JP3800727B2 - In-cylinder fuel injection internal combustion engine - Google Patents

In-cylinder fuel injection internal combustion engine Download PDF

Info

Publication number
JP3800727B2
JP3800727B2 JP14764397A JP14764397A JP3800727B2 JP 3800727 B2 JP3800727 B2 JP 3800727B2 JP 14764397 A JP14764397 A JP 14764397A JP 14764397 A JP14764397 A JP 14764397A JP 3800727 B2 JP3800727 B2 JP 3800727B2
Authority
JP
Japan
Prior art keywords
combustion chamber
bottom portion
concave
deep bottom
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14764397A
Other languages
Japanese (ja)
Other versions
JPH10339141A (en
Inventor
博史 宮窪
宣久 神宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14764397A priority Critical patent/JP3800727B2/en
Publication of JPH10339141A publication Critical patent/JPH10339141A/en
Application granted granted Critical
Publication of JP3800727B2 publication Critical patent/JP3800727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
この発明は、筒内噴射式内燃機関に関し、特に希薄空燃比での運転を行う筒内噴射式内燃機関の改良に関する。
【0002】
【従来の技術】
従来の筒内噴射式内燃機関としては、例えば特開平8−35429号公報に記載されたものがある。これは、広い負荷範囲すなわち燃料噴射量の多寡に関わらず安定した成層燃焼を可能とすることを目的としたもので、ピストン上面に設けた凹状燃焼室の形状として点火プラグに近接した壁面を略直線状するとともに、前記直線状壁面の後方に燃料及び空気が拡散、混合する空間を構成している。このため、高負荷時すなわち燃料量の多い状態においても点火プラグ付近に過剰の燃料を停滞させることなく、可燃空燃比の混合気を形成できるというものである。
【0003】
また、特開平8−260986号公報には、凹状燃焼室の点火プラグに対してスワール(旋回流)上流域となる壁面部分に段部を設け、圧縮行程後半のピストン位置のときにこの段部から燃焼室にかけて噴射した燃料を上方に向かわせることにより機関中負荷時の燃焼を改善するようにしたものが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の筒内噴射式内燃機関にあっては、ピストン上面の凹状燃焼室が直線状部分を有する非円形の形状もしくは凹状燃焼室壁面に段部が臨むような変則的な形状をしていてガス流動が減衰しやすいので、凹状燃焼室に噴射された燃料を輸送、拡散させるには、筒内に強い旋回流を発生させる必要がある。このため吸気ポート形状をいわゆるヘリカルタイプとするか、ポートに開口面積の小さな吸気制御弁を設ける構成となっているが、ヘリカルポートの場合、高負荷時の吸入抵抗が増大して発生トルクの低下を招く。また、開口面積の小さい吸気制御弁の場合は部分負荷時に、同一吸入負圧であってもポンプロスの増加を招くため、燃費の改善効果が損なわれるという問題が生じる。
【0005】
この発明は、このような従来の問題点を解消することを目的としている。
【0006】
【課題を解決するための手段】
請求項1の発明は、シリンダ内に燃料を噴射する噴射弁と、ピストン上面に形成した凹状燃焼室の壁面に近接した位置に突出して配置した点火プラグと、燃焼室とシリンダ内に吸気の旋回流を発生させる手段とを備えた火花点火機関において、前記凹状燃焼室の壁面の横断面形状を略円形状とするとともに、底面部を浅底部とこれよりも深い深底部により形成し、かつ前記深底部は前記点火プラグに対し、凹状燃焼室内に発生させた旋回流の下流側に位置するように形成したものとする。
【0007】
請求項2の発明は、上記凹状燃焼室の深底部付近の側壁部におけるピストン上面を凹状燃焼室内に突出させることにより、壁面を略円形に保ちつつ深底部付近の壁面に凹状のポケット部を形成するものとした。
【0008】
請求項3の発明は、上記各発明の深底部の底面に、点火プラグに近接した部分から旋回流の下流側に向かって次第に深さが大きくなるように傾斜部分を形成するものとした。
【0009】
請求項4の発明は、上記各発明の深底部の横断面形状を略半円状とした。
【0010】
【作用・効果】
上記各発明によれば、凹状燃焼室内に発生する旋回流は燃焼室の壁面が略円形状となっているため、比較的弱い旋回流であっても圧縮行程においても崩壊することがなく、燃料の輸送と新気との混合が可能となる。このため、吸気ポートをヘリカルタイプとしたり、吸気マニホールド内に吸気制御弁を設けたりしてシリンダ内に発生する旋回流を強くする必要がなく、したがって全負荷時トルクの低下を起こすことなく、また成層燃焼における燃費向上効果を損なうこともない。
【0011】
また、噴射弁より噴射された噴射は凹状燃焼室内にて旋回流に乗って拡散、混合しながら点火プラグの下方を通過し、凹状燃焼室の深底部へ輸送される。低負荷時には、燃料はほぼ点火プラグの周辺に集中している状態で点火されるのでその下流側に位置する深底部はこのとき大きな影響を及ばさず、すなわち点火プラグ直下の燃焼室底面は浅底状であるため点火プラグを必要以上に突出した構成とする必要もなく、良好な着火性能が得られる。
【0012】
一方、高負荷時には噴射される燃料が多く、この燃料は点火プラグ直下から下流側領域の深底部にまで分布する。このとき、多くの燃料は旋回流により深底部へ導入されて深底部に保持され、新気との混合を行いうる空間的余裕を得る。また、深底部の底面付近には、旋回流が浅底部より深底部へ流入する際に、その段差により渦が発生し、みだれが増加した状態であるため、より一層の拡散が促され、良好な混合気を作ることが可能となる。着火は、低負荷時同様、点火プラグ下方に残る燃料に対して行われ、この着火火炎が深底部へと伝播し、燃料全体の燃焼が行われる。このようにして、低負荷から高負荷に至るまで良好な混合気状態を作ることが可能となる。
【0013】
ところで、燃焼室の深さが十分に取れない場合、凹状燃焼室からピストン上面へと燃料のはみだしが発生し、これに原因して排出未燃燃料量の増加を招くことがある。これに対して、請求項2の発明によれば、凹状燃焼室の深底部付近の側壁部におけるピストン上面を凹状燃焼室内に突出させることにより、壁面を略円形に保ちつつ深底部付近の壁面に凹状のポケット部を形成してあるので、凹状燃焼室の浅底部の深さが大きくない場合であっても深底部が前記燃料はみだし位置に略一致しているため、凹状のポケット部により燃料層を凹状燃焼室内に保持して、噴射された燃料を確実に燃焼させることができる。
【0014】
請求項3の発明では、深底部の底面に、点火プラグに近接した部分から旋回流の下流側に向かって次第に深さが大きくなるように傾斜部分を形成してある。このように点火プラグ付近での凹状燃焼室深底部の底面変化をゆるやかにすることにより、低負荷時に点火プラグ回りの空燃比が過剰に薄くなることが防止され、より着実な着火性能が得られる。
【0015】
請求項4の発明では、深底部の横断面形状を略半円状としたことから、コンロッド小端部との干渉が避けられ、これにより大きな深底部容積を確保しつつピストン全高を抑制してピストン重量の軽減やエンジン全高の低減を図ることができる。
【0016】
【発明の実施の形態】
以下、本発明のいくつかの実施の形態につき図面に基づいて説明する。
【0017】
図1、2図、この発明の一実施形態を示している。まず構成を説明すると、1はピストン、2はシリンダ4内に直接燃料を噴射する噴射弁、3は点火プラグ、4はシリンダ、5はシリンダヘッド、6はピストン上面に形成された凹状燃焼室を示す。また7は吸気弁、8は排気弁であり本実施形態では吸気弁7、排気弁8はそれぞれ2本づつ備えられた4弁形式である。
【0018】
ピストン上面は、吸気側斜面1aと排気側斜面1bとからなる隆起形状に形成されており、これら斜面1a,1bはシリンダヘッド5側でペントルーフ形の燃焼室を形成する吸気側壁面5aと排気側壁面5bに対してそれぞれ略平行に形成されている。そして、図1に一点鎖線で示すように圧縮上死点近傍ではピストン1の上方空間は極めて狭く限定され、このとき凹状燃焼室6はシリンダヘッド5との間で実質的にシールされるようになっている。
【0019】
図2はピストン1の平面構成を示しており、吸気ポート9a、9bにはそれぞれ、吸気マニホールド10a、10bが接続され、一方の吸気マニホールド10bには吸気制御弁11が設けられておりシリンダ内の旋回流を発生させるために機関の負荷および回転数に応じて開閉制御される。
【0020】
図3に燃焼室6の断面形状を示す。燃焼室6の平面形状は図2に示す通り略円形状の壁面6cを有しており、その内側底面部分に深さの異なる浅底部6aおよび深底部6bが形成されている。浅底部6aは、噴射弁2に近接する位置から燃焼室内に発生する旋回流(S)に沿って点火プラグ3付近まで、略平坦な形状を有している。一方、深底部6bは、前記点火プラグ3付近より前記旋回流(S)の下流側に位置するように、かつ平面形状が略半円形状となるように形成されている。浅底部6aと深底部6bおよび側壁部6cは、曲面により滑らかに接続されている。
【0021】
なお、成層燃焼時における新気は、吸気行程において、吸気マニホールド10bに設けられた吸気制御弁11が、吸気ポート9bからの新気導入を抑制するため、略直管形状に形成された吸気ポート9aより選択的に流入し、吸気マニホールド10aおよび吸気ポート9aでの流入抵抗が小さな状態で、シリンダ4内に旋回流を発生させる。燃焼室6内の旋回流(S)は前記シリンダ内旋回流が、吸気および圧縮行程にかけ、燃焼室6内に導入されることにより発生する。また、成層燃焼時における燃料(F)は、圧縮行程において燃焼室6の底面を指向するように噴射弁2により噴射される。
【0022】
次に作用を説明する。
【0023】
まず、燃焼室6内に発生する旋回流(S)は燃焼室6の壁面6cが、略円形状となっているため、比較的弱い旋回流であっても圧縮行程に至っても減衰することがなく、燃料(F)の輸送と新気とを十分に混合させる。また、圧縮上死点近傍では、前述の通り燃焼室6の上方の空間は極めて狭く限定されるので、このとき燃焼室6は実質的にシールされた態様となり、燃焼室6内での旋回流を有効に保存することが可能である。このため、吸気ポート9aをヘリカルタイプとしたり、吸気マニホールド10a内にも切欠部を有する吸気制御弁を設けたりして、シリンダ内に発生する旋回流を強くする必要が生じないため、全負荷時トルクの低下を起こすことなく、また成層燃焼における燃費向上効果を低下させることもない。
【0024】
一方、成層燃焼を行うべく、圧縮行程で噴射弁2より噴射された噴射(F)は、噴射直後は図4の(a)のようにほぼ点火プラグ3に向かって拡散して行くが、その後旋回流(S)に乗って図4の(b)または(c)に示すように拡散、混合しながら、点火プラグ3の下方を通過して深底部6bへと輸送される。
【0025】
均質燃焼を行う領域の中でも負荷が低い時には、燃料(F)がほぼ図4の(b)の状態で点火される。このとき、点火プラグ3の直下の燃焼室底面は比較的浅いので点火プラグ3のギャップ部を必要以上に突出させる必要もなく、良好な着火性が得られる。
【0026】
これに対して、均質燃焼を行う領域の中でも比較的負荷が高いとき、すなわち噴射燃料量が比較的多い時には、燃料(F)はほぼ図4の(c)の状態で点火される。このとき、多くの燃料(F)は旋回流(S)により深底部6bへ導入されるとともに深底部6bに保持され、この深底部6の容積により新気との混合を行いうる空間が確保される。また、深底部6bの底面付近には、旋回流が浅底部6aより流入する際に、その段差により渦が発生し、みだれが増加した状態であるため、より一層の拡散が促され、良好な混合気を作ることが可能となる。着火は、低負荷時同様、点火プラグ3下方に残る燃料に行われ、火炎が深底部6bへと伝播し、燃料全体の燃焼が行われる。このようにして、低負荷から高負荷に至るまで良好な混合気性状及び燃焼が得られる。
【0027】
図5、図6には、本発明の第2の実施形態を示す。この実施形態は、点火プラグ3に対し旋回流下流側のピストン1の上面から凹状燃焼室6内に突出部6dを付加し、前記深底部6b付近の壁面に凹状のポケット部6eを形成したものである。
【0028】
一般に燃焼室6の深さが十分に取れない場合、図7の斜線部に示す様な燃料のはみだしが発生して未燃燃料が増加するという問題が生じる。そこで側壁を凹形状とし、はみだし防止を図ることが考えられるが、一定の深さを有する燃焼室でははみだし抑制効果を十分発揮することはできない。
【0029】
これに対して、この第2の実施形態では、燃焼室浅底部6bの深さが大きくない場合であっても前記はみだし位置に深底部6cの位置が略一致しているため、側壁のポケット部6eでの燃料捕捉作用が有効に作用して、噴射された燃料を確実に燃焼室6内にて燃焼させることができる。
【0030】
図8〜図10は本発明の第3の実施形態である。これは、図7の(a)−(b)−(c)に示したように、深底部6bに、その底面の深さdが、点火プラグ3に近接した部分から旋回流の下流側に向かって次第に大きくなるような傾斜部分を形成したものである。このように点火プラグ3付近での深底部6bの底面変化をゆるやかにすることにより、低負荷時に点火プラグ周辺の混合気の空燃比が薄くなりすぎるのを防止して着火性をより高めることができる。
【0031】
なお、上記各実施の形態に示したように、深底部6bの横断面形状を略半円状とすることにより、ピストン構造上コンロッド小端部との干渉がさけられるため、大きな深底部容積を確保しつつピストン全高及び重量を軽減することができる。
【図面の簡単な説明】
【図1】 本発明による筒内噴射式機関の第1の実施形態を示す概略断面図。
【図2】 第1の実施形態のピストンの平面図。
【図3】 第1の実施形態のピストン断面形状の変化を示す説明図であり、(a)は図2のA−A線断面部を、(b)は同じくB−B線断面部を示している。
【図4】 第1の実施形態における燃料挙動を示す説明図。
【図5】 本発明の第2の実施形態のピストンの平面図。
【図6】 第2の実施形態のピストン断面形状の変化を示す説明図であり、(a)は図5のA−A断面部を、(b)は同じくB−B断面部を、(c)は同じくC−C断面部を示している。
【図7】 凹状燃焼室からの燃料のはみだし現象を説明するためのピストンの平面図。
【図8】 本発明の第3の実施形態のピストンの平面図。
【図9】 第3の実施形態のピストン断面形状の変化を示す説明図であり、(a)は図8のA−A断面部を、(b)は同じくB−B断面部を、(c)は同じくC−C断面部を示している。
【図10】 図8のA−A線断面部を示す断面図。
【符号の説明】
1 ピストン
2 燃料噴射弁
3 点火プラグ
4 シリンダ
5 シリンダヘッド
6 凹状燃焼室
6a 底面浅底部
6b 底面深底部
6c 側壁部
6d 上面突出部
6e ポケット部
7 吸気バルブ
8 排気バルブ
9 吸気ポート
10 吸気マニホールド
11 吸気制御弁
F 燃料噴霧
S 旋回流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct injection internal combustion engine, and more particularly to an improvement of a direct injection internal combustion engine that operates at a lean air-fuel ratio.
[0002]
[Prior art]
A conventional in-cylinder internal combustion engine is described in, for example, Japanese Patent Application Laid-Open No. 8-35429. The purpose of this is to enable stable stratified combustion regardless of the large load range, that is, the amount of fuel injection. The shape of the concave combustion chamber provided on the upper surface of the piston is approximately the wall near the spark plug. A straight space and a space in which fuel and air diffuse and mix are formed behind the straight wall surface. For this reason, even when the load is high, that is, in a state where the amount of fuel is large, a combustible air-fuel ratio mixture can be formed without stagnating excess fuel near the spark plug.
[0003]
Japanese Patent Laid-Open No. 8-260986 discloses that a step portion is provided in a wall surface portion which is an upstream region of a swirl (swirl flow) with respect to the spark plug of the concave combustion chamber, and this step portion is located at the piston position in the latter half of the compression stroke. Has been proposed in which the fuel injected from the engine to the combustion chamber is directed upward to improve the combustion under a medium engine load.
[0004]
[Problems to be solved by the invention]
However, in such a conventional cylinder injection internal combustion engine, the concave combustion chamber on the upper surface of the piston has a non-circular shape having a linear portion or an irregular shape in which the stepped portion faces the wall surface of the concave combustion chamber. Therefore, in order to transport and diffuse the fuel injected into the concave combustion chamber, it is necessary to generate a strong swirling flow in the cylinder. For this reason, the shape of the intake port is a so-called helical type, or an intake control valve with a small opening area is provided in the port. However, in the case of a helical port, the intake resistance at high loads increases and the generated torque decreases. Invite. Further, in the case of an intake control valve having a small opening area, there is a problem in that the effect of improving the fuel efficiency is impaired because the pump loss increases even at the same suction negative pressure at the partial load.
[0005]
An object of the present invention is to eliminate such conventional problems.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is an injection valve for injecting fuel into a cylinder, a spark plug that protrudes from a position close to a wall surface of a concave combustion chamber formed on the upper surface of a piston, and a swirl of intake air in the combustion chamber and the cylinder. A spark ignition engine having a means for generating a flow, the cross-sectional shape of the wall surface of the concave combustion chamber is substantially circular, the bottom surface portion is formed by a shallow bottom portion and a deep bottom portion deeper than this, and The deep bottom portion is formed so as to be located on the downstream side of the swirling flow generated in the concave combustion chamber with respect to the spark plug.
[0007]
The invention according to claim 2 forms a concave pocket portion on the wall surface near the deep bottom while keeping the wall surface substantially circular by projecting the upper surface of the piston in the side wall portion near the deep bottom portion of the concave combustion chamber into the concave combustion chamber. To do.
[0008]
According to a third aspect of the present invention, an inclined portion is formed on the bottom surface of the deep bottom portion of each of the inventions so that the depth gradually increases from the portion close to the spark plug toward the downstream side of the swirling flow.
[0009]
In the invention of claim 4, the cross-sectional shape of the deep bottom portion of each of the above inventions is substantially semicircular.
[0010]
[Action / Effect]
According to each of the above inventions, the swirling flow generated in the concave combustion chamber has a substantially circular wall surface in the combustion chamber. It is possible to mix the transportation of fresh and fresh air. For this reason, it is not necessary to make the intake port helical type, or to provide an intake control valve in the intake manifold to strengthen the swirl flow generated in the cylinder. The fuel efficiency improvement effect in stratified combustion is not impaired.
[0011]
Further, the injection injected from the injection valve rides on the swirling flow in the concave combustion chamber, passes under the spark plug while being diffused and mixed, and is transported to the deep bottom portion of the concave combustion chamber. At low load, the fuel is ignited in a state where it is concentrated around the spark plug. Therefore, the deep bottom located on the downstream side of the fuel does not have a significant effect at this time, that is, the bottom of the combustion chamber directly below the spark plug is shallow. Since it is bottom-shaped, it is not necessary to make the spark plug protrude more than necessary, and good ignition performance can be obtained.
[0012]
On the other hand, a lot of fuel is injected at the time of high load, and this fuel is distributed from directly under the spark plug to the deep bottom of the downstream region. At this time, a large amount of fuel is introduced into the deep bottom portion by the swirling flow and held at the deep bottom portion, so that a spatial margin for mixing with fresh air is obtained. Also, near the bottom of the deep bottom, when swirl flows from the shallow bottom to the deep bottom, a vortex is generated due to the step, and swells are increased, further promoting diffusion and better It becomes possible to make a simple mixture. The ignition is performed on the fuel remaining below the spark plug as in the case of a low load, the ignition flame propagates to the deep bottom, and the entire fuel is combusted. In this way, it is possible to create a good mixture state from low load to high load.
[0013]
By the way, when the depth of the combustion chamber cannot be sufficiently obtained, fuel overflows from the concave combustion chamber to the upper surface of the piston, which may cause an increase in the amount of discharged unburned fuel. On the other hand, according to the invention of claim 2, by projecting the upper surface of the piston in the side wall portion near the deep bottom portion of the concave combustion chamber into the concave combustion chamber, the wall surface near the deep bottom portion is maintained while maintaining a substantially circular wall surface. Since the concave pocket portion is formed, even if the depth of the shallow bottom portion of the concave combustion chamber is not large, the deep bottom portion substantially coincides with the protruding position of the fuel. Can be held in the concave combustion chamber, and the injected fuel can be reliably burned.
[0014]
In the invention of claim 3, the inclined portion is formed on the bottom surface of the deep bottom portion so that the depth gradually increases from the portion close to the spark plug toward the downstream side of the swirling flow. In this way, by gradually changing the bottom surface of the deep bottom portion of the concave combustion chamber near the spark plug, it is possible to prevent the air-fuel ratio around the spark plug from becoming excessively thin at low load, and to obtain more steady ignition performance. .
[0015]
In the invention of claim 4, since the cross-sectional shape of the deep bottom portion is substantially semicircular, interference with the small end of the connecting rod can be avoided, thereby suppressing the overall piston height while ensuring a large deep bottom volume. The piston weight can be reduced and the overall engine height can be reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, some embodiments of the present invention will be described with reference to the drawings.
[0017]
1 and 2 show an embodiment of the present invention. First, the structure will be described. 1 is a piston, 2 is an injection valve for directly injecting fuel into the cylinder 4, 3 is a spark plug, 4 is a cylinder, 5 is a cylinder head, and 6 is a concave combustion chamber formed on the upper surface of the piston. Show. Reference numeral 7 denotes an intake valve, and reference numeral 8 denotes an exhaust valve. In the present embodiment, the intake valve 7 and the exhaust valve 8 are each a four-valve type provided with two each.
[0018]
The upper surface of the piston is formed in a raised shape composed of an intake side inclined surface 1a and an exhaust side inclined surface 1b, and these inclined surfaces 1a and 1b are formed on the cylinder head 5 side with an intake side wall surface 5a that forms a pent roof type combustion chamber and an exhaust side. Each is formed substantially parallel to the wall surface 5b. As shown by the one-dot chain line in FIG. 1, the space above the piston 1 is extremely narrow near the compression top dead center. At this time, the concave combustion chamber 6 is substantially sealed with the cylinder head 5. It has become.
[0019]
FIG. 2 shows a planar configuration of the piston 1, and intake manifolds 10a and 10b are connected to the intake ports 9a and 9b, respectively, and an intake control valve 11 is provided in one intake manifold 10b. In order to generate a swirl flow, opening / closing control is performed in accordance with the load and the rotational speed of the engine.
[0020]
FIG. 3 shows a cross-sectional shape of the combustion chamber 6. The planar shape of the combustion chamber 6 has a substantially circular wall surface 6c as shown in FIG. 2, and a shallow bottom portion 6a and a deep bottom portion 6b having different depths are formed on the inner bottom surface portion thereof. The shallow bottom portion 6a has a substantially flat shape from a position close to the injection valve 2 to the vicinity of the spark plug 3 along the swirl flow (S) generated in the combustion chamber. On the other hand, the deep bottom portion 6b is formed so as to be positioned on the downstream side of the swirling flow (S) from the vicinity of the spark plug 3 and to have a substantially semicircular planar shape. The shallow bottom part 6a, the deep bottom part 6b, and the side wall part 6c are smoothly connected by the curved surface.
[0021]
Note that the fresh air during stratified combustion is an intake port formed in a substantially straight pipe shape in order that the intake control valve 11 provided in the intake manifold 10b suppresses the introduction of fresh air from the intake port 9b during the intake stroke. The gas flows selectively from 9a, and a swirling flow is generated in the cylinder 4 with the inflow resistance at the intake manifold 10a and the intake port 9a being small. The swirl flow (S) in the combustion chamber 6 is generated by introducing the swirl flow in the cylinder into the combustion chamber 6 through the intake and compression strokes. Further, the fuel (F) at the time of stratified combustion is injected by the injection valve 2 so as to be directed to the bottom surface of the combustion chamber 6 in the compression stroke.
[0022]
Next, the operation will be described.
[0023]
First, the swirling flow (S) generated in the combustion chamber 6 is attenuated even if it is a relatively weak swirling flow or the compression stroke because the wall surface 6c of the combustion chamber 6 has a substantially circular shape. In addition, the transportation of the fuel (F) and the fresh air are sufficiently mixed. Also, in the vicinity of the compression top dead center, the space above the combustion chamber 6 is extremely narrow as described above, so that the combustion chamber 6 is substantially sealed at this time, and the swirl flow in the combustion chamber 6 Can be saved effectively. For this reason, it is not necessary to make the intake port 9a a helical type or to provide an intake control valve having a notch in the intake manifold 10a to strengthen the swirl flow generated in the cylinder. There is no reduction in torque, and there is no reduction in fuel efficiency improvement effect in stratified combustion.
[0024]
On the other hand, in order to perform stratified combustion, the injection (F) injected from the injection valve 2 in the compression stroke is diffused almost toward the spark plug 3 as shown in FIG. As shown in (b) or (c) of FIG. 4, it rides on the swirling flow (S) and passes below the spark plug 3 and is transported to the deep bottom 6b while being diffused and mixed.
[0025]
When the load is low even in the region where homogeneous combustion is performed, the fuel (F) is ignited in the state of FIG. At this time, since the bottom surface of the combustion chamber directly below the spark plug 3 is relatively shallow, it is not necessary to project the gap portion of the spark plug 3 more than necessary, and good ignitability can be obtained.
[0026]
On the other hand, when the load is relatively high in the region where homogeneous combustion is performed, that is, when the amount of injected fuel is relatively large, the fuel (F) is ignited substantially in the state shown in FIG. At this time, a large amount of fuel (F) is introduced into the deep bottom portion 6b by the swirling flow (S) and is held by the deep bottom portion 6b, and a space capable of mixing with fresh air is secured by the volume of the deep bottom portion 6. The In addition, when the swirling flow flows from the shallow bottom portion 6a near the bottom surface of the deep bottom portion 6b, a vortex is generated due to the step, and the swell increases. It becomes possible to make a mixture. Ignition is performed on the fuel remaining below the spark plug 3 as in the case of a low load, the flame propagates to the deep bottom portion 6b, and the entire fuel is combusted. In this way, good mixture characteristics and combustion can be obtained from low load to high load.
[0027]
5 and 6 show a second embodiment of the present invention. In this embodiment, a projecting portion 6d is added into the concave combustion chamber 6 from the upper surface of the piston 1 on the downstream side of the swirl flow with respect to the spark plug 3, and a concave pocket portion 6e is formed on the wall surface near the deep bottom portion 6b. It is.
[0028]
In general, when the depth of the combustion chamber 6 is not sufficient, there is a problem that unburnt fuel increases due to the occurrence of fuel overflow as shown by the hatched portion in FIG. Therefore, it is conceivable to make the side wall concave to prevent the protrusion, but in a combustion chamber having a certain depth, the protrusion suppression effect cannot be sufficiently exhibited.
[0029]
On the other hand, in the second embodiment, even when the depth of the combustion chamber shallow bottom portion 6b is not large, the position of the deep bottom portion 6c substantially coincides with the protruding position. The fuel trapping action at 6e acts effectively, and the injected fuel can be reliably burned in the combustion chamber 6.
[0030]
8 to 10 show a third embodiment of the present invention. As shown in FIGS. 7 (a)-(b)-(c), this is because the depth d of the bottom surface of the deep bottom portion 6b is from the portion close to the spark plug 3 to the downstream side of the swirl flow. Inclined portions that gradually become larger are formed. In this way, by gradually changing the bottom surface of the deep bottom portion 6b in the vicinity of the spark plug 3, it is possible to prevent the air-fuel ratio of the air-fuel mixture around the spark plug from becoming too thin at a low load and to further improve the ignitability. it can.
[0031]
As shown in each of the above embodiments, by making the cross-sectional shape of the deep bottom portion 6b substantially semicircular, interference with the small end of the connecting rod on the piston structure is avoided. The total height and weight of the piston can be reduced while ensuring.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a first embodiment of an in-cylinder injection engine according to the present invention.
FIG. 2 is a plan view of the piston according to the first embodiment.
3A and 3B are explanatory views showing changes in the piston cross-sectional shape of the first embodiment, wherein FIG. 3A is a cross-sectional view taken along line AA in FIG. 2, and FIG. 3B is a cross-sectional view taken along line BB in FIG. ing.
FIG. 4 is an explanatory diagram showing fuel behavior in the first embodiment.
FIG. 5 is a plan view of a piston according to a second embodiment of the present invention.
6A and 6B are explanatory views showing changes in the piston cross-sectional shape of the second embodiment, wherein FIG. 6A is a cross-sectional view taken along the line AA in FIG. 5, FIG. ) Similarly shows a CC cross section.
FIG. 7 is a plan view of a piston for explaining a fuel overflow phenomenon from a concave combustion chamber.
FIG. 8 is a plan view of a piston according to a third embodiment of the present invention.
9A and 9B are explanatory diagrams showing changes in the piston cross-sectional shape of the third embodiment, wherein FIG. 9A is a cross-sectional view taken along the line AA in FIG. 8, FIG. ) Similarly shows a CC cross section.
10 is a cross-sectional view showing a cross-section along the line AA in FIG. 8;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piston 2 Fuel injection valve 3 Spark plug 4 Cylinder 5 Cylinder head 6 Recessed combustion chamber 6a Bottom bottom part 6b Bottom deep part 6c Side wall part 6d Upper surface protrusion part 6e Pocket part 7 Intake valve 8 Exhaust valve 9 Intake port 10 Intake manifold 11 Intake Control valve F Fuel spray S Swirling flow

Claims (4)

シリンダ内に燃料を噴射する噴射弁と、ピストン上面に形成した凹状燃焼室の壁面に近接した位置に突出して配置した点火プラグと、燃焼室とシリンダ内に吸気の旋回流を発生させる手段とを備えた火花点火機関において、前記凹状燃焼室は、壁面の横断面形状を略円形状とするとともに、底面部を浅底部とこれよりも深い深底部により形成し、かつ前記深底部は前記点火プラグに対し、凹状燃焼室内に発生させた旋回流の下流側に位置するように形成したことを特徴とする筒内燃料噴射式内燃機関。An injection valve that injects fuel into the cylinder, an ignition plug that protrudes from a position close to the wall surface of the concave combustion chamber formed on the upper surface of the piston, and means for generating a swirling flow of intake air in the combustion chamber and the cylinder. In the spark ignition engine provided, the concave combustion chamber has a substantially circular cross-sectional shape of the wall surface, a bottom portion is formed by a shallow bottom portion and a deep bottom portion deeper than the bottom portion, and the deep bottom portion is the spark plug. On the other hand, an in-cylinder fuel injection internal combustion engine characterized in that it is positioned downstream of the swirl flow generated in the concave combustion chamber. 前記凹状燃焼室の深底部付近の側壁部におけるピストン上面を、凹状燃焼室内に突出させることにより壁面を略円形に保ちつつ深底部付近の壁面に凹状のポケット部を形成したことを特徴とする請求項1に記載の筒内燃料噴射式内燃機関。A concave pocket portion is formed on the wall surface near the deep bottom while keeping the wall surface substantially circular by projecting the upper surface of the piston in the side wall portion near the deep bottom portion of the concave combustion chamber into the concave combustion chamber. Item 2. The in-cylinder fuel injection internal combustion engine according to Item 1. 前記深底部の底面に、点火プラグに近接した部分から旋回流の下流側に向かって次第に深さが大きくなるように傾斜部分を形成したことを特徴とする請求項1または請求項2の何れかに記載の筒内燃料噴射式内燃機関。The inclined portion is formed on the bottom surface of the deep bottom portion so that the depth gradually increases from the portion close to the spark plug toward the downstream side of the swirling flow. An in-cylinder fuel injection internal combustion engine as described in 1. 前記深底部の横断面形状を略半円状としたことを特徴とする請求項1から請求項3の何れかに記載の筒内燃料噴射式内燃機関。The in-cylinder fuel injection internal combustion engine according to any one of claims 1 to 3, wherein a cross-sectional shape of the deep bottom portion is substantially semicircular.
JP14764397A 1997-06-05 1997-06-05 In-cylinder fuel injection internal combustion engine Expired - Lifetime JP3800727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14764397A JP3800727B2 (en) 1997-06-05 1997-06-05 In-cylinder fuel injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14764397A JP3800727B2 (en) 1997-06-05 1997-06-05 In-cylinder fuel injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10339141A JPH10339141A (en) 1998-12-22
JP3800727B2 true JP3800727B2 (en) 2006-07-26

Family

ID=15434986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14764397A Expired - Lifetime JP3800727B2 (en) 1997-06-05 1997-06-05 In-cylinder fuel injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3800727B2 (en)

Also Published As

Publication number Publication date
JPH10339141A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US6209514B1 (en) Direct injection gasoline engine
JPH10131758A (en) Inner-cylinder injection type engine
JP2006291839A (en) Cylinder direct fuel injection type engine and its control method, and piston and fuel injection valve to be used for the same
JP3733721B2 (en) Direct-injection spark ignition internal combustion engine
JP2002188448A (en) Cylinder fuel injection type gasoline engine where fuel is injected inside the cylinder
JP2004019456A (en) Cylinder injection engine and control method for the same
WO1996030633A1 (en) Cylinder injection type internal combustion engine
JP3327168B2 (en) Piston for in-cylinder injection internal combustion engine
JP4026784B2 (en) In-cylinder injection engine
JP2002089267A (en) Gasoline direct injection engine
JP3781537B2 (en) Combustion chamber structure of in-cylinder injection engine
JP3777660B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP3800727B2 (en) In-cylinder fuel injection internal combustion engine
JP4108806B2 (en) Combustion chamber structure of in-cylinder direct injection spark ignition engine
JP2501556Y2 (en) Internal combustion engine intake system
JP3644323B2 (en) Direct-injection spark ignition internal combustion engine
JP4291423B2 (en) In-cylinder fuel injection internal combustion engine
JP3721761B2 (en) Piston for in-cylinder internal combustion engine
JP3852273B2 (en) Combustion chamber of internal combustion engine
JP4420212B2 (en) 2-point ignition internal combustion engine
KR100303976B1 (en) Gasoline Engine Combustion Chamber
JP2874426B2 (en) Direct injection spark ignition engine
JP2004011614A (en) Spark ignition type direct injection engine
JP3826490B2 (en) In-cylinder fuel injection internal combustion engine
JP3820688B2 (en) In-cylinder direct injection spark ignition engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

EXPY Cancellation because of completion of term