by the dust remover C. For this reason, the intake water seawater W1 containing a comparatively minute filtration object substance is supplied to the filter 3.
[0018]
In the filter 3, the intake seawater W <b> 1 introduced from the intake pipe 2 is filtered through the filter medium layer C from below in the filtration container 3 a. In this case, since the intake seawater W1 is passed through the filter medium layer C from the bottom to the top, a minute substance to be filtered adheres to the surface of the floatable filter medium. Since the particle size of the filter medium is made larger than that of the sand filter medium, the filtration resistance is smaller than that of the sand filter medium. For this reason, the intake seawater W1 introduced from the intake pipe 2 can be efficiently filtered. The intake seawater W1 passes through the filter medium layer C, and is made into filtered seawater W2 of clear water without turbidity. Then, the filtered seawater W2 is introduced into the water pipe 4a of the ultraviolet disinfector 4 through the filtered water treatment pipe 3b.
[0019]
In the ultraviolet disinfector 4, the filtered seawater W2 passing through the water pipe 4a is irradiated with ultraviolet rays by an ultraviolet lamp. The filtered seawater W2 is sterilized and sterilized by being irradiated with ultraviolet rays. The irradiation amount of the ultraviolet rays to the filtered seawater W2 is appropriately set according to the processing capacity of the apparatus. In this example, as an example, the irradiation amount of ultraviolet rays to the filtered seawater W2 is 10 mJ / cm.2It is said. The sterilized filtered seawater W3 sterilized and sterilized by the ultraviolet disinfector 4 is introduced into the cushion tank T of the water distribution pipe 5 through the tank water supply pipe 4b.
[0020]
In the water distribution pipe 5, the sterilized filtered seawater W3 is stored in the cushion tank T. Then, the water distribution treatment pump P2 is driven to supply the sterilized filtered seawater W3 from the cushion tank T to the water distribution pipe 5a. Thereby, if the faucets V1 to V3 are opened, the sterilized filtered seawater W3 can be used as cleaning water for marine seafood, cargo handling areas, gills, fish boxes, and the like.
[0021]
The sterilized filtered seawater W3 that is not used as cleaning water is returned to the cushion tank T through the water supply pipe 5a. In the cushion tank T, the sterilized filtered seawater W3 is stored. In this way, the sterilized filtered seawater W3 that is not used as cleaning water is returned to the cushion tank T. Therefore, by appropriately controlling the driving of the water intake treatment pump P1 and the water distribution treatment pump P2, the water intake amount of the intake seawater W1 And the flow rate of the distribution amount of the sterilized filtered seawater W3 can be easily adjusted. As an example, the water supply amount of the sterilized filtered seawater W3 to the cushion tank T is adjusted by appropriately controlling the operation time of the water intake treatment pump P1 or the water distribution treatment pump P2 according to the amount of washing water used. Flow control becomes possible.
[0022]
Next, the filtration function recovery operation will be described. When normal operation is continued for a long time, in the filter 3, the filter medium layer C is clogged by the adhering substances adhering to the surface of the floatable filter medium, so that the filtration function of the filter 3 is deteriorated. For this reason, for the purpose of recovering the filtration function of the filter 3, a filtration function recovery operation (that is, a filter medium cleaning process) is performed. In performing the filtration function recovery operation, all of the water taps V1 to V3 are opened, the water distribution processing pump P2 is driven, and the disinfected filtered seawater W3 remaining in the water distribution pipe 5 is opened. Discharge from V3. Thereafter, all of the water taps V1 to V3 are closed. Thereby, the bactericidal agent-added seawater W4 can be filled in the water pipeline 2 to the water distribution pipeline 5 and the water intake pipeline 2 to the water distribution pipeline 5 can be sterilized and sterilized.
[0023]
In the sterilizing agent adding device 6, by driving the pump P3, an appropriate amount of hydrogen peroxide from the sterilizing agent storage container 6a is added into the intake pipe 1 from the vicinity of the seawater intake 1a through the pipe 6b. The amount of hydrogen peroxide water added is appropriately set according to the processing capacity of the apparatus. As an example, the amount of hydrogen peroxide solution added may be about 2 to 50 ppm, and preferably 10 to 20 ppm. At the same time, the pump P1 is driven to take in the seawater to which hydrogen peroxide has been added into the intake pipe 2 from the seawater intake port 1a, that is, the bactericidal agent-added seawater W4.
[0024]
The bactericidal agent-added seawater W4 is introduced into the filter 3 through the intake pipe 2a, the dust collector C, the intake water treatment pump P1, the dust removal water pipe 2b, and the water supply pipe 2c. At that time, the disinfectant-added seawater W4 disinfects and disinfects the inner surfaces of the water intake pipe 2a, the dust remover C, the water intake treatment pump P1, the dust water removal pipe 2b, and the water supply pipe 2c. Further, a relatively coarse dust removal target substance such as marine organisms contained in the bactericide-added seawater W4 is removed by the dust remover F.
[0025]
In the filter 3, the bactericide-added seawater W <b> 4 introduced from the intake pipe 2 is stirred by the stirring member in the filtration container 3 a. As a result, the floatable filter medium is stirred together with the bactericidal agent-added seawater W4, so that the filter medium collides with this stirring action, and the adhered substances are separated from the filter medium surface. At this time, since the filter medium also hits the inner surface of the filtration container 3a, the adhering substances adhering to the inner surface of the filtration container 3a are also peeled off from the inner surface. Thereby, not only the filter medium but also the inner surface of the container can be cleaned. The adhering substances peeled off from the filter medium surface and the container inner surface float in the bactericidal agent-added seawater W4. Thus, the adhering substance is peeled off from the filter medium surface and the container inner surface, so that the filtration function of the filter 3 can be recovered.
Of the adhering substances floating in the bactericidal agent-added seawater W4, relatively heavy adhering substances accumulate on the bottom of the filtration container 3a, and relatively light adhering substances continue to float in the bactericidal agent-added seawater W4. Therefore, the drainage valve of the drainage pipe 3c is opened, and the deposited adhering material deposited on the bottom together with the seawater is discharged from the drainage pipe 3c to the outside. At the same time, the drain valve of the drain pipe 3d is opened, and the floating adhering substance floating on the upper part of the filtration container 3a is discharged from the drain pipe 3d to the outside together with seawater. As a result, the bactericide-added seawater W4 with a small amount of deposited adhering substances and floating adhering substances can be supplied into the water pipe 4a of the external line disinfector 4 through the filtered water treatment pipe 3b.
[0026]
In the ultraviolet disinfector 4, the bactericidal agent-added seawater W4 passes through the water passage 4a, so that the water passage 4a can be sterilized and sterilized with the bactericidal agent-added seawater W4. The bactericidal agent-added seawater W4 in the water pipe 4a is introduced into the cushion tank T of the water distribution pipe 5 through the tank water supply pipe 4b.
[0027]
In the water distribution pipe 5, the cushion tank T stores the bactericidal agent-added seawater W4. By driving the water distribution treatment pump P2, the bactericidal agent-added seawater W4 is supplied from the cushion tank T to the water supply pipe 5a and returned to the cushion tank T. Thereby, since the intake pipe 1 to the distribution pipe 5 is filled with the bactericidal agent-added seawater W4, the intake pipe 1 to the distribution pipe 5 can be sterilized and sterilized by the bactericidal agent-added seawater W4.
During the filtration function recovery operation described above, hydrogen peroxide is added in the vicinity of the seawater intake 1a of the intake pipe 1 so that marine organisms such as barnacles and oyster shells are formed on the inner surface of the intake pipe 1 by the sterilization effect. Adhesion can be prevented, and the intake capacity of the intake seawater W1 can be secured over a long period of time.
[0028]
Next, the transition operation will be described.
When the filtration function recovery operation is performed, since the bactericidal agent-added seawater W4 remains in the intake pipe 1 to the distribution pipe 5, it is necessary to wash out the bactericidal agent-added seawater W4 before performing normal operation. . Therefore, the transition operation is performed for the purpose of washing away the bactericidal agent-added seawater W4. In performing the transfer operation, all of the water taps V1 to V3 are opened. Thus, as the intake seawater W1 is supplied to the intake pipe 2, the sterilizer-added seawater W4 remaining in the intake pipe 1 to the distribution pipe 5 in the above-described filtration function recovery operation is supplied to the water faucets V1 to V3. Can be washed away from. Moreover, after discharging the bactericidal agent-added seawater W4 from the water taps V1 to V3, the distribution pipe 5 can be filled with the sterilized filtered seawater W3 by closing all the water taps V1 to V3.
In the transition operation, the operations of the water intake pipe 1 to the ultraviolet disinfector 4 are the same as those in the normal operation described above, and thus the description of the operation is omitted.
[0029]
In the water distribution pipe 5, the cushion tank T stores the sterilized filtered seawater W3. Then, when the water distribution processing pump P2 is driven, the bactericidal agent-added seawater W4 remaining in the water distribution pipe 5 is washed away from the open water taps V1 to V3. Then, the water faucets V1 to V3 are closed and the water distribution treatment pump P2 is continuously driven, whereby the sterilized filtered seawater W3 is supplied from the cushion tank T to the water supply pipe 5a and returned to the cushion tank T. Thereby, since the water distribution pipe line 5 is filled with the sterilized filtered seawater W3, it is possible to perform normal operation.
[0030]
FIG. 2 shows a disinfecting seawater supply apparatus A that performs disinfection and sterilization treatment with a disinfectant (hydrogen peroxide solution) described in the embodiment of the present invention, and a conventional disinfecting seawater supply that does not perform disinfection and disinfection processing with a disinfectant. The actual measurement data which performed the comparison experiment about transition of the Vibrio parahaemolyticus count with the apparatus B are shown. In this experiment, raw seawater, filtered seawater, and ultraviolet-treated seawater (in the illustrated example, UV-treated water) were collected from devices A and B, and the number of Vibrio parahaemolyticus was analyzed. In the figure, the operating dates of the devices A and B are shown on the horizontal axis, and the number of Vibrio parahaemolyticus obtained according to the operating dates is shown on the vertical axis. In addition, the Vibrio parahaemolyticus count about ultraviolet-treated seawater was only detected on a specific day (2001/10/8) in the apparatus A (using a one-year-used lamp) of this example shown on the right side of the figure. And on other days it was zero. The reason why the Vibrio parahaemolyticus count was detected on the specific day is based on the fact that seawater was significantly contaminated by the influence of the typhoon.
[0031]
As is clear from the figure, in the apparatus A of the present example, the maximum value a1 of Vibrio parahaemolyticus in the raw seawater is smaller than the maximum value b1 of Vibrio parahaemolyticus in the raw seawater in the prior art apparatus B. The minimum value a2 of the Vibrio parahaemolyticus count of seawater is also smaller than the minimum value b2 of the Vibrio parahaemolyticus count of raw seawater in the apparatus B of the prior art. Moreover, the maximum value a11 of the Vibrio parahaemolyticus count of filtration seawater is smaller than the maximum value b11 of the Vibrio parahaemolyticus bacteria of the filtration seawater in the prior art apparatus B, and the minimum value a12 of Vibrio parahaemolyticus bacteria of the filtration seawater is also conventional. It is smaller than the minimum value b12 of Vibrio parahaemolyticus in the filtered seawater in the technical apparatus B. Thus, the Vibrio parahaemolyticus count of the raw seawater and filtered seawater in the apparatus A of the present embodiment is smaller than the Vibrio parahaemolyticus count of the raw seawater and filtered seawater in the prior art apparatus B. It can be seen that the number of Vibrio parahaemolyticus decreases when water is used to disinfect and sterilize the intake seawater and the passage of the intake seawater. Therefore, by adding the hydrogen peroxide solution to the seawater, the seawater can be supplied as sanitary washing water.
[0032]
In the apparatus A of the present embodiment, a new ultraviolet lamp was used for the experiment, but the actual measurement data corresponding to the Vibrio parahaemolyticus count when the ultraviolet lamp used for one year was used in the apparatus A of the present embodiment was the same. Shown on the right side of the figure. In this case, as shown in the figure, the number of Vibrio parahaemolyticus in the raw seawater and filtered seawater tends to increase as the operating days of the apparatus A become longer. Therefore, a new ultraviolet lamp may be used to supply seawater as sanitary washing water.
[0033]
In the disinfecting seawater supply apparatus shown in the present embodiment, the floating filter medium is used as the filter medium of the filter medium layer C in the filter 3, but the present invention is not limited to this, and a sand filter medium may be used as the filter medium of the filter medium layer C. . In this case, for example, a seawater introduction pipe having a water outlet at the upper part and the lower part is provided inside the filtration container 3a, and the upper and lower water outlets of the seawater introduction pipe are respectively for opening and closing the water outlet. Provide a control valve. Then, during normal operation and transition operation, the control valve is controlled to close the upper water outlet of the seawater introduction pipe and open the lower water outlet so that the intake seawater W1 supplied from the intake pipe 2 is sand-filtered. Filter through the layers from bottom to top. In addition, during the filtration function recovery operation, the control valve is controlled to open the upper water outlet of the seawater introduction pipe and close the lower water outlet to disinfect the sterilizer-added seawater W4 supplied from the intake pipe 2 with the sand filter medium. Filter through the layers from top to bottom. In this way, by performing so-called “backwashing” in which the bactericidal agent-added seawater W4 is passed through the sand filter material layer from the top to the bottom, the bactericidal agent-added seawater W4 is the flow direction of the intake seawater W1 in the filtration container 3a. The water is stirred in the reverse direction. Since the sand filter medium can be stirred by the stirring action of the bactericide-added seawater W4 by this backwash, the adhering substances adhering to the surface of the sand filter medium are peeled off from the surface of the sand filter medium and are also attached to the inner surface of the filtration container 3a. Adhering substances are also peeled off from the inner surface. Thereby, not only the sand filter medium but also the inner surface of the filtration container 3a can be washed. Therefore, when a sand filter medium is used, the filtration function of the filter 3 can be recovered by backwashing the bactericidal agent-added seawater W4. Of course, the backwashing and the stirring member may be used in combination to stir the bactericidal agent-added seawater W4.
[0034]
Moreover, although the ultraviolet disinfector 4 was arrange | positioned in the back | latter stage of the filter 3, you may arrange | position the ultraviolet disinfector 4 of the same structure in the front | former stage of the filter 3, ie, the water intake pipe line 2, and the filter 3, You may arrange | position to both a front | former stage and a back | latter stage.
[0035]
Moreover, in the said Example, a filter medium washing | cleaning process and a pipe line sterilization process are performed simultaneously by supplying the sterilizer addition seawater W4 from the water pipe line 2 to the ultraviolet-ray disinfector 4 through the filter 3 at the time of a maintenance. However, the present invention is not limited to this, and only the sterilization treatment of the intake pipe 2, the ultraviolet disinfector 4, the water distribution pipe 5, etc. is performed by bypassing the filter 3 and flowing the sterilizing-added seawater W4. May be.
[0036]
As described above, the disinfecting seawater supply device shown in the present embodiment filters the intake seawater W1, disinfects the filtered seawater W2, and distributes the water, so that the seawater can be supplied as sanitary washing water.
[0037]
Moreover, since hydrogen peroxide water is used as a disinfectant, the intake seawater W1 can be sterilized and sterilized without generating harmful by-products like chlorination and ozone treatment. This makes it possible to disinfect and sterilize the intake seawater W1 while minimizing the possibility of secondary contamination. Moreover, seawater disinfection function in the production market can be maintained at a high level by using hydrogen peroxide water, which is less toxic to fish than chlorinating agents and ozone. In addition, marine organisms such as barnacles and oyster shells can be prevented from adhering to the inner surface of the intake pipe 1, and the intake capacity of the intake seawater W1 by the intake pipe 1 can be ensured for a long period of time.
[0038]
In addition, as the filter medium, a floatation filter medium made of a synthetic resin having a particle size larger than that of the sand filter medium and having a specific gravity lower than 1 g / ml is used, so that the filtration resistance is smaller than that of the sand filter medium. For this reason, since the pump head required for obtaining the same filtration flow rate as when sand filter media is used is reduced, a small and low cost pump for water intake treatment P1 can be used.
[0039]
Moreover, since filtration resistance is small, the filtration rate (filtrated water amount per unit filtration area) is large. That is, the diameter of the filtration container 3a for obtaining the same amount of filtered water as when sand filter media is used is small. Further, since the filtration water pressure can be small, the material of the filtration container 3a can be made of FRP. This has the advantage that the filtration container 3a is excellent in corrosion resistance when viewed from the application of the filter 3 that uses seawater as washing water. In addition, since the filter medium and the filter container 3a forming the filter medium layer C are both industrial products that can be manufactured from light materials, the overall weight of the filter 3 is very light. For this reason, there is an advantage that the filter 3 itself can be easily handled and is inexpensive.
[0040]
Also, normal operation, filtration function recovery operation, and transition operation can be set by operating the operation mode changeover switch, so that the management and operation of the equipment is easy even without a maintenance management engineer, and the conditions in the production market Disinfecting seawater supply device suitable for
[0041]
【The invention's effect】
As described above, according to the disinfecting seawater supply method and apparatus according to the present embodiment, seawater is taken, the taken seawater is filtered with a filter medium, and the filtered seawater is disinfected with ultraviolet rays. It has an excellent effect of being able to supply disinfected seawater.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a disinfecting seawater supply device according to the present invention.
FIG. 2 is a graph illustrating an experimental result of a change in the number of Vibrio parahaemolyticus associated with the number of working days in the disinfecting seawater supply device shown in FIG. 1 in comparison with a conventional device.
[Explanation of symbols]
1 Intake pipe
2 Intake pipeline
3 Filter
4 UV disinfector
5 Water distribution pipelines
6 Disinfectant addition equipment
F Dust remover
P1 Water treatment pump
P2 Water distribution treatment pump
P3 Disinfectant addition treatment pump
T cushion tank
C Filter media layer
V1-V3 water tap
W1 intake water
W2 filtered seawater
W3 Sanitized filtered seawater
W4 Disinfectant-added seawater

Claims (8)

海水を取水する工程と、
取水した海水をろ材に通してろ過する工程と、
前記取水した海水を前記ろ過の後又は前の少なくとも一方において紫外線で消毒する工程と
を具備し、ろ過及び消毒済みの海水を供給することを特徴とする消毒海水供給方法において、
メンテナンス時において、前記ろ過する工程及び前記紫外線で消毒する工程を実行せずに、前記海水を取水する工程で使用する海水取水口の付近にて殺菌剤を添加して該海水取水口を介して殺菌済み海水を取水する殺菌工程を実行し、
前記取水した殺菌済み海水で前記ろ材を洗浄すること、及び前記取水した殺菌済み海水を前記ろ過及び消毒の際の海水の通水経路内に通水させて該通水経路内を殺菌すること、の少なくとも一方を行い、
メンテナンス終了時において、前記殺菌工程を終了させ、前記海水を取水する工程、前記ろ過する工程、前記紫外線で消毒する工程を実行し、前記ろ過及び消毒済みの海水を前記通水経路内に通水させることで当該通水経路内に残留している前記殺菌済み海水を洗い流すことを特徴とする消毒海水供給方法。
A process of taking seawater;
A step of filtering the taken seawater through a filter medium;
A step of disinfecting the taken-up seawater with ultraviolet rays after at least one of the filtration and before the filtration, and supplying filtered and disinfected seawater .
At the time of maintenance, without performing the step of filtering and the step of disinfecting with ultraviolet rays, a bactericidal agent is added in the vicinity of the seawater intake used in the step of taking in the seawater, and the seawater intake is passed through the seawater intake. Execute sterilization process to take sterilized seawater,
Washing the filter medium with the sterilized seawater taken, and sterilizing the inside of the water passage by passing the sterilized seawater taken through the water passage of seawater during the filtration and disinfection. Do at least one of
At the end of the maintenance, the sterilization step is terminated, the step of taking the seawater, the step of filtering, the step of disinfecting with ultraviolet light is performed, and the filtered and disinfected seawater is passed through the water passage. The disinfecting seawater supply method characterized by wash | cleaning the said sterilized seawater which remains in the said water flow path by doing .
前記ろ過及び消毒済みの海水を海産物市場内に配置された配管を介して海産物などの洗浄用水として供給する工程をさらに具備する請求項1に記載の消毒海水供給方法。  The disinfected seawater supply method according to claim 1, further comprising a step of supplying the filtered and disinfected seawater as cleaning water for seafood or the like through a pipe disposed in the seafood market. 前記ろ材として、比重が1g/mlよりも軽い浮上性ろ材を用いる請求項1又は2に記載の消毒海水供給方法The disinfecting seawater supply method according to claim 1 or 2 , wherein a floatable filter medium having a specific gravity lighter than 1 g / ml is used as the filter medium. 前記殺菌剤として、過酸化水素水を用いる請求項1乃至のいずれかに記載の消毒海水供給方法The disinfecting seawater supply method according to any one of claims 1 to 3 , wherein hydrogen peroxide water is used as the disinfectant. 海水を取水し通水する管路手段と、
前記管路手段の途中に設けられ、前記取水した海水をろ材でろ過するろ過手段と、
前記管路手段の途中に設けられ、前記取水した海水を前記ろ過の後又は前の少なくとも一方において紫外線で消毒する紫外線照射手段と
前記管路手段の海水取水口の付近にて殺菌剤を添加する殺菌剤添加手段と
を具備する消毒海水供給装置であって、
通常運転時において、前記管路手段を介して海水を取水して前記ろ過手段によるろ過及び前記紫外線照射手段による消毒を行い、ろ過及び消毒済みの海水を供給し、
メンテナンス時において、前記殺菌剤添加手段により前記海水取水口の付近にて殺菌剤を添加すると共に、該海水取水口を介して殺菌済み海水を取水し、該取水した殺菌済み海水で前記ろ材を洗浄すること及び該取水した殺菌済み海水を前記管路手段の通水経路内に通水させて該通水経路内を殺菌すること、の少なくとも一方を行い、
メンテナンス終了時において、前記殺菌剤添加手段による前記殺菌剤の添加を終了させ、前記管路手段を介して海水を取水して前記ろ過手段によるろ過及び前記紫外線照射手段による消毒を行い、ろ過及び消毒済みの海水を前記通水経路内に通水させることで当該通水経路内に残留している前記殺菌済み海水を洗い流すことを特徴とする消毒海水供給装置。
Conduit means for taking and passing seawater;
A filtering means provided in the middle of the conduit means for filtering the taken-up seawater with a filter medium;
An ultraviolet irradiation means provided in the middle of the pipe means for disinfecting the taken-up seawater with ultraviolet rays at least one after or before the filtration ;
Bactericidal agent adding means for adding a bactericidal agent in the vicinity of the seawater intake of the pipe means;
A disinfecting seawater supply device comprising:
During normal operation, take seawater through the conduit means, perform filtration by the filtration means and disinfection by the ultraviolet irradiation means, supply filtered and disinfected seawater,
At the time of maintenance, the sterilizing agent is added near the seawater intake by the sterilizing agent addition means, sterilized seawater is taken in through the seawater intake, and the filter medium is washed with the sterilized seawater taken up. And at least one of passing the sterilized seawater that has been taken into the water passage of the conduit means to sterilize the water passage,
At the end of maintenance, the addition of the sterilizing agent by the sterilizing agent adding unit is terminated, seawater is taken in through the conduit unit, the filtering unit is filtered and the ultraviolet irradiation unit is sterilized, and the filtering and sterilizing unit is performed. Disinfecting seawater supply device, wherein the sterilized seawater remaining in the water passage is washed away by passing the already-sealed water through the water passage .
前記ろ過及び消毒済みの海水を海産物市場内に配置された配管を介して海産物などの洗浄用水として供給する配管手段をさらに具備する請求項5に記載の消毒海水供給装置。  6. The disinfected seawater supply device according to claim 5, further comprising piping means for supplying the filtered and sterilized seawater as cleaning water for marine products and the like through a pipe disposed in the seafood market. 前記ろ材として、比重が1g/mlよりも軽い浮上性ろ材を用いる請求項5又は6に記載の消毒海水供給装置The disinfecting seawater supply device according to claim 5 or 6 , wherein a floatable filter medium having a specific gravity lighter than 1 g / ml is used as the filter medium. 前記殺菌剤として、過酸化水素水を用いる請求項5乃至7のいずれかに記載の消毒海水供給装置The disinfecting seawater supply device according to any one of claims 5 to 7 , wherein hydrogen peroxide is used as the disinfectant.
JP2001345448A 2001-11-09 2001-11-09 Disinfecting seawater supply method and apparatus Expired - Fee Related JP3801486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345448A JP3801486B2 (en) 2001-11-09 2001-11-09 Disinfecting seawater supply method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345448A JP3801486B2 (en) 2001-11-09 2001-11-09 Disinfecting seawater supply method and apparatus

Publications (2)

Publication Number Publication Date
JP2003145145A JP2003145145A (en) 2003-05-20
JP3801486B2 true JP3801486B2 (en) 2006-07-26

Family

ID=19158774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345448A Expired - Fee Related JP3801486B2 (en) 2001-11-09 2001-11-09 Disinfecting seawater supply method and apparatus

Country Status (1)

Country Link
JP (1) JP3801486B2 (en)

Also Published As

Publication number Publication date
JP2003145145A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
US11891311B2 (en) Process and system for back-and-forth washing of adsorptive media
US7767095B2 (en) Pathogen reduction using chloramines
US4898679A (en) Method and apparatus for obtaining ozone saturated water
US20050126927A1 (en) Water supply system for an aircraft
AU9018098A (en) Sterilization apparatus utilizing catholyte and anolyte solutions produced by electrolysis of water
WO2011120250A1 (en) Method and system for ship ballast water treatment
US20060144800A1 (en) Sewage treatment system for use in marine toilet and other remote toilets
KR102639274B1 (en) a water purifier of self management type
Ölmez Water consumption, reuse and reduction strategies in food processing
KR20140147623A (en) Clean water system and the movement method of salted water and washing water
JP3801486B2 (en) Disinfecting seawater supply method and apparatus
KR20170011384A (en) UV lamp type fresh water germicidal device for marine structures
KR20040066971A (en) Treatment of Ballast Water by Filtration UV Electrolysis Complex Disinfection Process
JPH0677886U (en) Running water sterilizer
WO2010002351A1 (en) System for water purification
WO2000048951A9 (en) Poultry processing water recovery and re-use process
JP2010264349A (en) Salt water recycling system and salt recycling method using the same
KR200307789Y1 (en) Drinking water purifier with disinfection system
JPH09239368A (en) Circulating purifier for contaminated liquid
CN216513188U (en) Vehicle-mounted emergency drinking water treatment equipment
CN219073801U (en) Pure water pipe network self-cleaning disinfection device
CN211595233U (en) Gravity-driven livestock drinking water purification system
CA3140295C (en) Methods and systems for marine wastewater treatment
JP2003170014A (en) Method for disinfecting and washing filter, and system therefor
Wang et al. Water in food processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3801486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees