JP3799766B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP3799766B2
JP3799766B2 JP23283697A JP23283697A JP3799766B2 JP 3799766 B2 JP3799766 B2 JP 3799766B2 JP 23283697 A JP23283697 A JP 23283697A JP 23283697 A JP23283697 A JP 23283697A JP 3799766 B2 JP3799766 B2 JP 3799766B2
Authority
JP
Japan
Prior art keywords
graphite
bearing
less
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23283697A
Other languages
Japanese (ja)
Other versions
JPH1171639A (en
Inventor
進 田中
学 大堀
賢二 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP23283697A priority Critical patent/JP3799766B2/en
Publication of JPH1171639A publication Critical patent/JPH1171639A/en
Application granted granted Critical
Publication of JP3799766B2 publication Critical patent/JP3799766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスクドライブ装置(以下HDDと称する)やビデオテープレコーダー(VTR)、ディジタルオーディオテープレコーダー(DAT)等に組み込んで、高速で回転するスピンドルを支承したり、あるいはHDD等に組み込まれるスイングアームを支承する極小径の軸受あるいは静粛性が必要とされる軸受に関する。
【0002】
【従来の技術】
一般に、転がり軸受は軌道面と転動面との間で転がり運動をして接触応力を繰り返し受けるため、これらの材料には硬くて負荷に耐え、転がり疲労寿命が長く、滑りに対する耐摩耗性が良好であること等が要求される。そこで、一般的にはこれらの材料には軸受鋼であれば日本工業規格のSUJ2が、肌焼鋼であれば日本工業規格のSCR420相当の鋼材を焼入れあるいは浸炭または浸炭窒化処理した後焼入れしたりしてロックウェルCスケール(HRC)で58〜64の硬さ値とし、必要とされる寿命や耐摩耗性を確保している。
【0003】
近年、HDD装置の高密度化が進み、これに内蔵される軸受に対してこれまでにない高機能と高品質が要求されるようになってきており、また、一方では、HDD装置の低コスト化の目的から軸受に対してもコストダウンの要求が高まっている。
【0004】
HDD装置に内蔵される軸受は、磁気ディスク回転駆動用のスピンドルモータ用軸受と、磁気ディスクの有効エリアへのアクセス位置決めを行うために設けられる揺動駆動用のスイングアーム用軸受との2つに大別できる。
【0005】
一般的に、これらHDD装置用の軸受材料には高炭素クロム軸受鋼であるSUJ2(JIS G 4805)が使用されることが多い。SUJ2は、820〜860℃の温度域で焼入れ後、160〜200℃の温度域に焼戻しを施し、これらの熱処理の結果、得られる軌道輪の硬さはHRC58〜64の範囲で、残留オーステナイト量は8〜14容量%とされる。また、耐食性が要求されたり、特に揺動駆動されるスイングアーム用軸受等には、軌道輪を耐食性、耐フレッチング性が良好なマルテンサイト系のステンレス鋼により構成される場合が多い。このような場合に使用されるステンレス鋼としては、SUS440C(JIS G 4303)、あるいは13Cr系マルテンサイトステンレス鋼を1050℃前後の温度で焼入れした後、深冷処理(サブゼロ処理)を施し、150〜200℃の温度域で焼戻しを施し、これらの熱処理の結果、得られる軌道輪の硬さはHRC57〜62、残留オーステナイト量は8〜12容量%とされる。
【0006】
【発明が解決しようとする課題】
HDD装置のスピンドルに使用される極小径の玉軸受はトルクや音響、騒音の低減に対する要求が非常に厳しいため、極めて高精度に仕上げ加工されており、その回転精度はJISの5級以上とされている。
【0007】
しかし、従来の軸受においては、軌道面あるいは転動面の永久変形(塑性変形)が生じないように定められた基本静定格荷重C0 (最大接触面圧、4000MPa)よりもはるかに小さな荷重や衝撃荷重によって軌道面や転動面に極めて小さな永久歪みを生じ、この永久歪みに起因して回転駆動中に許容できないような騒音を生じることがある。HDD装置では騒音やノイズを生じない極めて高い静粛性が要求されるため、軸受については僅かな音響劣化を生じても問題とされる。
【0008】
これは、HDD装置等の小型化に伴って、これらに組み込まれる玉軸受としても、より小型のものが使用されるようになってきており、そして、このような機器自体の可搬化による落下の機会が増大したこと等により、衝撃が加えられる機会が増えていることによる。衝撃が加わった場合には、比較的小さな衝撃荷重でも軌道面や転動面が永久変形し、音響劣化や回転トルクむらの発生等、玉軸受を組み込んだ機器の性能が劣化する原因となり、これは、軌道輪や転動体を構成する鋼中に含まれる残留オーステナイトやMnSの降伏応力が低いために発生することが多い。
【0009】
そこで近時、残留オーステナイトについては、焼入後、深冷処理(サブゼロ)を行ったり、さらに240℃程度の高温域で焼戻しを行ったりするなどして、残留オーステナイト量を可能な限り低減化するようにしている。
【0010】
一方、微量SはMnと結合してMnSなるA系介在物を形成する。このMnSはAl23 等のB系介在物やその他硬質の非金属介在物ほどは転動疲労寿命には影響を与えず、さらに快削成分として作用し鋼の被削性を向上させる等の効果があるため、軸受鋼あるいは浸炭鋼においては通常Sが0.005〜0.020重量%程度含有されていることが多い。
【0011】
しかし、MnSの降伏応力が低いために含有量が多い場合には衝撃荷重により音響劣化しやすく良好な静粛性が得られなくなる。したがって、音響劣化という問題を改善しようとしてSを低減化すると、鋼の被削性が低下してコストアップを招く等して、コストと機能を両立することができない。転がり軸受を製造する場合、製造コストの中で最も大きいのが加工費であり、加工性の良い材料を用いて軸受を製造することが最もコストダウンに有効である。
【0012】
被削性の良い材料には例えばPbやCa、S等を含有した快削鋼等があげられる。しかし、これらの快削鋼は切削加工性は良好であるが、快削成分の影響で転がり軸受として十分な機能が得られない。
【0013】
本発明は上記課題を解決するためになされたものであり、音響特性(静粛性)に優れ、可能な限り製造コストを低減し、安価でかつ高性能のHDD装置等に好適に使用できる静粛性の良好な転がり軸受を提供することを目的とする。
【0014】
【課題を解決するための手段】
特開平7−188844号公報から特開平7−188851号公報までには素材の炭素を黒鉛化することにより、機械構造用炭素鋼の被削性を改善する試みがなされている。このような黒鉛は、パーライト中のラメラー状(層状)のセメンタイトが準安定相から安定相へ変化する過程で生じるものであり、黒鉛化の進行に伴ってセメンタイトは消失し、黒鉛は粗大成長する。これらの先行技術は主として素材が黒鉛とフェライトからなる構造用炭素鋼であって、あくまで被削性や冷間加工性等に主眼を置いた材料であり、転動疲労寿命や静粛性等が要求される転がり軸受に用いるには不十分である。
【0015】
さらに、特開平8−20841号公報では、このような黒鉛鋼に表面硬化処理を行なうとともに、表面層に残留オーステナイトを付与して転動疲労寿命を確保しようという提案がなされている。しかし、残留オーステナイトは音響劣化の原因となるため、静粛性が要求される極小径の玉軸受にあっては有害であり、さらに熱処理は生産上またはコスト上、RXガス中で加熱した後ずぶ焼入れするかまたは真空焼入れによることが多いため、本願発明が目的とする静粛性の良好な転がり軸受には適用することができない。
【0016】
また、特開平2−274837号公報は、高周波焼入れによって同様に表面硬化処理を行い、実質的に黒鉛が存在しない表面層を形成することによって、転動疲労寿命や静粛性の良好な軸受材を開示している。しかし、これらの先行技術は残留オーステナイトやMnSに起因する被削性や静粛性、音響劣化に対する影響等について何も言及していない。
【0017】
一方で、近年、黒鉛化処理技術の進歩により、黒鉛化処理時間の短縮や、黒鉛粒の微細化が可能となってきている(太田裕樹ら(川崎製鐵)材料とプロセス、Vol.9、PAGE.406、1996や岩本隆ら(川崎製鐵)材料とプロセス、Vol.9、PAGE.407、1996)。
【0018】
そこで本願発明者らは、素材が主としてセメンタイト、黒鉛、フェライトからなる種々の黒鉛鋼を用いて、コスト、機能面から転がり軸受への適用を検討した。その結果、下記(1)〜(3)の知見が得られた。
【0019】
(1)黒鉛の面積率が0.5%以上3%以下である黒鉛鋼素材を使用することで良好な被削性と優れた静粛性が得られる。
(2)黒鉛を含有した鋼においては、黒鉛自体が快削成分として作用するため、MnSを低減化しても被削性にはほとんど影響を及ぼさない。
【0020】
(3)熱処理後の軸受完成品表面において粗大黒鉛、残留オーステナイトおよびMnSを低減させることにより音響劣化を顕著に防止することができる。
以上の知見より、転動疲労特性、静粛性および衝撃荷重による音響劣化の少ない転がり軸受を提供することができることが判明し、本発明の完成に至った。
【0021】
本発明に係る転がり軸受は、内輪、外輪及び転動体で構成される玉軸受において、構成部品のうち、内輪または外輪のいずれか一方、または両方が、質量%で、C:0.45〜0.8、Si:0.5〜1.5、Mn:0.05〜0.3、S:0.005以下、Mo:0.5以下、O:0.015以下を含み、残部Feおよび不可避的不純物元素からなり、黒鉛、セメンタイトおよびフェライトを組織として有し、組織断面における黒鉛の面積率が0.5%以上3%以下の素材を用いて製造され、かつ、焼入れ焼戻し処理により軌道輪完成品の表面が、黒鉛の平均粒径が3μm以下、黒鉛の総含有量が面積率で1.5%以下、残留オーステナイト量が6容量%以下、硬さがHRC58以上とされ、静粛性に優れることを特徴とする。
【0022】
【作用】
黒鉛は鋼の被削性を格段に向上させる作用があり、その効果を十分に発揮させるためには黒鉛量が面積率で0.5%以上あることが必要である。一方、黒鉛が面積率で3.0%を上回って過剰に存在すると、黒鉛の粗大成長により軸受の静粛性、音響劣化などの特性に悪影響を及ぼすようになる。さらに、必然的に黒鉛化処理にかかる時間が増加し、コストアップを招き、粗大成長した黒鉛も熱処理で溶け込み難くなるため、本願発明における素材は、黒鉛、セメンタイトおよびフェライトを組織として有し、黒鉛の面積率が0.5%以上3%以下の範囲に黒鉛化処理がなされているものとした。
【0023】
また、本願発明鋼においては、転がり軸受としての機能を満足し、さらに残留オーステナイトやMnSに起因した転がり軸受の音響劣化という問題を回避するために、下記に示す組成と組織に限定した。以下、とくに言及しない限り%は重量%を表示するものとする。
1)C;0.45〜0.8%
Cは素地をマルテンサイト化して軸受として必要な硬さを得るために最も重要な元素である。またた、素材の段階では、Cのほとんどは黒鉛、セメンタイトとして存在し、特に黒鉛が快削成分として作用し、鋼の被削性を高める。これらの効果を得るためには少なくとも0.45%以上は必要であり、0.8%を超えて添加されると、黒鉛が粗大化したり、セメンタイトの量が増加したりして被削性が低下する等、軸受の機能と加工性の両方を満足できなくなる。また、音響劣化に作用する残留オーステナイトが生成しやすくなる。以上の理由によりC含有量は0.45%以上0.8%以下の範囲とする。
2)Si;0.5〜1.5%
Siは製鋼時の脱酸剤として必要な元素であり、焼入れ性を向上させると共に鋼中のセメンタイトを不安定にして黒鉛化を促進させる元素としても有用である。さらに、焼戻し軟化抵抗性を高め、強度ならびに転動疲労寿命を向上させる。その添加量が0.5%未満ではその効果が得難く、1.5%を超えて添加してもその効果は飽和し、さらにコストアップを招くので、素材のSi含有量は0.5%以上1.5%以下の範囲とする。
3)Mn;0.05〜0.3%
MnはSiと同様に製鋼時の脱酸のために必要な元素であり、さらに鋼中のSを硫化物MnSとして固着させることにより、融点の低いFeSの生成を防止するのに有効な元素である。また、Mnは鋼の焼入れ性を高め、熱処理後の強度および転動疲労寿命の向上にも寄与し、転がり寿命に有効な残留オーステナイトの生成を促進する元素でもある。しかし、HDD装置やVTR装置、その他特に静粛性が要求される軸受にあっては、残留オーステナイトやMnSは有害とされ、多量の添加は好ましくないので、本発明ではその上限値を0.3%とした。一方、Mn量が少なすぎると、鋼中の微量SがFeSとして生成し熱間加工性が低下するので、S含有量の10倍程度はMnを含有することが好ましい。このため、Mn含有量の下限値を0.05%とした。
4)S;0.005%以下
SはMnと結合してMnSを形成し、鋼の被削性を向上させる作用があるが、比較的小径の玉軸受においては、このMnSの降伏応力が低いために軌道面に極めて小さな永久変形が生じて音響劣化の原因となる。Sを低減化すると鋼の被削性は低下するが、黒鉛が微細に分散した黒鉛鋼であれば、黒鉛が快削成分として作用するため、Sを低減化しても被削性にはほとんど影響を及ぼさないので、本発明においてはその量はできる限り少なくするほうが好ましい。また、S量が0.005%を超えると次第に音響劣化が生じやすくなるので、その上限値を0.005%とした。
5)Mo;0.5%以下
Moは焼入れ性を高め、熱処理後の強度および転動疲労寿命、さらには焼戻し軟化抵抗性の向上に寄与するため、選択的に添加される。好ましくは0.15%以上添加するとよい。しかし、その含有量が多すぎると、黒鉛化および加工性に悪影響を与え、さらにコストアップとなるため、その上限を0.5%とした。
6)酸素;0.015%以下
酸素は硬質のB系介在物を生成する要因となる。B系介在物が粗大に凝集すると、転動疲労寿命ばかりでなく、軸受の静粛性にも影響を与えるので、鋼中の酸素は可能な限り少なくするほうが好ましくその上限値を0.015%とした。
7)軸受完成品表面における黒鉛の平均粒径;3μm以下
鋼中に分布する黒鉛の大きさと量がそれぞれ大きすぎると軸受が回転する際に黒鉛が脱落して生じるピットの縁等の影響により良好な静粛性が得られなくなる。黒鉛が皆無であるかあるいは黒鉛の平均粒径を3μm以下、総含有量を面積率で好ましくは1%以下とすることにより、静粛性の良好な軸受を得ることができる。なお、極めて微細かつ少量の黒鉛は振動減衰能(制振性)を発揮して、振動を吸収するので、かえって静粛性を向上させる。
8)軸受完成品表面における黒鉛の総含有量;面積率で1.5%以下
軸受完成品の表面では黒鉛による自己潤滑効果および黒鉛が脱落した後に生ずるマイクロピットによるマイクロ弾性流体潤滑効果(M−EHL効果)が得られ、回転性能が向上する傾向にあるため黒鉛は面積率で0.1%以上含むことが好ましく、0.5%程度以上含むことがより好ましい。
9)軸受完成品表面における残留オーステナイト量;6容量%以下
残留オーステナイト(γR)は衝撃荷重が加わった際に軌道面や転動面に極めて小さな永久歪みを生じ、これが音響劣化や回転トルクむら等の発生要因となるので、その存在は好ましくない。残留オーステナイト量が6容量%を下回ると実用上影響を生じなくなるので、その最大許容値を6容量%とした。
10)軸受完成品表面におけるロックウェルCスケール硬度;HRC58以上
軸受完成品表面における硬さがHRC58以上でないと、転動疲労寿命が低下するだけでなく、内部摩擦が増加して回転性能が低下したり、軌道面や転動面に組み込みキズがつきやすくなり、音響不良率が高くなるなどの問題を生じる。このため、軸受完成品表面における硬さの下限値をHRC58とした。
【0024】
以上の理由により本発明に係る転がり軸受においては、軸受完成品の表面で、黒鉛の平均粒径が3μm以下、黒鉛の総含有量が面積率で1.5%以下、残留オーステナイト量が6容量%以下、硬さがHRC58以上という要件をすべて満たすものとした。
11)不可避的不純物元素;0.001%≦(N,B)≦0.015%、
(Al,Ti,Nb,Zr)≦0.05%
黒鉛はその析出核の数が多ければ多いほど微細に分散析出する。黒鉛析出核としてはB,Al,Ti,Nb,Zr等の窒化物やその他REM(希土類元素)及びその酸化物等があげられ、これらが黒鉛の結晶化に寄与し、黒鉛化を促進させる。これらの元素は極微量添加されるかまたは不可避的に鋼中に含有され、窒化物や酸化物として存在して黒鉛化を促進させるのであるが、過剰に添加すると黒鉛が粗大化して転動寿命や静粛性を低下させたりして好ましくない影響を与える。以上の理由により、窒素及びBは0.015%以下、その他の元素は0.05%以下となるように調整される。
【0025】
これらすべての元素の含有量を極端に減少させようとするとコストアップにつながり、また黒鉛の析出核の数が減少して結果として黒鉛化を阻害するため、必要以上の高清浄度化は行なわない。なお、BとNは0.001%以上残留させることが好ましい。この理由は、BとNは化合物BNを生成し、この化合物BNがとくに黒鉛の析出核として作用するためである。
【0026】
【発明の実施の形態】
以下、添付の図面及び表を参照して本発明の好ましい実施の形態について説明する。
表1に種々の実施例および比較例について化学成分(重量%)、黒鉛の面積率(%)、並びに被削性試験結果として工具寿命(分)を併記した。なお、表1の化学成分の欄には主要元素のみを表示したが、不可避的不純物元素又は微量添加元素としてAl、Ti、Nb、B、N等が数十ppm程度含有されているものである。
【0027】
鋼材の黒鉛化処理は680℃〜710℃の範囲で、処理時間を変えることで、黒鉛の大きさや量の調整を行った。なお、黒鉛の面積率は、走査型電子顕微鏡(倍率1000倍)下で30視野につき反射電子像(組成像)を観察した後に、画像解析により平均値を求めた。
【0028】
また、被削性試験はJIS B 4011のバイト切削試験法に基づく下記の条件にしたがって行なった。なお、バイトの逃げ面摩耗量が0.2mmに達するまでの時間(分)を工具寿命とした。
【0029】
[被削性試験]
切削機械 :高速旋盤
工具 :P10(JIS B 4053)
切り込み速度:200〜250m/min
送り量 :0.2〜0.3mm/rev
切り込み深さ:1.0〜1.5mm
黒鉛を含有する鋼においては黒鉛が快削成分として作用するため、S量を低減しても被削性への影響は特に認められなかった。さらに、表1から明らかなように、黒鉛を含有する鋼種A1〜A18のほうが黒鉛を含まない鋼種A19,SUJ2よりも格段に被削性が優れていた。
【0030】
次に、これらの鋼種A1〜A19,SUJ2を素材として玉軸受1810を実際に作製し、軸受に要求される諸性能につきそれぞれ評価した。軸受を作製する際の熱処理条件として、実施例1〜15(鋼種A1〜A15)では840〜870℃の温度域から焼入れた後に、160〜220℃の温度域で焼戻しを行ない、残留オーステナイト量が6容量%以下となるようにした。一方、比較例16〜20(A16〜A19,SUJ2)では840〜870℃の温度域から焼入れた後に、160〜180℃の温度域で焼戻しを行なった。
【0031】
表2に熱処理後の軸受完成品の表面における硬さと黒鉛の平均粒径および含有量、残留オーステナイト量、軸受の各種機能評価についてそれぞれ調べた結果を示す。なお、黒鉛の粒径および面積率の測定は素材の黒鉛面積率測定と同じ手法で行なった。また、軸受(深ミゾ玉)に組み込む転動体にはSUJ2製のボールを12個使用し、保持器にはプラスチック製のものを封入し、グリースには鉱油系のものを用いた。
【0032】
[音響劣化の測定評価]
音響劣化レベルは、組込む軸受1810(深ミゾ小径玉軸受)2個の単体において、軸受音圧測定器を用いて音圧値を測定した。
【0033】
次いで、図1に示すHDDスピンドル用モータの軸8に内輪回転型の転がり軸受Wを組み込み、これに25kgfの衝撃荷重(落下試験)を印可した。なお、符合1は外輪、2は内輪、3は転動体、4はステータ、5はロータ、6はシール、7はハウジング、7aはフランジである。フランジ7aをボルトで固定して軸受Wに衝撃を加えた。その後、軸受Wを軸8から取り外し、軸受単体の状態で軸受Wの音圧値を測定した。
【0034】
この衝撃試験後の音圧値から試験前の音圧値を差引いた値を音響劣化値(dB)として求めた。その結果を表2に示す。この表2から衝撃力に及ぼすMnS、残留オーステナイト(γR)、黒鉛の大きさと面積率の関係が明らかになった。すなわち、実施例1〜15では音響劣化値が1.5dB以下と極めて小さく、ほとんどの実施例で1.1dBを下回った。これに対して比較例16〜20では音響劣化値がそれぞれ2.6dB,2.9dB,3.5dB,3.2dB,4.5dBと大きくなり、劣化の程度が大きい。
【0035】
[アンデロン値の測定評価]
アンデロン値については、同じく図1に組込む軸受1810単体でのアンデロンメータによる(衝撃荷重を加えないで)単体のアンデロン値(Medium,High Band)の測定を行った。その結果を表2に示す。表2中の記号M.BはMedium Bandの略称であり、記号H.BはHigh Bandの略称である。この表2から実施例1〜15ではアンデロン値が低く、静粛性に優れている判明した。これに対して比較例16〜20ではアンデロン値が高く、静粛性に劣ることが判明した。
【0036】
[トルクの測定評価]
トルクは、スピンドルに組込んだ状態(衝撃荷重を与えないで)で軸8のトルクを測定した。表2から実施例1〜15ではトルクが0.30〜0.39g.cmの範囲となった。一方、比較例のうち19と20ではトルクが0.41,0. 40と高い。これら比較例19,20はいずれも黒鉛を含まない鋼種であるため静粛性に劣る。なお、トルクの測定は、音響劣化の測定評価と同様に2個の単体軸受をそれぞれ軸方向荷重1kgfを負荷し、内輪を2rpmで回転させながら内輪と外輪との相対回転における内輪のトルクを測定した。
【0037】
表2から実施例1〜15ではS量と残留オーステナイト量をともに低減したので、音響劣化が少なく、静粛性も良好である。これに対して、比較例16、17はSの含有量や残留オーステナイト量が多く、静粛性は比較的良好であるが、音響劣化し易い傾向にある。比較例18はS含有量は少ないが黒鉛が粗大であるため、やや静粛性や音響劣化が本願発明鋼に比べて劣る傾向にある。また、比較例19、20は素材に黒鉛を含有しないため、被削性が悪く、コストアップを避けられないばかりか、残留オーステナイト量も多いため音響劣化が大きい。
【0038】
【表1】

Figure 0003799766
【0039】
【表2】
Figure 0003799766
【0040】
【発明の効果】
以上、説明したように、本発明の転がり軸受は、従来の黒鉛鋼に比べて、鋼中に分布する黒鉛の大きさと量、さらには内在する残留オーステナイトとMnSの量を極力少なくしているので、音響特性(静粛性)に優れ、静粛性が良好で、かつ、音響劣化が少なく、安価に製造できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る転がり軸受を示す拡大断面図。
【符号の説明】
1…外輪、2…内輪、3…転動体、
4…ステータ、5…ロータ、6…シール、
7…ハウジング、7a…フランジ、8…軸、
W…転がり軸受。[0001]
BACKGROUND OF THE INVENTION
The present invention is incorporated in a hard disk drive (hereinafter referred to as HDD), a video tape recorder (VTR), a digital audio tape recorder (DAT), etc., and supports a spindle that rotates at high speed, or a swing incorporated in an HDD or the like. The present invention relates to a bearing having a very small diameter for supporting an arm or a bearing requiring quietness.
[0002]
[Prior art]
In general, rolling bearings undergo rolling motion between the raceway surface and rolling surface and are repeatedly subjected to contact stress, so these materials are hard and withstand the load, have a long rolling fatigue life, and wear resistance against sliding. It is required to be good. Therefore, in general, these materials are bearing steel, Japanese Industrial Standards SUJ2, and case-hardened steel, Japanese Industrial Standards SCR420 equivalent steel is quenched or carburized or carbonitrided and then quenched. Thus, a hardness value of 58 to 64 is used on the Rockwell C scale (HRC) to ensure the required life and wear resistance.
[0003]
In recent years, the density of HDD devices has been increased, and unprecedented functions and high quality have been required for the bearings incorporated therein. On the other hand, the low cost of HDD devices has been increasing. There is an increasing demand for cost reduction of bearings for the purpose of making them easier.
[0004]
There are two types of bearings built in the HDD device: a spindle motor bearing for rotating the magnetic disk and a swing arm bearing for swing driving provided for positioning the access to the effective area of the magnetic disk. Can be divided roughly.
[0005]
Generally, SUJ2 (JIS G 4805), which is a high carbon chromium bearing steel, is often used as a bearing material for these HDD devices. SUJ2 is quenched in the temperature range of 820 to 860 ° C. and then tempered in the temperature range of 160 to 200 ° C. As a result of these heat treatments, the hardness of the obtained bearing ring is in the range of HRC 58 to 64, and the amount of retained austenite Is 8 to 14% by volume. In addition, in a swing arm bearing or the like that requires corrosion resistance or that is driven to swing, the bearing ring is often made of martensitic stainless steel having good corrosion resistance and fretting resistance. As stainless steel used in such a case, SUS440C (JIS G 4303) or 13Cr martensitic stainless steel is quenched at a temperature of around 1050 ° C., and then subjected to a deep cooling treatment (sub-zero treatment), and 150 to Tempering is performed in a temperature range of 200 ° C., and as a result of these heat treatments, the hardness of the resulting raceway is HRC 57-62, and the retained austenite amount is 8-12% by volume.
[0006]
[Problems to be solved by the invention]
The extremely small ball bearings used in HDD spindles are extremely demanding to reduce torque, sound and noise, so they are finished with extremely high precision, and their rotational accuracy is JIS grade 5 or higher. ing.
[0007]
However, in a conventional bearing, a load much smaller than the basic static load rating C 0 (maximum contact surface pressure, 4000 MPa) determined so that permanent deformation (plastic deformation) of the raceway surface or the rolling surface does not occur. The impact load may cause extremely small permanent distortion on the raceway surface and the rolling surface, and this permanent distortion may cause unacceptable noise during rotational driving. Since the HDD device is required to have extremely high quietness without generating noise or noise, even a slight acoustic deterioration of the bearing is a problem.
[0008]
This is because with the miniaturization of HDD devices and the like, ball bearings incorporated in these devices are also becoming smaller, and the fall due to the portability of such equipment itself This is because the opportunity for impact is increasing due to the increase in the chances of the incident. If an impact is applied, the raceway surface and rolling surface may be permanently deformed even with a relatively small impact load, causing deterioration in the performance of equipment incorporating ball bearings, such as acoustic deterioration and rotational torque unevenness. Often occurs due to the low yield stress of retained austenite and MnS contained in the steel constituting the race and rolling elements.
[0009]
Therefore, recently, the residual austenite is reduced as much as possible by quenching (sub-zero) after quenching or by tempering at a high temperature of about 240 ° C. I am doing so.
[0010]
On the other hand, trace amount S couple | bonds with Mn and forms A type | system | group inclusion which becomes MnS. This MnS does not affect the rolling fatigue life as much as B-type inclusions such as Al 2 O 3 and other hard non-metallic inclusions, and further acts as a free-cutting component to improve the machinability of steel. Therefore, in bearing steel or carburized steel, S is usually contained in an amount of about 0.005 to 0.020% by weight.
[0011]
However, since the yield stress of MnS is low, when the content is large, acoustic deterioration is likely to occur due to impact load, and good silence cannot be obtained. Therefore, if S is reduced in order to improve the problem of acoustic deterioration, the machinability of the steel is lowered and the cost is increased, and thus the cost and the function cannot be made compatible. When manufacturing a rolling bearing, the largest manufacturing cost is the processing cost, and it is most effective to reduce the cost to manufacture the bearing using a material with good workability.
[0012]
Examples of the material having good machinability include free cutting steel containing Pb, Ca, S and the like. However, although these free-cutting steels have good machinability, sufficient functions as rolling bearings cannot be obtained due to the influence of free-cutting components.
[0013]
The present invention has been made in order to solve the above-described problems, and has excellent acoustic characteristics (silence), and can reduce the manufacturing cost as much as possible, and can be used suitably for an inexpensive and high-performance HDD device or the like. An object of the present invention is to provide a good rolling bearing.
[0014]
[Means for Solving the Problems]
From JP-A-7-188844 to JP-A-7-188851, an attempt has been made to improve the machinability of carbon steel for mechanical structure by graphitizing the carbon of the material. Such graphite is produced in the process in which lamellar (layered) cementite in pearlite changes from a metastable phase to a stable phase. As the graphitization progresses, the cementite disappears and the graphite grows coarsely. . These prior arts are structural carbon steels mainly composed of graphite and ferrite, with the focus on machinability and cold workability, and require rolling fatigue life and quietness. This is insufficient for use in rolling bearings.
[0015]
Furthermore, Japanese Patent Application Laid-Open No. Hei 8-20841 proposes to perform surface hardening treatment on such graphite steel and to provide residual austenite to the surface layer to ensure a rolling fatigue life. However, since retained austenite causes acoustic deterioration, it is harmful for ball bearings with extremely small diameters that require quietness. Furthermore, heat treatment is quenching after heating in RX gas for production or cost reasons. However, since it is often by vacuum quenching, it cannot be applied to a rolling bearing with good silence that is the object of the present invention.
[0016]
JP-A-2-274837 discloses a bearing material having a good rolling fatigue life and quietness by performing a surface hardening process similarly by induction hardening and forming a surface layer substantially free of graphite. Disclosure. However, these prior arts do not mention anything about machinability and quietness due to retained austenite and MnS, influence on acoustic degradation, and the like.
[0017]
On the other hand, recent advances in graphitization technology have made it possible to shorten the graphitization time and make the graphite grains finer (Yuki Ohta et al. (Kawasaki Steel), Materials and Processes, Vol. 9, PAGE.406, 1996 and Takashi Iwamoto et al. (Kawasaki Steel) Materials and Processes, Vol.9, PAGE.407, 1996).
[0018]
Therefore, the inventors of the present application have examined the application to rolling bearings from the viewpoint of cost and function using various graphite steels mainly composed of cementite, graphite, and ferrite. As a result, the following findings (1) to (3) were obtained.
[0019]
(1) Good machinability and excellent quietness can be obtained by using a graphite steel material having a graphite area ratio of 0.5% or more and 3% or less.
(2) In steel containing graphite, graphite itself acts as a free-cutting component, so even if MnS is reduced, machinability is hardly affected.
[0020]
(3) By reducing coarse graphite, retained austenite and MnS on the surface of the finished bearing product after heat treatment, acoustic deterioration can be remarkably prevented.
From the above knowledge, it has been found that it is possible to provide a rolling bearing with less rolling deterioration characteristics, quietness, and acoustic deterioration due to impact load, and the present invention has been completed.
[0021]
The rolling bearing according to the present invention is a ball bearing composed of an inner ring, an outer ring, and rolling elements. Among the components, either or both of the inner ring and the outer ring are in mass%, and C is 0.45 to 0. .8, Si: 0.5~1.5, Mn: 0.05~0.3, S: 0.005 or less, Mo: 0.5 or less, O: include 0.015, balance Fe and unavoidable impurities consists element has graphite, cementite and ferrite as tissue, the area ratio of graphite is prepared using 3% less material than 0.5% in the tissue section, and the bearing ring completed by quenching and tempering treatment The surface of the product is excellent in quietness because the average particle size of graphite is 3 μm or less, the total content of graphite is 1.5% or less in area ratio, the amount of retained austenite is 6% by volume or less, the hardness is HRC58 or more. It is characterized by that.
[0022]
[Action]
Graphite has the effect of remarkably improving the machinability of steel, and in order to fully exhibit the effect, the amount of graphite needs to be 0.5% or more by area ratio. On the other hand, if the graphite is excessively present in an area ratio exceeding 3.0%, the coarse growth of the graphite adversely affects the characteristics such as the quietness and acoustic deterioration of the bearing. Furthermore, the time required for the graphitization treatment is inevitably increased, resulting in an increase in cost, and the coarsely grown graphite is difficult to be melted by heat treatment. Therefore , the material in the present invention has a structure of graphite, cementite, and ferrite. It was assumed that the graphitization treatment was performed in an area ratio of 0.5% to 3%.
[0023]
Further, in the present invention steel, in order to satisfy the function as a rolling bearing and to avoid the problem of acoustic deterioration of the rolling bearing due to retained austenite and MnS, the present invention is limited to the composition and structure shown below. Hereinafter, unless otherwise specified, “%” represents “% by weight”.
1) C; 0.45-0.8%
C is the most important element for converting the base material into martensite and obtaining the necessary hardness for the bearing. At the material stage, most of C exists as graphite and cementite. In particular, graphite acts as a free-cutting component and enhances the machinability of steel. In order to obtain these effects, at least 0.45% is necessary, and if added over 0.8%, the graphite becomes coarse, the amount of cementite increases, and the machinability is reduced. It will not be possible to satisfy both the function and workability of the bearing, such as lowering. Moreover, it becomes easy to produce | generate the retained austenite which acts on acoustic degradation. For the above reasons, the C content is in the range of 0.45% to 0.8%.
2) Si; 0.5 to 1.5%
Si is an element necessary as a deoxidizer during steelmaking, and is also useful as an element for improving hardenability and destabilizing cementite in the steel to promote graphitization. In addition, it enhances resistance to temper softening and improves strength and rolling fatigue life. If the added amount is less than 0.5%, it is difficult to obtain the effect, and even if added over 1.5%, the effect is saturated and further increases the cost, so the Si content of the material is 0.5%. The range is 1.5% or less.
3) Mn: 0.05 to 0.3%
Like Si, Mn is an element necessary for deoxidation during steelmaking, and is an element effective for preventing the formation of FeS having a low melting point by fixing S in the steel as sulfide MnS. is there. Mn is also an element that enhances the hardenability of steel, contributes to the improvement of strength and rolling fatigue life after heat treatment, and promotes the formation of retained austenite effective for rolling life. However, in HDD devices, VTR devices, and other bearings that require quietness in particular, retained austenite and MnS are harmful, and a large amount of addition is not preferable. In the present invention, the upper limit is set to 0.3%. It was. On the other hand, if the amount of Mn is too small, a small amount of S in the steel is produced as FeS and the hot workability is lowered, so that about 10 times the S content preferably contains Mn. For this reason, the lower limit of the Mn content is set to 0.05%.
4) S; 0.005% or less S combines with Mn to form MnS, and has the effect of improving the machinability of steel. However, in a relatively small diameter ball bearing, the yield stress of MnS is low. For this reason, extremely small permanent deformation occurs on the raceway surface, causing acoustic deterioration. If S is reduced, the machinability of the steel is reduced. However, if graphite steel is finely dispersed, graphite acts as a free-cutting component, so even if S is reduced, the machinability is hardly affected. In the present invention, the amount is preferably as small as possible. Further, when the amount of S exceeds 0.005%, acoustic deterioration tends to occur gradually, so the upper limit value was made 0.005%.
5) Mo: 0.5% or less Mo is selectively added because it enhances hardenability and contributes to improvement in strength and rolling fatigue life after heat treatment, and further resistance to temper softening. Preferably 0.15% or more is added. However, if the content is too large, the graphitization and workability are adversely affected and the cost is further increased, so the upper limit was made 0.5%.
6) Oxygen: 0.015% or less Oxygen is a factor for producing hard B-based inclusions. If the B-based inclusions are coarsely aggregated, it affects not only the rolling fatigue life but also the quietness of the bearing. Therefore, it is preferable to reduce the oxygen in the steel as much as possible, and the upper limit is 0.015%. did.
7) Average particle diameter of graphite on the surface of the finished bearing product: 3 μm or less If the size and amount of graphite distributed in the steel are too large, it is good due to the influence of the pit edges, etc. that occur when the bearing rotates and the graphite falls off Quiet silence cannot be obtained. A bearing with good quietness can be obtained by having no graphite or having an average particle size of 3 μm or less and a total content of preferably 1% or less in terms of area ratio. It should be noted that an extremely fine and small amount of graphite exhibits vibration damping ability (damping property) and absorbs vibrations, thereby improving quietness.
8) The total graphite content on the surface of the finished bearing product: 1.5% or less in terms of area ratio On the surface of the finished bearing product, the self-lubricating effect due to graphite and the micro-elastohydrodynamic lubrication effect due to micropits generated after the graphite falls off (M- EHL effect) is obtained and the rotational performance tends to be improved, so that graphite is preferably included in an area ratio of 0.1% or more, and more preferably about 0.5% or more.
9) Residual austenite amount on the surface of the finished bearing product; 6 vol% or less Residual austenite (γR) causes extremely small permanent distortion on the raceway surface and rolling surface when an impact load is applied, and this causes acoustic deterioration and uneven rotation torque. Therefore, its existence is not preferable. If the amount of retained austenite is less than 6% by volume, there is no practical effect, so the maximum allowable value is 6% by volume.
10) Rockwell C scale hardness on the surface of the finished bearing product; HRC58 or more If the hardness on the surface of the bearing finished product is not HRC58 or more, not only does the rolling fatigue life decrease, but the internal friction increases and the rotational performance decreases. Or the built-in scratches on the raceway surface or rolling surface are likely to occur, resulting in problems such as an increased acoustic defect rate. For this reason, the lower limit value of the hardness on the surface of the finished bearing product is HRC58.
[0024]
For the reasons described above, in the rolling bearing according to the present invention, the average particle size of graphite is 3 μm or less, the total content of graphite is 1.5% or less, and the amount of retained austenite is 6 volumes on the surface of the finished bearing product. % And the hardness of HRC58 or more are all satisfied.
11) Inevitable impurity element; 0.001% ≦ (N, B) ≦ 0.015%,
(Al, Ti, Nb, Zr) ≦ 0.05%
Graphite is finely dispersed and precipitated as the number of precipitation nuclei increases. Examples of graphite precipitation nuclei include nitrides such as B, Al, Ti, Nb, and Zr, and other REM (rare earth elements) and oxides thereof, which contribute to crystallization of graphite and promote graphitization. These elements are added in a very small amount or inevitably contained in steel and exist as nitrides or oxides to promote graphitization. It may have an unfavorable effect by reducing quietness. For these reasons, nitrogen and B are adjusted to 0.015% or less, and other elements are adjusted to 0.05% or less.
[0025]
Attempting to reduce the content of all these elements extremely leads to an increase in cost, and the number of precipitation nuclei in the graphite decreases, resulting in inhibition of graphitization. . B and N are preferably left at 0.001% or more. This is because B and N generate compound BN, and this compound BN particularly acts as a precipitation nucleus of graphite.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings and tables.
Table 1 shows the chemical composition (% by weight), the area ratio (%) of graphite, and the tool life (minutes) as machinability test results for various examples and comparative examples. In addition, although only the main elements are displayed in the column of chemical components in Table 1, about tens of ppm of Al, Ti, Nb, B, N, etc. are contained as inevitable impurity elements or trace additive elements. .
[0027]
The graphitization treatment of the steel material was performed in the range of 680 ° C. to 710 ° C., and the size and amount of graphite were adjusted by changing the treatment time. The graphite area ratio was obtained by observing a reflected electron image (composition image) per 30 fields under a scanning electron microscope (1000 times magnification) and then obtaining an average value by image analysis.
[0028]
Further, the machinability test was performed in accordance with the following conditions based on the bite cutting test method of JIS B 4011. The tool life was defined as the time (minutes) required for the flank wear amount of the tool to reach 0.2 mm.
[0029]
[Machinability test]
Cutting machine: High-speed lathe tool: P10 (JIS B 4053)
Cutting speed: 200 to 250 m / min
Feed amount: 0.2 to 0.3 mm / rev
Cutting depth: 1.0-1.5mm
In the steel containing graphite, graphite acts as a free-cutting component, so no particular effect on machinability was observed even when the amount of S was reduced. Furthermore, as is clear from Table 1, the steel types A1 to A18 containing graphite were much more excellent in machinability than the steel types A19 and SUJ2 not containing graphite.
[0030]
Next, ball bearings 1810 were actually manufactured using these steel types A1 to A19 and SUJ2, and various performances required for the bearings were evaluated. As heat treatment conditions for producing the bearing, in Examples 1 to 15 (steel types A1 to A15), after quenching from a temperature range of 840 to 870 ° C, tempering was performed in a temperature range of 160 to 220 ° C, and the amount of retained austenite was It was made to become 6 volume% or less. On the other hand, in Comparative Examples 16 to 20 (A16 to A19, SUJ2), after quenching from a temperature range of 840 to 870 ° C, tempering was performed in a temperature range of 160 to 180 ° C.
[0031]
Table 2 shows the results of examining the hardness and average particle size and content of graphite, the amount of retained austenite, and various functional evaluations of the bearing on the surface of the finished bearing after heat treatment. The particle size and area ratio of graphite were measured by the same method as the measurement of the graphite area ratio of the material. Further, 12 SUJ2 balls were used for the rolling elements incorporated in the bearings (deep groove balls), plastic cages were encapsulated, and mineral oil-based grease was used.
[0032]
[Measurement evaluation of acoustic degradation]
As for the acoustic deterioration level, the sound pressure value was measured using a bearing sound pressure measuring device in two single bearings 1810 (deep groove small diameter ball bearings) to be incorporated.
[0033]
Next, an inner ring type rolling bearing W was incorporated into the shaft 8 of the HDD spindle motor shown in FIG. 1, and an impact load (drop test) of 25 kgf was applied thereto. Reference numeral 1 is an outer ring, 2 is an inner ring, 3 is a rolling element, 4 is a stator, 5 is a rotor, 6 is a seal, 7 is a housing, and 7a is a flange. The flange 7a was fixed with a bolt, and an impact was applied to the bearing W. Thereafter, the bearing W was removed from the shaft 8, and the sound pressure value of the bearing W was measured in the state of the bearing alone.
[0034]
A value obtained by subtracting the sound pressure value before the test from the sound pressure value after the impact test was obtained as an acoustic deterioration value (dB). The results are shown in Table 2. From Table 2, the relationship between the size and area ratio of MnS, retained austenite (γR), graphite, which affects the impact force, was clarified. That is, in Examples 1 to 15, the sound deterioration value was as extremely small as 1.5 dB or less, and in most Examples, it was less than 1.1 dB. On the other hand, in the comparative examples 16 to 20, the acoustic deterioration values are increased to 2.6 dB, 2.9 dB, 3.5 dB, 3.2 dB, and 4.5 dB, respectively, and the degree of deterioration is large.
[0035]
[Measurement evaluation of Anderon value]
As for the Anderon value, the Anderon value (Medium, High Band) of a single unit was measured with an Anderon meter (without applying an impact load) of the single bearing 1810 incorporated in FIG. The results are shown in Table 2. The symbols M. B is an abbreviation for Medium Band. B is an abbreviation for High Band. From Table 2, in Examples 1 to 15, it was found that the Anderon value was low and the silence was excellent. On the other hand, it was found that Comparative Examples 16 to 20 had a high Anderon value and were inferior in silence.
[0036]
[Torque measurement evaluation]
As for the torque, the torque of the shaft 8 was measured in a state of being incorporated in the spindle (without applying an impact load). From Table 2, in Examples 1 to 15, the torque was 0.30 to 0.39 g. It became the range of cm. On the other hand, in Comparative Examples 19 and 20, the torque is as high as 0.41 and 0.40. Since these Comparative Examples 19 and 20 are steel types that do not contain graphite, they are inferior in quietness. The torque is measured in the same manner as in the measurement and evaluation of acoustic degradation, with each single bearing being loaded with an axial load of 1 kgf and measuring the torque of the inner ring in relative rotation between the inner ring and the outer ring while rotating the inner ring at 2 rpm. did.
[0037]
In Tables 1 to 15 in Table 2, since both the amount of S and the amount of retained austenite were reduced, there was little acoustic deterioration and good quietness. On the other hand, Comparative Examples 16 and 17 have a large S content and a retained austenite amount, and are relatively quiet, but tend to be susceptible to acoustic deterioration. In Comparative Example 18, since the S content is small, but the graphite is coarse, the quietness and acoustic degradation tend to be inferior to those of the present invention steel. In Comparative Examples 19 and 20, since the material does not contain graphite, the machinability is poor and the cost increase cannot be avoided, and the amount of retained austenite is large, so that the sound deterioration is large.
[0038]
[Table 1]
Figure 0003799766
[0039]
[Table 2]
Figure 0003799766
[0040]
【The invention's effect】
As described above, the rolling bearing of the present invention reduces the size and amount of graphite distributed in the steel, as well as the amount of residual retained austenite and MnS, as much as possible compared to conventional graphite steel. It has excellent acoustic characteristics (silence), good silence, little acoustic deterioration, and can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view showing a rolling bearing according to an embodiment of the present invention.
[Explanation of symbols]
1 ... outer ring, 2 ... inner ring, 3 ... rolling element,
4 ... Stator, 5 ... Rotor, 6 ... Seal,
7 ... Housing, 7a ... Flange, 8 ... Shaft,
W: Rolling bearing.

Claims (1)

内輪、外輪及び転動体で構成される玉軸受において、構成部品のうち、内輪または外輪のいずれか一方、または両方が、質量%で、C:0.45〜0.8、Si:0.5〜1.5、Mn:0.05〜0.3、S:0.005以下、Mo:0.5以下、O:0.015以下を含み、残部Feおよび不可避的不純物元素からなり、黒鉛、セメンタイトおよびフェライトを組織として有し、組織断面における黒鉛の面積率が0.5%以上3%以下の素材を用いて製造され、かつ、焼入れ焼戻し処理により軌道輪完成品の表面が、黒鉛の平均粒径が3μm以下、黒鉛の総含有量が面積率で1.5%以下、残留オーステナイト量が6容量%以下、硬さがHRC58以上とされ、静粛性に優れることを特徴とする転がり軸受。In a ball bearing composed of an inner ring, an outer ring, and rolling elements, among the components, either one or both of the inner ring and the outer ring is in mass%, C: 0.45-0.8, Si: 0.5 ~1.5, Mn: 0.05~0.3, S: 0.005 or less, Mo: 0.5 or less, O: include 0.015, and a balance of Fe and unavoidable impurity elements, graphite, Manufactured using a material that has cementite and ferrite as the structure , and the area ratio of graphite in the cross section of the structure is 0.5% or more and 3% or less. A rolling bearing characterized by excellent quietness, having a particle size of 3 μm or less, a total graphite content of 1.5% or less in area ratio, a residual austenite amount of 6% by volume or less, and a hardness of HRC58 or more.
JP23283697A 1997-08-28 1997-08-28 Rolling bearing Expired - Fee Related JP3799766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23283697A JP3799766B2 (en) 1997-08-28 1997-08-28 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23283697A JP3799766B2 (en) 1997-08-28 1997-08-28 Rolling bearing

Publications (2)

Publication Number Publication Date
JPH1171639A JPH1171639A (en) 1999-03-16
JP3799766B2 true JP3799766B2 (en) 2006-07-19

Family

ID=16945563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23283697A Expired - Fee Related JP3799766B2 (en) 1997-08-28 1997-08-28 Rolling bearing

Country Status (1)

Country Link
JP (1) JP3799766B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289804B2 (en) * 2001-05-15 2009-07-01 Ntn株式会社 Rotation transmission device

Also Published As

Publication number Publication date
JPH1171639A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3326834B2 (en) Rolling bearing
JP3593668B2 (en) Rolling bearing
JP2001074053A (en) Rolling bearing
US6485581B2 (en) Bearing for main spindle of machine tool
US6422756B1 (en) Rolling bearing apparatus
US6488789B2 (en) Wheel bearing unit
JP2000337389A (en) Rolling bearing
EP1143018B1 (en) Rolling bearing
US20020050308A1 (en) Heat resistant carburized rolling bearing component and manufacturing method thereof
JP3509803B2 (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JPH10259451A (en) Rolling bearing
JPH11303874A (en) Rolling member
JP2002257144A (en) Rolling bearing
US7396422B2 (en) Rolling bearing, material for rolling bearing, and equipment having rotating part using the rolling bearing
US6855214B2 (en) Anti-friction bearing
JP3799766B2 (en) Rolling bearing
JP3391345B2 (en) Rolling bearing
JP2003193139A (en) Method of producing outer ring with flange
JP2001289251A (en) Rolling bearing and method of manufacturing the same
GB2344828A (en) Rolling member
WO2000049304A1 (en) Rolling bearing
JP2005147352A (en) Rolling bearing
JP2000199524A (en) Rolling device
JP2003222138A (en) Rolling bearing and material for rolling bearing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees