JP3799865B2 - Graphite crucible for single crystal pulling apparatus and single crystal pulling apparatus - Google Patents

Graphite crucible for single crystal pulling apparatus and single crystal pulling apparatus Download PDF

Info

Publication number
JP3799865B2
JP3799865B2 JP07103199A JP7103199A JP3799865B2 JP 3799865 B2 JP3799865 B2 JP 3799865B2 JP 07103199 A JP07103199 A JP 07103199A JP 7103199 A JP7103199 A JP 7103199A JP 3799865 B2 JP3799865 B2 JP 3799865B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
graphite crucible
pulling apparatus
crystal pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07103199A
Other languages
Japanese (ja)
Other versions
JP2000264777A (en
Inventor
丈生 斉藤
啓成 安部
智司 工藤
貴 熱海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP07103199A priority Critical patent/JP3799865B2/en
Publication of JP2000264777A publication Critical patent/JP2000264777A/en
Application granted granted Critical
Publication of JP3799865B2 publication Critical patent/JP3799865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体融液を貯留する石英ルツボを支持するための単結晶引上装置用黒鉛ルツボおよび単結晶引上装置に関するものである。
【0002】
【従来の技術】
従来、シリコン(Si)やガリウムひ素(GaAs)等の半導体単結晶を成長する方法の一つとして、CZ法が知られている。
このCZ法は、大口径、高純度の単結晶が無転位あるいは格子欠陥の極めて少ない状態で容易に得られること等の特徴を有することから、様々な半導体結晶の成長に用いられている方法である。
【0003】
近年、単結晶の大口径化、高純度化、酸素濃度および不純物濃度等の均一化の要求に伴いこのCZ法も様々に改良され実用に供されている。
上記CZ法の改良型の一つにいわゆる二重ルツボを用いた連続チャージ型磁界印加CZ法(以下、CMCZ法と省略する)が提案されている。この方法は、外部からルツボ内の半導体融液に磁界を印加することにより、前記半導体融液内の対流を抑制し極めて酸素濃度の制御性がよく単結晶化率がよい単結晶を成長させることができ、外側のルツボと内側のルツボとの間に原料を連続供給し長尺の半導体単結晶を容易に得ることができる等の特徴を有する。したがって、大口径かつ長尺の半導体単結晶を得るには最も優れた方法の一つと言われている。
【0004】
図5は、特開平4−305091号公報に記載されている、上記のCMCZ法を用いたシリコンの単結晶引上装置の一例である。この単結晶引上装置1は、中空の気密容器であるチャンバ2内に二重ルツボ(石英ルツボ)3、ヒーター4、原料供給管5がそれぞれ配置され、前記チャンバ2の外部にマグネット6が配置されている。
なお、後述する本発明は、CMCZ法による単結晶引上装置に適用されるに限らず、例えば、磁界印加を行わない連続チャージ型CZ法(CCZ法)による単結晶引上装置や、二重ルツボではなく1つのルツボを備えた単結晶引上装置にも適用できる。
【0005】
二重ルツボ3は、略半球状の石英(SiO2)製の外ルツボ(後述する石英ル ツボ)11と、該外ルツボ11内に設けられた円筒状の仕切り体である石英(SiO2)製の内ルツボ12とから構成され、該内ルツボ12の側壁には、内ルツ ボ12と外ルツボ11との間(原料融解領域)と内ルツボ12の内側(結晶成長領域)とを連通する連通孔13が複数個形成されている。
【0006】
この二重ルツボ3は、チャンバ2の中央下部に垂直に立設されたシャフト14上の黒鉛ルツボ(サセプタ)15に収容されて載置されており、前記シャフト14の軸線を中心として水平面上で所定の角速度で回転する構成になっている。そして、この二重ルツボ3内には半導体融液(加熱融解された半導体単結晶の原料)21が貯留されている。
図6に示すように、黒鉛ルツボ15はその半径方向の分割線に沿って分割された3つの分割部材15a、15b、15cからなり、各分割部材15a、15b、15cの底面には、前記シャフト14(図5参照)のフランジ部14aが嵌め込まれる凹部20a、20b(分割部材15cに形成された凹部は不図示)がそれぞれ形成されている。黒鉛ルツボ15をその半径方向に分割した理由は、それに及ぼされる熱応力を逃がして、割れを防止するためである。
【0007】
ほぼ円筒状のヒーター4は、半導体の原料をルツボ内で加熱・融解するとともに生じた半導体融液21を保温するもので、通常、抵抗加熱ヒーターが用いられる。原料供給手段としての原料供給管5は、その下端開口より、所定量の半導体の原料10を外ルツボ11と内ルツボ12との間の半導体融液21面上に連続的に投入するものである。
【0008】
上記の原料供給管5から供給される原料10としては、例えば、多結晶シリコンのインゴットを破砕機等で破砕してフレーク状にしたもの、あるいは、気体原料から熱分解法により粒状に析出させた多結晶シリコンの顆粒が好適に用いられ、必要に応じてホウ素(B)(p型シリコン単結晶を作る場合)やリン(P)(n型シリコン単結晶を作る場合)等のドーパントと呼ばれる添加元素がさらに供給される。
また、ガリウムヒ素(GaAs)の場合も同様で、この場合、添加元素は亜鉛(Zn)もしくはシリコン(Si)等となる。
【0009】
上記の単結晶引上装置1により、内ルツボ12の上方かつ軸線上に配された引上軸24にチャック(不図示)を介して種結晶25を吊下げ、引上軸24をその軸線回りに回転させつつ引上げることにより、半導体融液21上部において種結晶25を核として半導体単結晶26を成長させる。
【0010】
ところで、上記の単結晶引上装置では、特開昭63−303894号公報に記載されているように、単結晶を成長する前工程において、外ルツボ11に予め多結晶シリコン塊等の多結晶原料を融解させて半導体融液21を貯留し、外ルツボ11の上方に配された内ルツボ12を、外ルツボ11内に載置して、二重ルツボ3を形成している。
【0011】
このように多結晶原料を融解後に二重ルツボ3を形成するのは、多結晶原料を完全に融解して半導体融液21を得るために、ヒーター4によって外ルツボ11内の原料を単結晶成長温度以上の温度まで高温加熱する必要があり、この際に、予め内ルツボ12を外ルツボ11内に形成させていると、内ルツボ12に大きな熱変形が生じてしまうからである。
【0012】
したがって、原料を完全に融解した後、ヒーター4による加熱をある程度弱めてから内ルツボ12を外ルツボ11に形成させることによって、初期原料融解保持時の高温加熱を避け、内ルツボ12の変形を抑制している。
【0013】
また、内ルツボ12に形成された連通孔13は、原料供給時に、半導体融液21を外ルツボ11側から内ルツボ12内にのみ流入させるように一定の開口面積以下に設定されている。この理由は、結晶成長領域から半導体融液21が対流により原料融解領域に戻る現象が生じると、単結晶成長における不純物濃度および融液温度等の制御が困難になってしまうためである。
【0014】
【発明が解決しようとする課題】
しかしながら、ルツボ構造は、図6に示すように、分割構造の黒鉛ルツボ15内に石英ルツボ11を単に収容した構造なので、単結晶製造の進行に伴って、石英ルツボ11から発生したガス(種類はSiO)と、黒鉛ルツボ15の分割線近傍(以下、分割部16a、16b、16cという。)の特に湾曲部17a、17b、17c(図6中で1点鎖線で囲まれた部分)との反応により、この部分は欠損して薄肉化する。この薄肉化によりその欠損部の肉厚が規定値以下になったら、黒鉛ルツボ15全体を新品のものに交換しなければならない。これにより、黒鉛ルツボ15の寿命が短くなって、交換頻度が多くなり、結果的に、ランニングコストが高くつくという問題点がある。
【0015】
ここで、黒鉛ルツボ15の分割部16a、16b、16cが欠損しやすい原因は、以下のとおりに推測される。
すなわち、先ず、石英ルツボ11から発生したSiOガスと黒鉛ルツボ15とが反応して、CがCOガスとして黒鉛ルツボ15から離脱するような反応が起こると推測される(以下の反応式参照)。
SiO+2C→SiC+CO↑
そして、半導体単結晶成長工程中において、石英ルツボ11が高温雰囲気に晒されることに起因して、石英ルツボ11が変形して黒鉛ルツボ15に密着し、SiOガスの通り道が分割部16a、16b、16cに集中する。この分割部16a、16b、16c付近では、生成されたCOガスがこの分割部16a、16b、16cを通って黒鉛ルツボ15外へ移動しやすいため、COガス濃度が上昇しにくく、その結果、上記の反応が促進される。
また、分割部16a、16b、16cの中でも、特に湾曲部17a、17b、17cが欠損しやすいのは、以下のような理由による。炉内において単結晶成長軸方向の温度分布は、下部側ほど、また、半径方向外側ほど高温になって前記反応が進行しやすい。一方、黒鉛ルツボ15はフランジ14aに載置されているので、黒鉛ルツボ15の底面からはCOガスが逃げにくいので、反応が進行しにくい。こうして、底面に近い下部に位置する湾曲部17a、17b、17cは、最も欠損しやすい部位となる。
石英ルツボ11が黒鉛ルツボ15に密着した状態でさらに変形して拡径すると、分割部材15a、15b、15は半径方向外方に変位して、COガスの通り道である分割部16a、16b、16cの隙間が大きくなり、上記反応はさらに促進されることになる。
【0016】
さらに、このような黒鉛ルツボ15の分割部16a、16b、16cの欠損促進を放置しておくと、黒鉛ルツボ15の薄肉化による形状の変化に伴って、石英ルツボ11も変形して薄くなるので、石英ルツボ11内の半導体融液が流出する可能性が高くなるという問題点もある。
また、石英ルツボ11の変形した部分の曲率が小さいことから、石英ルツボ11内の半導体融液に流れ(乱流)が生じやすく、結果的に、半導体の単結晶化率が低下するという問題点もある。
【0017】
本発明は、上述した事情に鑑みてなされたものであり、石英ルツボから発生したSiOガスと黒鉛ルツボとの反応が抑制されることにより黒鉛ルツボの寿命が延びてランニングコストが低減する上に、単結晶化率も向上する単結晶引上装置用黒鉛ルツボおよび単結晶引上装置を提供することを目的としている。
【0018】
【課題を解決するための手段】
上記目的を達成するための本発明は、以下の構成を採用した。
本発明の単結晶引上装置用黒鉛ルツボは、半導体融液を貯留する石英ルツボを支持するための単結晶引上装置用黒鉛ルツボにおいて、前記黒鉛ルツボが、半径方向の分割線に沿って分割された複数の分割部材と該分割部材の半径方向外方への変位を規制する変位規制部材とを備えていることを特徴とする。この単結晶引上装置用黒鉛ルツボは、変位規制部材を備えることにより、分割部材の半径方向外方への変位を規制され、分割部の隙間が大きくなることが防止される。また、変位規制部材を備えているので、分割部材の位置ずれを防止できる。
【0019】
本発明の単結晶引上装置用黒鉛ルツボは、上記の単結晶引上装置用黒鉛ルツボにおいて、前記黒鉛ルツボが底部と側部とから構成され、該側部は前記複数の分割部材からなり、前記底部は前記変位規制部材であり、前記複数の分割部材の下端部に周方向に沿う係合部が形成され、前記変位規制部材の周縁部に周方向に沿い、前記係合部に係合する係合受け部が形成されていることを特徴とする。この単結晶引上装置用黒鉛ルツボでは、分割部材に設けられた係合部に底部をなす変位規制部材に設けられた係合受け部を係合させるという簡単な構成により、分割部材の半径方向外方への変位を防止でき、分割部の隙間が大きくなることが防止される。
【0020】
本発明の単結晶引上装置用黒鉛ルツボは、上記の単結晶引上装置用黒鉛ルツボにおいて、前記係合部は平坦な面で形成された段部であり、前記係合受け部は該段部に上方から当接する平坦な面で形成されたつば部であることを特徴とする。この単結晶引上装置用黒鉛ルツボでは、石英ルツボの変形に伴って黒鉛ルツボの開口部近傍を拡径する力が作用するとき、底部のつば部が分割部材の段部を押さえることにより、分割部材の変位を規制することができる。従って、分割部の隙間が大きくなることを防止できる。
【0021】
本発明の単結晶引上装置用黒鉛ルツボは、上記の単結晶引上装置用黒鉛ルツボにおいて、前記段部または前記つば部のいずれか一方に溝部が形成され、他方に該溝部に係合する凸部が形成されていることを特徴とする。この単結晶引上装置用黒鉛ルツボでは、底部と分割部材が係合が溝部と凸部とによりなされているので、鉛直方向を除く広範囲の方向の分割部材の変位を規制することができる。従って、分割部の隙間が大きくなることを防止できる。
【0022】
本発明の単結晶引上装置は、上記のいずれかに記載の単結晶引上装置用黒鉛ルツボを備えたことを特徴とする。この単結晶引上装置は、変位規制部材を有する黒鉛ルツボが設けられているので、分割部材の半径方向外方への変位を規制し、COガスの通り道である分割部の隙間が大きくなることが防止され、石英ルツボから発生したSiOガスと黒鉛ルツボの分割部の特に湾曲部との反応を抑制でき、黒鉛ルツボの湾曲部の薄肉化を防止できるので、黒鉛ルツボの寿命を延ばし、ランニングコストの削減可能である。また、黒鉛ルツボの薄肉化による形状の変化に伴う石英ルツボの変形が抑制できるので、石英ルツボ内の半導体融液が流出する可能性が低減されている。さらに、石英ルツボが変形した部分は半導体融液に流れ(乱流)が生じて半導体の単結晶化率が低下するが、そのような変形が抑制されるので、単結晶化率が高いインゴットの製造が可能である。
【0023】
本発明の単結晶引上装置は、半導体融液を貯留する石英ルツボを支持するための黒鉛ルツボと該黒鉛ルツボを下方より支持する黒鉛ルツボ支持台を備えた単結晶引上装置において、前記黒鉛ルツボが半径方向の分割線に沿って分割された複数の分割部材からなり、該複数の分割部材の外側の下部周縁部には周方向に沿うテ−パ部が設けられ、前記黒鉛ルツボ支持台の上面周縁部には周方向に沿い、前記テ−パ部に着接して前記複数の分割部材を支持するテ−パ受け部が形成されていることを特徴とする。この単結晶引上装置は、従来の黒鉛ルツボと黒鉛ルツボ支持台にそれぞれテ−パ部およびテ−パ受け部を設けることにより、分割部材の半径方向外方への変位を規制して、COガスの通り道である分割部の隙間が大きくなることを防止し、石英ルツボから発生したSiOガスと黒鉛ルツボとの反応を抑制する。
【0024】
【発明の実施の形態】
以下、本発明に係る単結晶引上装置用黒鉛ルツボおよび単結晶引上装置の好適な実施の形態を図面を参照して説明する。
尚、図5および図6において既に説明した同等な構成要素に対しては、同符号を付してその説明を省略する。
【0025】
まず、第一の実施形態を図1および図2を参照して説明する。
本実施形態の単結晶引上装置用黒鉛ルツボ31(以下、単に黒鉛ルツボ31という。)は、底部32と側部33とから構成され、その側部33は3つの分割部材33a、33b、33cからなり、底部32は変位規制部材32であり、3つの分割部材33a、33b、33cのそれぞれの下端部に周方向に沿う平坦な面で形成された段部(係合部)34、34、34が形成され、一方、変位規制部材32の周縁部に周方向に沿い、前記段部34、34、34に上方から当接する平坦な面で形成されたつば部(係合受け部)35、35、35が形成されている。
【0026】
この黒鉛ルツボ31では、石英ルツボ11の特に開口部が変形して拡径することにより、分割部材33a、33b、33cの上部が半径方向外方に力を受け、その段部34、34、34が図2の矢印に示すように力を受けた場合、変位規制部材32のつば部35、35、35により上方から押さえられる。そのため、分割部材33a、33b、33cは半径方向外方に変位できないので、COガスの通り道である分割部16a、16b、16cの隙間が大きくなることが防止され、石英ルツボ11から発生したSiOガスと黒鉛ルツボ31の分割部16a、16b、16cの特に湾曲部17a、17b、17cとの反応が抑制される。
【0027】
また、変位規制部材32により、分割部材33a、33b、33cの位置ずれが防止できるので、位置ずれによる分割部16a、16b、16cの隙間の増大も防止できる。
【0028】
そのため、この反応に伴う分割部16a、16b、16cの特に湾曲部17a、17b、17cの薄肉化が抑制されるので、黒鉛ルツボ31の寿命が延び、ランニングコストの削減が可能になる。
また、そのような黒鉛ルツボ31の分割部16a、16b、16cの特に湾曲部17a、17b、17cの薄肉化による形状の変化に伴って、石英ルツボ11が変形して薄くなることも抑制されるので、石英ルツボ11内の半導体融液が流出する可能性を低減できる。
さらには、石英ルツボ11が変形した部分は半導体融液に流れ(乱流)が生じて半導体の単結晶化率が低下するが、そのような変形が抑制されるので、単結晶化率が向上する。
【0029】
次に、第二の実施形態について、図3を参照して説明する。
上述の第一の実施形態と同等な構成要素に対しては、同符号を付してその説明を省略する。
この実施形態では、図3に示すように、第一の実施形態における分割部材33a、33b、33cの段部34、34、34に溝部36、36、36が形成され、また、変位規制部材32のつば部35、35、35にその溝部36、36、36に係合する凸部37、37、37が形成されている点が第一の実施形態との相違である。
【0030】
この場合、分割部材33a、33b、33cが図3の矢印に示すような力を受けても、分割部材33a、33b、33cの溝部36、36、36が変位規制部材32の凸部37、37、37に係合されているので、変位できない。したがって、COガスの通り道である分割部16a、16b、16cの隙間が大きくなることが防止されるので、石英ルツボ11から発生したSiOガスと黒鉛ルツボ31との反応が抑制される。
【0031】
次に、第三の実施形態について、図4を参照して説明する。
上述の第一および第二の実施形態と同等な構成要素に対しては、同符号を付してその説明を省略する。
この単結晶引上装置では、半径方向の分割線に沿って分割された3つの分割部材15a、15b(分割部材15cは不図示)からなる黒鉛ルツボ15と該黒鉛ルツボ15を下方より支持する黒鉛ルツボ支持台(図6中のフランジ部と同等の構成要素)14aを備えた単結晶引上装置において、3つの分割部材15a、15b、15cの外側の下部周縁部には周方向に沿うテ−パ部40a、40b、40c(テ−パ部40cは不図示)が設けられ、黒鉛ルツボ支持台14aの上面周縁部には周方向に沿い、テ−パ部40a、40b、40cに着接して3つの分割部材15a、15b、15cを支持するテ−パ受け部41が形成されている。ここで、3つの分割部材15a、15b、15cの外側底面部42a、42b、42c(外側底面部42cは不図示)は、黒鉛ルツボ支持台14aの上面部14bに接しない構成としているので、3つの分割部材15a、15b、15cは、黒鉛ルツボ支持台14aのテ−パ受け部41だけで支持している。
【0032】
この実施形態では、テ−パ部40a、40b、40cは、分割部材自身の重量のテ−パ部40a、40b、40cに垂直な方向の成分の力を受けているので、3つの分割部材15a、15b、15cは半径方向外方に変位することができない。この場合、3つの分割部材15a、15b、15cを黒鉛ルツボ支持台14aのテ−パ受け部41だけで支持する構成にすることで、その変位を効果的に規制している。そのため、COガスの通り道である分割部16a、16b、16c(図4不図示)の隙間が大きくなることが防止されるので、石英ルツボ11から発生したSiOガスと黒鉛ルツボ15との反応が抑制される。
【0033】
尚、上記実施形態において説明した黒鉛ルツボ15、あるいは黒鉛ルツボ31は、3分割のものに限らず、その他の数に分割されていてもよい。
【0034】
【発明の効果】
以上詳細に説明したように、本発明によれば、以下のような効果を奏する。
【0035】
本発明の単結晶引上装置用黒鉛ルツボによれば、変位規制部材を備えているので、分割部材の半径方向外方への変位を規制することにより、分割部の隙間が大きくなることが防止できるので、石英ルツボから発生したSiOガスと黒鉛ルツボとの反応を抑制でき、黒鉛ルツボの薄肉化を防止できるので、黒鉛ルツボの寿命を延ばし、ランニングコストの削減できるという効果を得ることができる。また、黒鉛ルツボの薄肉化による形状の変化に伴石英ルツボの変形が抑制できるので、石英ルツボ内の半導体融液が流出する可能性を低減できるという効果を得ることができる。さらに、石英ルツボが変形した部分は半導体融液に流れ(乱流)が生じて半導体の単結晶化率が低下するが、そのような変形が抑制されるので、単結晶化率が向上させることができるという効果が得られる。また、分割部材の位置ずれによる分割部の隙間が大きくなることが防止できるという効果が得られる。
【0036】
本発明の単結晶引上装置用黒鉛ルツボによれば、分割部材に設けられた係合部に底部をなす変位規制部材に設けられた係合受け部を係合させるという簡単な構成により、上記の効果と同様な効果を得られる。
【0037】
本発明の単結晶引上装置用黒鉛ルツボによれば、石英ルツボの変形に伴って黒鉛ルツボの開口部近傍を拡径する力が作用するとき、底部のつば部が分割部材の段部を押さえることにより、分割部材の変位を規制することができる。従って、分割部の隙間が大きくなることを防止できるという効果が得られる。
【0038】
本発明の単結晶引上装置用黒鉛ルツボによれば、底部と分割部材が係合が溝部と凸部とによりなされているので、鉛直方向を除く広範囲の方向の分割部材の変位を規制することができる。従って、分割部の隙間が大きくなることを防止できるという効果が得られる。
【0039】
本発明の単結晶引上装置によれば、変位規制部材を有する黒鉛ルツボが設けられているので、分割部材の半径方向外方への変位を規制し、COガスの通り道である分割部の隙間が大きくなることを防止され、石英ルツボから発生したSiOガスと黒鉛ルツボの分割部の特に湾曲部との反応を抑制でき、黒鉛ルツボの湾曲部の薄肉化を防止できるので、黒鉛ルツボの寿命を延ばし、ランニングコストの削減可能であるという効果が得られる。また、黒鉛ルツボの薄肉化による形状の変化に伴石英ルツボの変形が抑制できるので、石英ルツボ内の半導体融液が流出する可能性が低減されているという効果が得られる。さらに、石英ルツボが変形した部分は半導体融液に流れ(乱流)が生じて半導体の単結晶化率が低下するが、そのような変形が抑制されるので、単結晶化率が高いインゴットの製造が可能であるという効果が得られる。
【0040】
本発明の単結晶引上装置によれば、従来の黒鉛ルツボと黒鉛ルツボ支持台にそれぞれテ−パ部およびテ−パ受け部を設けて分割部材の半径方向外方への変位を規制しているので、上記の単結晶引上装置と同様の効果が得られる。
【図面の簡単な説明】
【図1】 (a)は本発明に係る第一の実施形態の単結晶引上装置用黒鉛ルツボの平面図、(b)は(a)のA−A線断面図である。
【図2】 図1(b)におけるPの拡大図である。
【図3】 本発明に係る第二の実施形態の単結晶引上装置用黒鉛ルツボの図1(b)におけるPと同等な部位の拡大図である。
【図4】 本発明に係る第三の実施形態の単結晶引上装置における黒鉛ルツボ近傍の該黒鉛ルツボの中心を通る垂直面から視た断面図である。
【図5】 CMCZ法を用いたシリコンの単結晶引上装置の一例を示す断面図である。
【図6】 (a)は従来の単結晶引上装置のルツボ構造の平面図、(b)は(a)のX−X線断面図である。
【符号の説明】
1 単結晶引上装置
11 石英ルツボ
14a フランジ部(黒鉛ルツボ支持台)
15 単結晶引上装置用黒鉛ルツボ(黒鉛ルツボ)
16a、16b、16c 分割部
17a、17b、17c 湾曲部
21 半導体融液
31 単結晶引上装置用黒鉛ルツボ(黒鉛ルツボ)
32 底部(変位規制部材)
33 側部
33a、33b、33c 分割部材
34 段部(係合部)
35 つば部(係合受け部)
36 溝部
37 凸部
40a、40b テ−パ部
41 テ−パ受け部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a graphite crucible for a single crystal pulling apparatus and a single crystal pulling apparatus for supporting a quartz crucible for storing a semiconductor melt.
[0002]
[Prior art]
Conventionally, the CZ method is known as one of methods for growing a semiconductor single crystal such as silicon (Si) or gallium arsenide (GaAs).
This CZ method is characterized by the fact that a single crystal having a large diameter and high purity can be easily obtained with no dislocations or very few lattice defects. is there.
[0003]
In recent years, the CZ method has been variously improved and put into practical use in accordance with the demand for increasing the diameter of single crystals, increasing the purity, and homogenizing oxygen concentration and impurity concentration.
As an improved version of the CZ method, a continuous charge type magnetic field application CZ method (hereinafter abbreviated as CMCZ method) using a so-called double crucible has been proposed. In this method, by applying a magnetic field to the semiconductor melt in the crucible from the outside, the convection in the semiconductor melt is suppressed, and a single crystal having a high controllability of oxygen concentration and a high single crystallization rate is grown. It has a feature that a long semiconductor single crystal can be easily obtained by continuously supplying raw materials between an outer crucible and an inner crucible. Therefore, it is said to be one of the most excellent methods for obtaining a large-diameter and long semiconductor single crystal.
[0004]
FIG. 5 shows an example of a silicon single crystal pulling apparatus using the CMCZ method described in JP-A-4-305091. In the single crystal pulling apparatus 1, a double crucible (quartz crucible) 3, a heater 4, and a raw material supply pipe 5 are arranged in a chamber 2 that is a hollow airtight container, and a magnet 6 is arranged outside the chamber 2. Has been.
The present invention to be described later is not limited to a single crystal pulling apparatus based on the CMCZ method. For example, a single crystal pulling apparatus based on a continuous charge type CZ method (CCZ method) without applying a magnetic field, The present invention can also be applied to a single crystal pulling apparatus provided with one crucible instead of a crucible.
[0005]
The double crucible 3 includes a substantially hemispherical quartz (SiO 2 ) outer crucible (quartz crucible described later) 11 and quartz (SiO 2 ) which is a cylindrical partition provided in the outer crucible 11. The inner crucible 12 is formed, and the side wall of the inner crucible 12 communicates between the inner crucible 12 and the outer crucible 11 (raw material melting region) and the inner side of the inner crucible 12 (crystal growth region). A plurality of communication holes 13 are formed.
[0006]
The double crucible 3 is accommodated and placed in a graphite crucible (susceptor) 15 on a shaft 14 that is vertically installed at the center lower part of the chamber 2. The double crucible 3 is placed on a horizontal plane around the axis of the shaft 14. It is configured to rotate at a predetermined angular velocity. In the double crucible 3, a semiconductor melt (heated and melted raw material of a semiconductor single crystal) 21 is stored.
As shown in FIG. 6, the graphite crucible 15 is composed of three divided members 15a, 15b, 15c divided along the radial dividing line, and the shafts are formed on the bottom surfaces of the divided members 15a, 15b, 15c. Recesses 20a and 20b (recesses formed in the dividing member 15c are not shown) into which 14 (see FIG. 5) flanges 14a are fitted are formed. The reason why the graphite crucible 15 is divided in the radial direction is to release thermal stress exerted on the graphite crucible 15 and prevent cracking.
[0007]
The substantially cylindrical heater 4 heats and melts a semiconductor raw material in a crucible and keeps the generated semiconductor melt 21, and a resistance heater is usually used. A raw material supply pipe 5 serving as a raw material supply means continuously feeds a predetermined amount of the semiconductor raw material 10 onto the surface of the semiconductor melt 21 between the outer crucible 11 and the inner crucible 12 from its lower end opening. .
[0008]
As the raw material 10 supplied from the raw material supply pipe 5, for example, a polycrystalline silicon ingot is crushed with a crusher or the like into flakes, or precipitated from a gaseous raw material by a pyrolysis method. Polycrystalline silicon granules are preferably used, and if necessary, an additive called a dopant such as boron (B) (when making a p-type silicon single crystal) or phosphorus (P) (when making an n-type silicon single crystal) Additional elements are supplied.
The same applies to gallium arsenide (GaAs). In this case, the additive element is zinc (Zn) or silicon (Si).
[0009]
By the single crystal pulling apparatus 1, the seed crystal 25 is suspended from the pulling shaft 24 disposed above and on the axis of the inner crucible 12 via a chuck (not shown), and the pulling shaft 24 is rotated around its axis. The semiconductor single crystal 26 is grown using the seed crystal 25 as a nucleus above the semiconductor melt 21.
[0010]
By the way, in the above-described single crystal pulling apparatus, as described in JP-A-63-303894, a polycrystalline raw material such as a polycrystalline silicon lump is previously placed in the outer crucible 11 in a pre-process for growing a single crystal. Is melted to store the semiconductor melt 21, and the inner crucible 12 disposed above the outer crucible 11 is placed in the outer crucible 11 to form the double crucible 3.
[0011]
The double crucible 3 is formed after melting the polycrystalline raw material in this way because the raw material in the outer crucible 11 is grown by the single crystal by the heater 4 in order to completely melt the polycrystalline raw material and obtain the semiconductor melt 21. This is because the inner crucible 12 is preliminarily formed in the outer crucible 11 at this time, so that a large thermal deformation occurs in the inner crucible 12.
[0012]
Therefore, after the raw material is completely melted, the inner crucible 12 is formed on the outer crucible 11 after the heating by the heater 4 is weakened to some extent, thereby avoiding high temperature heating during initial raw material melting and holding and suppressing deformation of the inner crucible 12. is doing.
[0013]
Further, the communication hole 13 formed in the inner crucible 12 is set to have a certain opening area or less so that the semiconductor melt 21 flows only from the outer crucible 11 side into the inner crucible 12 when the raw material is supplied. This is because, when the phenomenon that the semiconductor melt 21 returns from the crystal growth region to the raw material melting region by convection occurs, it becomes difficult to control the impurity concentration, the melt temperature, and the like in the single crystal growth.
[0014]
[Problems to be solved by the invention]
However, as shown in FIG. 6, the crucible structure is a structure in which the quartz crucible 11 is simply accommodated in a graphite crucible 15 having a divided structure, so that the gas (types) generated from the quartz crucible 11 as the single crystal production progresses. SiO) and the reaction between the bent portions 17a, 17b, and 17c (parts surrounded by a one-dot chain line in FIG. 6) in the vicinity of the dividing line of the graphite crucible 15 (hereinafter referred to as the dividing portions 16a, 16b, and 16c). Thus, this part is lost and thinned. If the thickness of the defective portion becomes below a specified value due to this thinning, the entire graphite crucible 15 must be replaced with a new one. As a result, the life of the graphite crucible 15 is shortened, the replacement frequency is increased, and as a result, the running cost is increased.
[0015]
Here, the cause that the division parts 16a, 16b, and 16c of the graphite crucible 15 are easily lost is estimated as follows.
That is, first, it is presumed that the SiO gas generated from the quartz crucible 11 reacts with the graphite crucible 15 to cause a reaction in which C is separated from the graphite crucible 15 as CO gas (see the following reaction formula).
SiO + 2C → SiC + CO ↑
Then, due to the quartz crucible 11 being exposed to a high temperature atmosphere during the semiconductor single crystal growth step, the quartz crucible 11 is deformed and is in close contact with the graphite crucible 15, and the SiO gas path is divided into the divided portions 16 a, 16 b, Concentrate on 16c. In the vicinity of the divided portions 16a, 16b, and 16c, the generated CO gas easily moves out of the graphite crucible 15 through the divided portions 16a, 16b, and 16c, so that the CO gas concentration does not easily increase. The reaction of is promoted.
Further, among the divided portions 16a, 16b, and 16c, the curved portions 17a, 17b, and 17c are particularly easily lost for the following reasons. In the furnace, the temperature distribution in the single crystal growth axis direction becomes higher at the lower side and at the outer side in the radial direction, and the reaction is more likely to proceed. On the other hand, since the graphite crucible 15 is placed on the flange 14a, the CO gas hardly escapes from the bottom surface of the graphite crucible 15, so that the reaction does not proceed easily. Thus, the curved portions 17a, 17b, and 17c located in the lower portion near the bottom surface are the portions that are most easily lost.
When the quartz crucible 11 is further deformed and enlarged in a state of being in close contact with the graphite crucible 15, the divided members 15a, 15b, 15 are displaced outward in the radial direction, and the divided portions 16a, 16b, 16c that are passages of CO gas. The gap becomes larger and the above reaction is further promoted.
[0016]
Further, if the defect promotion of the divided portions 16a, 16b, and 16c of the graphite crucible 15 is left as it is, the quartz crucible 11 is also deformed and thinned as the shape of the graphite crucible 15 is reduced. There is also a problem that the possibility of the semiconductor melt in the quartz crucible 11 flowing out increases.
In addition, since the curvature of the deformed portion of the quartz crucible 11 is small, a flow (turbulent flow) is likely to occur in the semiconductor melt in the quartz crucible 11, and as a result, the single crystallization rate of the semiconductor decreases. There is also.
[0017]
The present invention has been made in view of the circumstances described above, and the reaction between the SiO gas generated from the quartz crucible and the graphite crucible is suppressed, thereby extending the life of the graphite crucible and reducing the running cost. An object of the present invention is to provide a graphite crucible for a single crystal pulling apparatus and a single crystal pulling apparatus that can improve the single crystallization rate.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
A graphite crucible for a single crystal pulling apparatus according to the present invention is a graphite crucible for a single crystal pulling apparatus for supporting a quartz crucible for storing a semiconductor melt, wherein the graphite crucible is divided along a dividing line in the radial direction. It is characterized by comprising a plurality of divided members and a displacement restricting member for restricting the radially outward displacement of the divided members. This graphite crucible for a single crystal pulling apparatus is provided with a displacement restricting member, so that the displacement of the dividing member in the radially outward direction is restricted, and the gap between the dividing portions is prevented from becoming large. In addition, since the displacement regulating member is provided, it is possible to prevent the positional deviation of the divided members.
[0019]
Graphite crucible for single crystal pulling apparatus of the present invention, the graphite crucible for the above single crystal pulling apparatus, the graphite crucible is composed of a bottom and sides, the side portion is from the plurality of divided members, The bottom portion is the displacement regulating member, and an engaging portion is formed along a circumferential direction at a lower end portion of the plurality of divided members, and is engaged with the engaging portion along a circumferential direction at a peripheral edge portion of the displacement regulating member. An engagement receiving portion is formed. In this graphite crucible for a single crystal pulling apparatus, the engagement member provided on the displacement regulating member that forms the bottom part is engaged with the engagement part provided on the division member, so that the radial direction of the division member is achieved. The outward displacement can be prevented and the gap between the divided portions is prevented from becoming large.
[0020]
The graphite crucible for a single crystal pulling apparatus according to the present invention is the above-described graphite crucible for a single crystal pulling apparatus, wherein the engaging portion is a step formed with a flat surface, and the engagement receiving portion is the step. It is a collar part formed with the flat surface which contact | abuts to a part from upper direction, It is characterized by the above-mentioned. In this graphite crucible for a single crystal pulling apparatus, when a force that expands the vicinity of the opening of the graphite crucible is applied as the quartz crucible is deformed, the bottom flange presses down the stepped portion of the dividing member, thereby dividing the graphite crucible. The displacement of the member can be regulated. Therefore, it is possible to prevent the gap between the divided portions from increasing.
[0021]
The graphite crucible for a single crystal pulling apparatus according to the present invention is the above-described graphite crucible for a single crystal pulling apparatus, wherein a groove portion is formed in one of the stepped portion and the flange portion, and the other is engaged with the groove portion. A convex portion is formed. In this graphite crucible for a single crystal pulling apparatus, since the bottom portion and the divided member are engaged by the groove portion and the convex portion, the displacement of the divided member in a wide range other than the vertical direction can be restricted. Therefore, it is possible to prevent the gap between the divided portions from increasing.
[0022]
A single crystal pulling apparatus according to the present invention includes the graphite crucible for a single crystal pulling apparatus described above . Since this single crystal pulling apparatus is provided with a graphite crucible having a displacement regulating member, the displacement of the dividing member in the radially outward direction is restricted, and the gap of the dividing portion that is the passage of CO gas becomes large. Can prevent the reaction between the SiO gas generated from the quartz crucible and the bent portion of the graphite crucible, and in particular, the thickness of the bent portion of the graphite crucible can be prevented, thereby extending the life of the graphite crucible and reducing the running cost. Can be reduced. Further, since the deformation of the quartz crucible accompanying the change in shape due to the thinning of the graphite crucible can be suppressed, the possibility of the semiconductor melt flowing out in the quartz crucible is reduced. Furthermore, the portion where the quartz crucible is deformed causes a flow (turbulent flow) in the semiconductor melt and decreases the single crystallization rate of the semiconductor, but since such deformation is suppressed, an ingot with a high single crystallization rate is obtained. Manufacturing is possible.
[0023]
The single crystal pulling apparatus of the present invention is the single crystal pulling apparatus provided with a graphite crucible for supporting a quartz crucible for storing a semiconductor melt and a graphite crucible support for supporting the graphite crucible from below. The crucible is composed of a plurality of divided members divided along a dividing line in the radial direction, and a taper portion extending in the circumferential direction is provided on the lower peripheral edge of the outer side of the plurality of divided members. A taper receiving portion for supporting the plurality of divided members is formed on the periphery of the upper surface along the circumferential direction so as to contact the taper portion. This single crystal pulling apparatus is provided with a taper portion and a taper receiving portion on a conventional graphite crucible and a graphite crucible support base, respectively, thereby restricting the radially outward displacement of the divided members and The gap between the divided portions, which are gas passages, is prevented from becoming large, and the reaction between the SiO gas generated from the quartz crucible and the graphite crucible is suppressed.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a graphite crucible for a single crystal pulling apparatus and a single crystal pulling apparatus according to the present invention will be described with reference to the drawings.
5 and 6 are denoted by the same reference numerals, and the description thereof is omitted.
[0025]
First, a first embodiment will be described with reference to FIG. 1 and FIG.
A graphite crucible 31 for a single crystal pulling apparatus of the present embodiment (hereinafter simply referred to as a graphite crucible 31) is composed of a bottom 32 and a side 33, and the side 33 is divided into three divided members 33a, 33b, 33c. The bottom portion 32 is a displacement restricting member 32, and step portions (engaging portions) 34, 34 formed by flat surfaces along the circumferential direction at the lower end portions of the three divided members 33a, 33b, 33c, respectively. 34, and on the other hand, a flange portion (engagement receiving portion) 35 formed along a peripheral surface of the displacement regulating member 32 along the circumferential direction and a flat surface that comes into contact with the stepped portions 34, 34, 34 from above. 35, 35 are formed.
[0026]
In this graphite crucible 31, when the opening of the quartz crucible 11 is deformed and expanded in diameter, the upper portions of the divided members 33a, 33b, 33c receive a force radially outward, and the step portions 34, 34, 34 2 is pressed from above by the flange portions 35, 35, 35 of the displacement restricting member 32 when receiving a force as indicated by the arrow in FIG. Therefore, since the dividing members 33a, 33b, and 33c cannot be displaced radially outward, the gaps between the dividing portions 16a, 16b, and 16c that are the passages of the CO gas are prevented from increasing, and the SiO gas generated from the quartz crucible 11 is prevented. Reaction between the split portions 16a, 16b, and 16c of the graphite crucible 31 and particularly the curved portions 17a, 17b, and 17c.
[0027]
Further, since the displacement regulating member 32 can prevent the positional deviation of the divided members 33a, 33b, and 33c, it is also possible to prevent an increase in the gap between the divided parts 16a, 16b, and 16c due to the positional deviation.
[0028]
Therefore, since the thinning of the curved portions 17a, 17b, and 17c of the divided portions 16a, 16b, and 16c accompanying this reaction is suppressed, the life of the graphite crucible 31 is extended, and the running cost can be reduced.
Further, the quartz crucible 11 is also prevented from being deformed and thinned with the change in shape of the divided portions 16a, 16b, 16c of the graphite crucible 31 due to the thinning of the curved portions 17a, 17b, 17c. Therefore, the possibility that the semiconductor melt in the quartz crucible 11 flows out can be reduced.
Furthermore, although the portion where the quartz crucible 11 is deformed flows in the semiconductor melt (turbulent flow) and the single crystallization rate of the semiconductor decreases, such deformation is suppressed, so the single crystallization rate is improved. To do.
[0029]
Next, a second embodiment will be described with reference to FIG.
Constituent elements equivalent to those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
In this embodiment, as shown in FIG. 3, groove portions 36, 36, 36 are formed in the step portions 34, 34, 34 of the divided members 33 a, 33 b, 33 c in the first embodiment, and the displacement restricting member 32 is formed. A difference from the first embodiment is that convex portions 37, 37, 37 that engage with the groove portions 36, 36, 36 are formed on the flange portions 35, 35, 35.
[0030]
In this case, even if the dividing members 33a, 33b, and 33c receive the force shown by the arrow in FIG. 3, the grooves 36, 36, and 36 of the dividing members 33a, 33b, and 33c are the convex portions 37 and 37 of the displacement regulating member 32. , 37 cannot be displaced. Therefore, the gaps between the divided portions 16a, 16b, and 16c that are the passages of the CO gas are prevented from becoming large, and the reaction between the SiO gas generated from the quartz crucible 11 and the graphite crucible 31 is suppressed.
[0031]
Next, a third embodiment will be described with reference to FIG.
Constituent elements equivalent to those in the first and second embodiments described above are denoted by the same reference numerals and description thereof is omitted.
In this single crystal pulling apparatus, a graphite crucible 15 composed of three divided members 15a and 15b (divided member 15c is not shown) divided along a dividing line in the radial direction and graphite supporting the graphite crucible 15 from below. In the single crystal pulling apparatus provided with a crucible support base (a component equivalent to the flange portion in FIG. 6) 14a, the lower peripheral edge portion outside the three divided members 15a, 15b, 15c is a tape extending along the circumferential direction. The taper portions 40a, 40b, and 40c (the taper portion 40c is not shown) are provided, and are attached to the taper portion 40a, 40b, and 40c along the circumferential direction at the upper peripheral edge of the graphite crucible support base 14a. A taper receiving portion 41 that supports the three divided members 15a, 15b, and 15c is formed. Here, the outer bottom surface portions 42a, 42b, 42c (the outer bottom surface portion 42c is not shown) of the three divided members 15a, 15b, 15c are configured not to contact the upper surface portion 14b of the graphite crucible support base 14a. The two divided members 15a, 15b and 15c are supported only by the taper receiving portion 41 of the graphite crucible support base 14a.
[0032]
In this embodiment, the taper portions 40a, 40b, and 40c receive the force of the component in the direction perpendicular to the taper portions 40a, 40b, and 40c of the weight of the split member itself, and thus the three split members 15a. , 15b, 15c cannot be displaced radially outward. In this case, the three divided members 15a, 15b, and 15c are supported by only the taper receiving portion 41 of the graphite crucible support base 14a, thereby effectively restricting the displacement. For this reason, the gap between the dividing portions 16a, 16b, and 16c (not shown in FIG. 4), which is a passage for CO gas, is prevented from increasing, so that the reaction between the SiO gas generated from the quartz crucible 11 and the graphite crucible 15 is suppressed. Is done.
[0033]
The graphite crucible 15 or the graphite crucible 31 described in the above embodiment is not limited to the one divided into three, and may be divided into other numbers.
[0034]
【The invention's effect】
As described above in detail, the present invention has the following effects.
[0035]
According to the graphite crucible for a single crystal pulling apparatus of the present invention , since the displacement restricting member is provided, it is possible to prevent the gap between the dividing portions from becoming large by restricting the radially outward displacement of the dividing member. Therefore, the reaction between the SiO gas generated from the quartz crucible and the graphite crucible can be suppressed, and the thinning of the graphite crucible can be prevented, so that the life of the graphite crucible can be extended and the running cost can be reduced. In addition, since the deformation of the quartz crucible can be suppressed as the shape of the graphite crucible is changed due to the thinning of the graphite crucible, it is possible to reduce the possibility that the semiconductor melt in the quartz crucible flows out. Furthermore, the portion where the quartz crucible is deformed flows in the semiconductor melt (turbulent flow) and the semiconductor single crystallization rate decreases, but such deformation is suppressed, so that the single crystallization rate is improved. The effect of being able to be obtained. In addition, an effect is obtained that it is possible to prevent an increase in the gap between the divided portions due to the displacement of the divided members.
[0036]
According to a graphite crucible for single crystal pulling apparatus of the present invention, by a simple structure of engaging the engagement receiving portion provided on the displacement regulating member forming the bottom engaging portion provided in the divided members, the The effect similar to the effect can be obtained.
[0037]
According to the graphite crucible for a single crystal pulling apparatus of the present invention , when a force for expanding the vicinity of the opening of the graphite crucible is applied in accordance with the deformation of the quartz crucible, the bottom flange portion presses the stepped portion of the dividing member. Thereby, the displacement of a division member can be controlled. Therefore, the effect that it can prevent that the clearance gap between division parts becomes large is acquired.
[0038]
According to the graphite crucible for a single crystal pulling apparatus of the present invention , since the bottom portion and the divided member are engaged by the groove portion and the convex portion, the displacement of the divided member in a wide range direction except the vertical direction is regulated. Can do. Therefore, the effect that it can prevent that the clearance gap between division parts becomes large is acquired.
[0039]
According to the single crystal pulling apparatus of the present invention, since the graphite crucible having the displacement restricting member is provided, the displacement of the dividing member in the radially outward direction is restricted, and the gap of the dividing portion which is the passage of CO gas. Is prevented, and the reaction between the SiO gas generated from the quartz crucible and the bent portion of the graphite crucible, in particular, the bent portion can be suppressed, and thinning of the bent portion of the graphite crucible can be prevented. The effect of extending the running cost can be obtained. In addition, since the deformation of the quartz crucible can be suppressed as the shape of the graphite crucible is reduced, the possibility that the semiconductor melt in the quartz crucible flows out is reduced. Furthermore, the portion where the quartz crucible is deformed causes a flow (turbulent flow) in the semiconductor melt and decreases the single crystallization rate of the semiconductor, but since such deformation is suppressed, an ingot with a high single crystallization rate is obtained. The effect that manufacture is possible is acquired.
[0040]
According to the single crystal pulling apparatus of the present invention , a conventional graphite crucible and a graphite crucible support base are provided with a taper portion and a taper receiving portion, respectively, to restrict displacement of the divided member in the radially outward direction. Therefore, the same effect as the above single crystal pulling apparatus can be obtained.
[Brief description of the drawings]
FIG. 1A is a plan view of a graphite crucible for a single crystal pulling apparatus according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG.
FIG. 2 is an enlarged view of P in FIG.
FIG. 3 is an enlarged view of a portion equivalent to P in FIG. 1B of a graphite crucible for a single crystal pulling apparatus according to a second embodiment of the present invention.
FIG. 4 is a cross-sectional view seen from a vertical plane passing through the center of the graphite crucible in the vicinity of the graphite crucible in the single crystal pulling apparatus according to the third embodiment of the present invention.
FIG. 5 is a cross-sectional view showing an example of a silicon single crystal pulling apparatus using a CMCZ method.
6A is a plan view of a crucible structure of a conventional single crystal pulling apparatus, and FIG. 6B is a sectional view taken along line XX of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 11 Quartz crucible 14a Flange part (graphite crucible support stand)
15 Graphite crucible for single crystal pulling equipment (graphite crucible)
16a, 16b, 16c Dividing parts 17a, 17b, 17c Bending part 21 Semiconductor melt 31 Graphite crucible for single crystal pulling device (graphite crucible)
32 Bottom (displacement regulating member)
33 Side parts 33a, 33b, 33c Dividing member 34 Step part (engagement part)
35 collar (engagement receiving part)
36 groove part 37 convex part 40a, 40b taper part 41 taper receiving part

Claims (2)

半導体融液を貯留する石英ルツボを支持するための単結晶引上装置用黒鉛ルツボにおいて、
前記黒鉛ルツボが、半径方向の分割線に沿って分割された複数の分割部材と該分割部材の半径方向外方への変位を規制する変位規制部材とを備え、
前記黒鉛ルツボが底部と側部とから構成され、該側部は前記複数の分割部材からなり、前記底部は前記変位規制部材であり、前記複数の分割部材の下端部に周方向に沿う係合部が形成され、前記変位規制部材の周縁部に周方向に沿い、前記係合部に係合する係合受け部が形成され、
前記係合部は平坦な面で形成された段部であり、前記係合受け部は該段部に上方から当接する平坦な面で形成されたつば部であり、
前記段部または前記つば部のいずれか一方に溝部が形成され、他方に該溝部に係合する凸部が形成されていることを特徴とする単結晶引上装置用黒鉛ルツボ。
In a graphite crucible for a single crystal pulling apparatus for supporting a quartz crucible for storing a semiconductor melt,
The graphite crucible includes a plurality of divided members divided along a dividing line in the radial direction and a displacement regulating member for regulating displacement of the divided member in the radially outward direction,
The graphite crucible is composed of a bottom portion and a side portion, the side portion is composed of the plurality of divided members, the bottom portion is the displacement regulating member, and is engaged with a lower end portion of the plurality of divided members along a circumferential direction. A portion is formed, and an engagement receiving portion that is engaged with the engagement portion is formed along the circumferential direction of the peripheral portion of the displacement regulating member,
The engaging portion is a step portion formed with a flat surface, and the engagement receiving portion is a collar portion formed with a flat surface that comes into contact with the step portion from above,
A graphite crucible for a single crystal pulling apparatus, wherein a groove portion is formed in one of the stepped portion and the flange portion, and a convex portion engaging with the groove portion is formed in the other.
請求項1に記載の単結晶引上装置用黒鉛ルツボを備えたことを特徴とする単結晶引上装置。  A single crystal pulling apparatus comprising the graphite crucible for a single crystal pulling apparatus according to claim 1.
JP07103199A 1999-03-16 1999-03-16 Graphite crucible for single crystal pulling apparatus and single crystal pulling apparatus Expired - Lifetime JP3799865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07103199A JP3799865B2 (en) 1999-03-16 1999-03-16 Graphite crucible for single crystal pulling apparatus and single crystal pulling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07103199A JP3799865B2 (en) 1999-03-16 1999-03-16 Graphite crucible for single crystal pulling apparatus and single crystal pulling apparatus

Publications (2)

Publication Number Publication Date
JP2000264777A JP2000264777A (en) 2000-09-26
JP3799865B2 true JP3799865B2 (en) 2006-07-19

Family

ID=13448763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07103199A Expired - Lifetime JP3799865B2 (en) 1999-03-16 1999-03-16 Graphite crucible for single crystal pulling apparatus and single crystal pulling apparatus

Country Status (1)

Country Link
JP (1) JP3799865B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6743797B2 (en) 2017-09-29 2020-08-19 株式会社Sumco Crucible support pedestal, quartz crucible support device, and method for manufacturing silicon single crystal
CN112030230B (en) * 2020-08-11 2022-04-15 深圳市凯新达电子有限公司 Semiconductor material processing system
WO2023011592A1 (en) * 2021-08-05 2023-02-09 隆基绿能科技股份有限公司 Crucible upper component and single crystal furnace thermal field

Also Published As

Publication number Publication date
JP2000264777A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
KR100411571B1 (en) Growing apparatus of a single crystal ingot
EP1781843B1 (en) Partially devitrified crucible
US20240263343A1 (en) Quartz Crucible and Crystal Puller
JP2007182373A (en) Method for producing high quality silicon single crystal and silicon single crystal wafer made by using the same
KR100800253B1 (en) Producing method of silicon single crystal ingot
JPH10158089A (en) Crucible structure of single crystal pulling-up device
JP3799865B2 (en) Graphite crucible for single crystal pulling apparatus and single crystal pulling apparatus
JP2010260747A (en) Method for producing semiconductor crystal
EP1538242A1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
US20020124792A1 (en) Crystal puller and method for growing single crystal semiconductor material
JPH11349392A (en) Method and apparatus for producing single crystal
KR100906281B1 (en) Heat shield structure for growing silicon single crystal ingot and grower using the same
JP2009190914A (en) Method for producing semiconductor crystal
JP3551736B2 (en) Carbon susceptor for single crystal pulling device
JP3885245B2 (en) Single crystal pulling method
US20240003047A1 (en) Method and apparatus for growing silicon single crystal ingots
CN117552081A (en) Graphite crucible, crucible tray and single crystal furnace
JP3470479B2 (en) Single crystal pulling device
JPH01100087A (en) Single crystal pulling-up device
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
KR20230111038A (en) External crucible accommodating silicon melt and apparatus for growing silicon single crystal ingot including the same
KR20220041649A (en) Manufacturing apparatus of semiconductor ring and manufacturing method of semiconductor ring using the same
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JPH0297483A (en) Apparatus for producing single crystal
JP2004345931A (en) Heat shielding member and single crystal pull-up device using this

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term