JP3798345B2 - Covered arc welding rod - Google Patents

Covered arc welding rod Download PDF

Info

Publication number
JP3798345B2
JP3798345B2 JP2002177629A JP2002177629A JP3798345B2 JP 3798345 B2 JP3798345 B2 JP 3798345B2 JP 2002177629 A JP2002177629 A JP 2002177629A JP 2002177629 A JP2002177629 A JP 2002177629A JP 3798345 B2 JP3798345 B2 JP 3798345B2
Authority
JP
Japan
Prior art keywords
component
sol
coating
coating agent
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002177629A
Other languages
Japanese (ja)
Other versions
JP2004017119A (en
Inventor
宏 新舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002177629A priority Critical patent/JP3798345B2/en
Publication of JP2004017119A publication Critical patent/JP2004017119A/en
Application granted granted Critical
Publication of JP3798345B2 publication Critical patent/JP3798345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は心線又は被覆剤の少なくとも一方にCrを含有する被覆アーク溶接棒に関し、更に詳述すれば、溶接時に発生するヒューム中の水に可溶性のCrを低減し、更にアークの安定性を飛躍的に高めることにより良好な溶接作業性を具備した被覆アーク溶接棒に関する。
【0002】
【従来の技術】
Crは、ステンレス鋼、一部の低合金耐熱鋼用及び一部の硬化肉盛用の溶接材料に必須の成分として一般に広く添加されている。しかしながら、溶接材料に含有されるCrは溶接によりその一部がヒュームとなって大気中に放出され、このヒュームの一部として含まれる水に可溶な酸化状態(+VI)のCrは有害であるといわれる。また、排気装置に集塵されたヒュームについては、産業廃棄物として処理する必要があるが、廃棄物としては水に可溶性のCrが規制されるため、その処理に手間がかかり、問題となっている。このため、ヒューム自体に含まれる水に可溶性のCr量を根本的に低減する必要があり、これを可能とする溶接材料の開発が要望されている。
【0003】
そこで、従来、含Cr被覆アーク溶接棒において、ヒューム中に含まれる水に可溶性のCr量を低減するために、種々の研究がなされてきた。特開昭52−114447号公報には、被覆剤中のNa及びKの含有量を規制することにより、ヒューム中の水に可溶性のCr量を効果的に低減することができることが開示されている。また、特開昭53−19154号公報には、Liとその他の添加原料の使用により、ヒューム中の水に可溶性のCrを低減し、被覆の固着性及び溶接作業性が良好な被覆アーク溶接棒を得ることが開示されている。更に、特開昭55−149796号公報には、スパッタ発生量を低減して、溶接作業性の改善を図る技術が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、被覆剤にTiOを主要原料とし、副原料として金属炭酸塩、金属フッ化物、金属粉末を配合したチタニア系被覆剤を使用する従来技術においては、被覆剤中のNa及びKを減少させた場合、アークスタート性及びアークの安定性が極端に劣化する性質があり、溶接作業性が劣化するという問題点があった。
【0005】
本発明はかかる問題点に鑑みてなされたものであって、ヒューム中の水に可溶性のCr量を低減できると共に、アークスタート性及びアーク安定性が優れたCr含有被覆アーク溶接棒を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る被覆アーク溶接棒は、心線及び被覆剤のいずれか一方又は双方にCrを含有する被覆アーク溶接棒において、前記被覆剤の組成は、被覆剤全質量あたり、Na含有成分及びK含有成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量の総和が1質量%以下、Si含有成分をSiOに換算して得られるシリコンの含有量が15乃至30質量%であり、直径が10μm以下の粒子からなるTiO微粉末を含み、前記心線の直径をd1、前記被覆剤層の外径をd2とした場合に、d1及びd2が下記数式1及び2を満足することを特徴とする。
【0007】
本発明に係る他の被覆アーク溶接棒は、心線及び被覆剤のいずれか一方又は双方にCrを含有する被覆アーク溶接棒において、前記被覆剤の組成は、被覆剤全質量あたり、Na含有成分及びK含有成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量の総和が1質量%以下、Si含有成分をSiOに換算して得られるシリコンの含有量が15乃至30質量%であり、直径が10μm以下の粒子からなるTiO微粉末を含み、被覆剤に含有されている加水分解可能なNa成分及びK成分を夫々Na O及びK Oに換算して得られるナトリウム及びカリウムの含有量を夫々 sol. Na O及び sol. Oとし、被覆剤に含まれるNa成分及びK成分を夫々Na O及びK Oに換算して得られるナトリウム及びカリウムの含有量を夫々 T. Na O及び T. Oとした場合に、( sol. Na O+ sol. O)/( T. Na O+ T. O)が0.5乃至1.0であることを特徴とする。
【0008】
【数1】
d1が3mm未満の場合
1.67×d1+0.17≦d2≦1.67×d1+0.47
【0009】
【数2】
d1が3mm以上の場合
1.28×d1+1.43≦d2≦1.28×d1+1.83
【0010】
また、本願請求項1に係る被覆アーク溶接棒においても、被覆剤に含有されている加水分解可能なNa成分及びK成分の双方を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量を夫々sol.NaO及びsol.KOとし、被覆剤に含まれるNa成分及びK成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量を夫々T.NaO及びT.KOとした場合に、(sol.NaO+sol.KO)/(T.NaO+T.KO)が0.5乃至1.0であることが好ましい。
【0011】
更に、前記TiO 微粉末を被覆剤全質量あたり、3乃至15質量%含有することが好ましい。更にまた、前記被覆剤にフッ化アルミニウムを、被覆剤全質量あたり、0.5乃至5質量%含有することが好ましい。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。被覆剤に含まれるNa及びKはアークの開始電圧を下げ、アーク発生を容易にし、アークの安定性を増す効果があると共に、被覆剤の固着力を増し、これにより溶接作業性を向上させる効果があることは公知である。しかし、特開昭52−114447号公報に記載のように、ヒューム中の水に可溶性のCrを低減するためには、被覆剤中のNa及びKの含有量を制限する必要があり、被覆剤中のNa及びKの含有量を低減すると、溶接作業性及び被覆剤の固着力が低下してしまうという難点がある。
【0013】
本発明者等は、被覆剤中のNa及びK量を減少させた場合であっても、アーク安定性及び被覆の固着力を維持し、溶接作業性を維持しつつ、ヒューム中の水に可溶性のCr量を低減するために、被覆剤の配合及び製造方法について鋭意研究を重ね、本発明を完成するに至った。
【0014】
以下、本発明において、各組成の数値限定理由について説明する。
【0015】
「被覆剤中のNa含有成分及びK含有成分の総和(酸化物換算値):1質量%以下」
被覆剤中のNa及びKは、含有量が低いほど、ヒューム中の水に可溶性のCrの抑制に効果があるため、可及的に低減することが好ましい。この場合に、Na含有成分及びK含有成分が、夫々NaO換算値及びKO換算値の総和で1質量%を超えると、ヒューム中の水に可溶性のCrの低減効果が低いため、NaO及びKOに換算して得られるナトリウム及びカリウムの含有量の総和を1質量%以下とする。
【0016】
「被覆剤中のSi含有成分(SiO換算値):15乃至30質量%」
従来のチタニア系被覆剤においては、被覆剤中のNa及びKを減少させた場合、極端にアークスタート性及びアーク安定性を劣化させてしまうという難点があった。本発明者等は、種々の原料を検討し、酸化物状態のSiの適量添加により、アークスタート性及びアーク安定性が飛躍的に向上し、同時に、被覆剤中に微量のNa及びKが含まれる場合においても、酸化物状態のSiを多く含む配合組成はヒューム中の水に可溶性のCr量を著しく低減させることができることを見いだした。Si源としては、硅紗、長石等の鉱石粉、カオリン、タルク等のすべり剤、及び水ガラス等の固着剤のSiを酸化物として含むものがある。また、金属Si及びフェロシリコン等の金属状態の原料も、Siが溶接中にスラグアウトし、酸化物として作用するので、酸化物状態のSiを添加したのと同様の効果を奏する。
【0017】
被覆剤中のSiがSiO換算で15質量%未満の場合は、上述のような溶接の安定性に寄与する十分な効果が得られず、アーク切れが発生しやすくなる。また、被覆剤中のSiがSiO換算で30質量%を超えて含有されると、スラグの流動性が増加し、スパッタが増加してビード表面に焼き付きが生じ、スラグ剥離性が劣化する。このため、被覆剤中のSiはSiO換算で15乃至30質量%とする。
【0018】
「TiO微粉末:3乃至15質量%」
被覆剤の固着力は溶接作業性に大きく影響するが、これが強いと、溶接中に保護筒が形成されるため、アークの安定性が増加し、アークの集中性が良くなり、その結果、溶接作業性が著しく向上する。本発明者等が、被覆剤の固着力を強化するため、種々の原料を検討した結果、TiOの微粉末が被覆剤の固着力を著しく増大させることを見いだした。
【0019】
TiOの微粉末とは、粒径が10μm以下のTiO粉末原料であり、一般的には、白チタン、チタン白又はホワイトチタン等の通称名がある。TiO微粉末は少量の添加で効果が得られるが、十分な効果を得るためには、被覆剤全質量あたり3質量%以上添加するのが好ましい。ただし、15質量%を超えると、乾燥割れが発生しやすくなるので、TiO微粉末は3乃至15質量%とするのが好ましい。
【0020】
「被覆剤層の外径d2:数式1及び2」
図2は被覆アーク溶接棒をその軸心と直交する方向に切断した断面図である。図中、d1は心線の直径、d2は被覆剤層の外径である。本発明においては、被覆剤中のNa及びKを低減し、Siの積極添加を行っているため、溶接作業性が最適となる被覆剤層の外径d2の範囲が特に狭い。本発明においては、被覆剤のNa及びKを低減しているため、アークスタート性及びアーク安定性の確保が難しい。d2が小さい場合、溶接中に保護筒が形成されにくく、アークが不安定となり、スパッタを増加すると溶接中のアーク電圧が高くなり、アーク切れを生じる。一方、被覆剤へのSiの添加は、溶融スラグの流動性を高め、スラグがかぶった場合にアークが止まってしまいやすいので、d2が大きいことは好ましくない。最適な溶接作業性を得るには、被覆棒外径(d2)を特に狭い範囲としなければならない。このため、本発明者等は、溶接棒のサイズ(心線径d1)ごとに、被覆剤層の外径d2を種々変更して試験し、最適な被覆剤層の外径d2を求めた。
【0021】
試験の結果、図1に示すように、作業性が良好な範囲が存在することを見いだした。図1は横軸に心線径d1をとり、縦軸に被覆剤層の外径d2をとって、この(d1,d2)の組み合わせと、作業性が良好な領域と、作業性が悪い領域とを整理して示す。この図1に示すように、線分L1及び線分L2よりも被覆剤層の外径d2が大きい領域においては、スラグかぶりが発生し、作業性が劣化した。一方、線分L3及び線分L4よりも被覆剤層の外径d2が小さい領域においては、アークが不安定となり、スパッタの発生により作業性が劣化した。これに対し、線分L1、L2と、線分L3、L4との間の領域においては、作業性が良好であった。
【0022】
線分L1は、d2=1.28×d1+1.83で表され、線分L3は、d2=1.28×d1+1.43で表される。線分L2は、d2=1.67×d1+0.47で表され、線分L4は、d2=1.67×d1+0.17で表される。そして、線分L1と線分L2及び線分L3とL4は、心線径d1が約3mmで交差し、作業性が良好な領域は、前記数式1及び数式2にて表される範囲である。
【0023】
被覆剤層の外径が太すぎると、アーク切れが発生しやすくなり、スラグがかぶりすぎ、溶接作業性が悪化する。一方、被覆剤層の外径が細すぎると、アークが不安定になり、スパッタ量が増加するため、溶接作業性が劣化する。
【0024】
「被覆剤中に含有されている加水分解可能なNa及びKの割合」
従来、被覆剤中のNa及びKを低減すると、かすれ及び乾燥割れが生じやすくなり、製造が困難になると共に、製造できたとしても、被覆剤の固着力が弱いために、溶接時に十分な保護筒が形成されず、満足する溶接作業性を得ることが困難であった。そこで、溶接棒の生産性と作業性を維持するために、微量のNa及びKを固着剤、膨潤剤又はすべり剤として配合し、満足できる生産性及び作業性を得ることができる成分とした上で、被覆剤組成を検討した。その結果、被覆剤に含まれるNa及びKを加水分解可能な固着剤又は膨潤剤の形で添加した場合に、ヒューム中の水に可溶性のCrの低減と溶接作業性の確保に最大の効果を示すことを見いだし、加水分解可能なNa及びKの割合を制御することが有効であることを知見した。
【0025】
被覆剤に含有されている加水分解可能なNa成分及びK成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量を夫々sol.NaO及びsol.KOとし、被覆剤に含まれるNa成分及びK成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量を夫々T.NaO及びT.KOとした場合に、(sol.NaO+sol.KO)/(T.NaO+T.KO)が0.5乃至1.0であることが好ましい。(sol.NaO+sol.KO)/(T.NaO+T.KO)が0.5未満である場合は、被覆剤中のNa及びKは配合原料に多く含まれ、固着剤及び膨潤剤中には少ないため、保護筒が弱くなって作業性が悪化すると共に、ヒュームの水に可溶性のCrが増加する。なお、(sol.NaO+sol.KO)/(T.NaO+T.KO)は原理的に1より高い値をとり得ない。そこで、(sol.NaO+sol.KO)/(T.NaO+T.KO)は0.5乃至1.0とすることが好ましい。
【0026】
本発明においては、被覆剤中に含まれるNa及びKを酸化物換算した値を、夫々T.NaO及びT.KOとよび、固着剤や膨潤剤の形で添加される加水分解可能なNa及びKを酸化物換算した値を、夫々Sol.NaO及びSol.KOとして、両者を分離して扱うが、加水分解可能なNa及びKについては、以下に示す方法により分離し、測定することができる。
【0027】
即ち、Sol.NaO及びSol.KOは、被覆棒から剥離した被覆剤をメノウ乳鉢にて粉砕し、一定量の被覆剤に対して蒸留水を加え、沸騰4時間の保持により、溶解した成分を原子吸光法により分析して求めることにより、測定することができる。
【0028】
「被覆剤に含まれるフッ化アルミニウム:0.5乃至5質量%」
更に、本願発明者等は、溶接作業性の改善及びヒューム中の水に可溶性のCr量を低減するために、種々の添加原料について検討した結果、一部のフッ化物、中でもフッ化アルミニウムが特に上記特性の発揮に有効であることを見いだした。フッ化アルミニウムは、ヒューム中の水に可溶性のCrを低減するが、ヒューム発生量を増加させることが無く、同時に、アークをソフトにする効果がある。
【0029】
フッ化アルミニウムは、被覆剤全質量あたり、0.5質量%未満では十分な効果が見られず、5質量%を超えるとスラグの流動性が高くなりすぎ、スパッタが増加する。このため、被覆剤に含まれるフッ化アルミニウムは0.5乃至5質量%とする。
【0030】
その他、スラグ造滓剤として、アルミナ及びジルコンサンド等の酸化物原料を使用することができる。溶接金属の成分調整用として、Mn、Cr、Ni、及びMo等の金属原料を使用することができる。
【0031】
【実施例】
以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。実施例及び比較例の被覆アーク溶接棒を製造し、ヒュームの水に可溶性のCr量及び溶接作業性を評価した。被覆剤としては、フラックス原料に、水ガラス、リチウムシリケート、コロイダルシリカ、コロイダルアルミナ等の固着剤を合わせて混合したものを用意し、この被覆剤を金属心線の周囲に塗布し、その後、被覆剤を乾燥することにより、被覆アーク溶接棒が製造される。通常、被覆アーク溶接棒の被覆剤中に占める固着剤の含有量は重量比で3乃至10%となる。下記表1は心線の組成を示す。また、下記表2乃至4及び表5乃至7は心線径並びに被覆剤層の組成及び外径を示す。
【0032】
下記表2乃至4及び表5乃至7に示すように、被覆剤の化学成分、心線径、被覆剤層外径を種々変更して、被覆剤を表1に示す組成の金属心線(20Cr−10Niステンレス鋼)に塗装し、乾燥して、被覆アーク溶接棒を製造した。なお、固着剤には、主に、リチウムシリケートを使用し、少量のソーダ水ガラス及びカリウムガラスを混合して使用した。生産した被覆アーク溶接棒は、以下に示す溶接条件及び試験方法により評価した。
【0033】
【表1】

Figure 0003798345
【0034】
【表2】
Figure 0003798345
【0035】
【表3】
Figure 0003798345
【0036】
【表4】
Figure 0003798345
【0037】
【表5】
Figure 0003798345
【0038】
【表6】
Figure 0003798345
【0039】
【表7】
Figure 0003798345
【0040】
(1)溶接条件
溶接条件は下記表8に示すとおりである。極性は直流である。
【0041】
【表8】
Figure 0003798345
【0042】
(2)作業性評価
厚さ3mm、幅50mm、長さ300mmのSUS304製溶接母材によりT字すみ肉試験片を作成し、水平すみ肉溶接により、作業性を評価した。
【0043】
(3)ヒューム採取法
JIS Z3930(被覆アーク溶接棒の全ヒューム量測定方法)に準拠して行った。即ち、下部が開放され、上部にハイボリュームエアサンプラーを備えた鉄製の箱内で溶接しながら、ヒュームを吸引し、グラスファイバー製の濾紙にてヒュームを採取した。
【0044】
(4)ヒューム分析法
ヒュームを0.4〜1.0g吸着した濾紙にてヒュームを250mlの水中に浸漬し、常温常圧で5分間振とうした後、恒温振とう水槽にて70℃に2時間振とうした。この液を静置し、室温まで冷却した後、ガラス繊維フィルター(0.45μm)にて濾過し、溶出検液とした。この溶出検液をJIS K0102にて測定し、測定値からヒューム中の水に可溶性のCr含有量を決定した。
【0045】
下記表9乃至表11は、この溶接試験により得られた評価結果を示す。なお、作業性評価欄において、◎は極めて優れている場合、○は優れている場合、○△は可の場合、△はやや劣る場合、×は劣る場合である。
【0046】
【表9】
Figure 0003798345
【0047】
【表10】
Figure 0003798345
【0048】
【表11】
Figure 0003798345
【0049】
本発明の実施例A1〜A10は、本発明の請求項1乃至5の全ての構成要件を満足するため、いずれも、生産性、ヒューム中の水に可溶性のCr、溶接作業性の全てについて良好な値を示しており、水に可溶性のCr量が少なく、溶接作業性が優れたものであった。
【0050】
なお、実施例A6は、被覆剤中のSi成分が若干少ないものの、請求項1及び2を満足するため、良好な作業性を維持している。また、実施例A7は逆に被覆剤中のSi成分が若干高いものの、請求項1及び2を満足するため、溶接作業性は良好である。実施例A8は被覆剤層の外径が若干大きいものの、請求項を満足するため、溶接作業性は未だ良好である。実施例A9は被覆剤層の外径が若干小さいものの、請求項を満足するため、アークの安定性は損なわれていない。実施例A10は、TiO微粉末の配合量が若干少ないが、請求項を満足するため、アークの強さは足りており、姿勢溶接が可能である。実施例A11は、TiO微粉末が多めに配合されているが、請求項は満足するので、乾燥割れはほぼ良好である。
【0051】
また、実施例A12は、TiO微粉末を含むものの、その配合量が少ない(請求項2から外れる)ため、アークスタート性及びスパッタの抑制が若干不十分となる。実施例A13は、TiO微粉末の配合量が多すぎる(請求項から外れる)ため、乾燥割れが生じ、歩留が若干悪化した。参考例A14は、被覆剤層の外径が請求項の範囲から外れて太すぎるため、保護筒が長くなり、アーク切れが発生する傾向がみられる。参考例A15は、逆に、被覆剤層の外径が請求項の範囲から外れて細すぎるため、アークの不安定が発生している。
【0052】
更に、参考例A16は、加水分解可能なNa及びK量が被覆剤全体のそれに対して少なく、請求項から外れるため、ヒューム中の水に可溶性のCr量が高めになっている。実施例A17は、被覆剤中にフッ化アルミニウムが含まれていないため、水に可溶性のCr量及び溶接作業性(特に、アークの安定性)が若干劣っている。実施例A18は、フッ化アルミニウムを最少量含んでいるので、溶接作業性(アークの安定性)が実施例A17よりも良好である。実施例A19は、フッ化アルミニウムの量が多すぎる(請求項5から外れる)ため、スラグの粘性が低く、スパッタが若干多い傾向にある。なお、実施例A11乃至A13及び実施例A17乃至19において、特性が若干低いのは、実施例A1乃至A10に比較した場合であって、従来の被覆アーク溶接棒に対しては特性が優れている。
【0053】
比較例B1は、Total(NaO+KO)が1.20%と請求項1から外れているので、被覆剤中のNa及びKの含有量が高くなりすぎ、ヒューム中の水に可溶性のCr量が極めて高い。
【0054】
比較例B2は、被覆剤中のSi量が14%と低く、請求項1から外れているので、溶接作業性、特に、アークスタート性が悪いという問題点がある。
【0055】
比較例B3は、被覆剤のSi量が36%と高すぎ、請求項1から外れているので、多量のスパッタが発生した。
【0056】
比較例B4は、TiO微粉末を含まず、請求項1から外れているので、アークスタートが困難であり、また溶接時にショートし易いという問題点がある。
【0057】
【発明の効果】
以上説明したように、本発明によれば、ヒューム中の水に可溶性のCr量を低減できると共に、アークスタート性及びアーク安定性等の作業性が優れた被覆アーク溶接棒を得ることができる。
【図面の簡単な説明】
【図1】被覆剤層の外径d2と、心線径d1との間の好ましい範囲を示すグラフ図である。
【図2】ワイヤの断面を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coated arc welding rod containing Cr in at least one of a core wire and a coating material. More specifically, the present invention reduces Cr soluble in water in fumes generated during welding, and further improves arc stability. The present invention relates to a coated arc welding rod having good welding workability by dramatically increasing.
[0002]
[Prior art]
Cr is generally widely added as an indispensable component in welding materials for stainless steel, some low alloy heat resistant steels, and some hardfacing. However, a part of the Cr contained in the welding material is released into the atmosphere as a fume by welding, and the water-soluble oxidation state (+ VI) Cr contained as a part of the fume is harmful. It is said. In addition, it is necessary to treat the fumes collected in the exhaust device as industrial waste. However, because waste is regulated by water-soluble Cr, it takes time and effort for the treatment. Yes. For this reason, it is necessary to radically reduce the amount of Cr soluble in water contained in the fume itself, and there is a demand for the development of a welding material that enables this.
[0003]
Therefore, various studies have been made in the past in order to reduce the amount of Cr soluble in water contained in the fume in the Cr-containing coated arc welding rod. Japanese Patent Application Laid-Open No. 52-114447 discloses that the amount of Cr soluble in water in the fume can be effectively reduced by regulating the contents of Na and K in the coating agent. . Japanese Patent Laid-Open No. 53-19154 discloses a covered arc welding rod that reduces soluble Cr in water in the fume by using Li and other additive raw materials, and has good coating adhesion and welding workability. Is disclosed. Further, Japanese Patent Application Laid-Open No. 55-149796 proposes a technique for reducing the amount of spatter generated and improving welding workability.
[0004]
[Problems to be solved by the invention]
However, in the prior art using a titania-based coating containing TiO 2 as a main material and a metal carbonate, metal fluoride, and metal powder as a secondary material, Na and K in the coating are reduced. In such a case, there is a problem that arc start properties and arc stability are extremely deteriorated, and welding workability is deteriorated.
[0005]
The present invention has been made in view of such problems, and provides a Cr-containing coated arc welding rod that can reduce the amount of Cr soluble in water in the fume and has excellent arc startability and arc stability. With the goal.
[0006]
[Means for Solving the Problems]
The coated arc welding rod according to the present invention is a coated arc welding rod containing Cr in either one or both of a core wire and a coating material. The composition of the coating material is a Na-containing component and K per total mass of the coating material. The total content of sodium and potassium obtained by converting the content components to Na 2 O and K 2 O is 1% by mass or less, and the content of silicon obtained by converting the Si content components to SiO 2 is 15 to was 30 wt%, seen containing a TiO 2 powder having a diameter composed of particles smaller than 10 [mu] m, the diameter of the core wire d1, the outer diameter of the coating layer when the d2, d1 and d2 satisfies the following equation 1 and 2 are satisfied .
[0007]
Another coated arc welding rod according to the present invention is a coated arc welding rod containing Cr in one or both of a core wire and a coating material, and the composition of the coating material is a Na-containing component per the total mass of the coating material. And the total content of sodium and potassium obtained by converting the K-containing component into Na 2 O and K 2 O, respectively, is 1% by mass or less, and the silicon content obtained by converting the Si-containing component into SiO 2 a 15 to 30 wt%, seen containing a TiO 2 powder having a diameter composed of particles smaller than 10 [mu] m, hydrolyzable Na component and a K component contained respectively Na in 2 O and K 2 O in the coating Obtained by converting the sodium and potassium contents obtained by conversion into sol. Na 2 O and sol. K 2 O, respectively, and converting the Na component and K component contained in the coating into Na 2 O and K 2 O, respectively. Nat When the contents of lithium and potassium are T. Na 2 O and T. K 2 O, respectively, ( sol. Na 2 O + sol. K 2 O) / ( T. Na 2 O + T. K 2 O) It is characterized by being 0.5 to 1.0 .
[0008]
[Expression 1]
When d1 is less than 3 mm, 1.67 × d1 + 0.17 ≦ d2 ≦ 1.67 × d1 + 0.47
[0009]
[Expression 2]
When d1 is 3 mm or more 1.28 × d1 + 1.43 ≦ d2 ≦ 1.28 × d1 + 1.83
[0010]
Also in the coated arc welding rod according to claim 1 of the present application, sodium obtained by converting both the hydrolyzable Na component and K component contained in the coating agent into Na 2 O and K 2 O, respectively, and Sodium and potassium contents obtained by converting the potassium content to sol.Na 2 O and sol.K 2 O, respectively, and converting the Na component and K component contained in the coating to Na 2 O and K 2 O, respectively. Are T.Na 2 O and T.K 2 O, respectively, (sol.Na 2 O + sol.K 2 O) / (T.Na 2 O + T.K 2 O) is 0.5 to 1.0 Preferably there is.
[0011]
Furthermore, it is preferable to contain 3 to 15% by mass of the TiO 2 fine powder with respect to the total mass of the coating agent. Furthermore, it is preferable that the coating material contains 0.5 to 5% by mass of aluminum fluoride per the total mass of the coating material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. Na and K contained in the coating have the effect of lowering the arc starting voltage, facilitating arc generation, increasing the stability of the arc, and increasing the adhesion of the coating, thereby improving welding workability. It is known that there is. However, as described in JP-A-52-114447, in order to reduce Cr soluble in water in the fume, it is necessary to limit the contents of Na and K in the coating agent. When the content of Na and K in the inside is reduced, there is a problem that welding workability and the fixing force of the coating agent are lowered.
[0013]
The present inventors are soluble in the water in the fume while maintaining the arc stability and the adhesion of the coating and maintaining the welding workability even when the amount of Na and K in the coating is reduced. In order to reduce the amount of Cr, the present invention was completed by intensive studies on the formulation and manufacturing method of the coating agent.
[0014]
Hereinafter, the reason for limiting the numerical values of the respective compositions in the present invention will be described.
[0015]
“Total of Na-containing component and K-containing component in coating (oxide conversion value): 1% by mass or less”
It is preferable to reduce Na and K in the coating agent as much as possible because the lower the content, the more effective is the suppression of Cr soluble in water in the fume. In this case, when the Na-containing component and the K-containing component exceed 1% by mass in the sum of the Na 2 O converted value and the K 2 O converted value, respectively, the effect of reducing Cr soluble in water in the fume is low. The total content of sodium and potassium obtained in terms of Na 2 O and K 2 O is 1% by mass or less.
[0016]
“Si-containing component in coating (SiO 2 equivalent value): 15 to 30% by mass”
In the conventional titania-based coating, when Na and K in the coating are reduced, there is a problem that the arc start property and the arc stability are extremely deteriorated. The present inventors have studied various raw materials, and by adding an appropriate amount of Si in an oxide state, the arc start property and the arc stability are dramatically improved, and at the same time, trace amounts of Na and K are contained in the coating agent. Even in such a case, it has been found that the composition containing a large amount of Si in the oxide state can significantly reduce the amount of Cr soluble in water in the fume. Examples of Si sources include ore powders such as coral and feldspar, slipping agents such as kaolin and talc, and sticking agents such as water glass as oxides. In addition, metallic materials such as metallic Si and ferrosilicon also have the same effect as the addition of Si in the oxide state because Si slags out during welding and acts as an oxide.
[0017]
When Si in the coating agent is less than 15% by mass in terms of SiO 2 , sufficient effects that contribute to the welding stability as described above cannot be obtained, and arc breakage is likely to occur. Also, Si in the coating agent when the content is more than 30 wt% in terms of SiO 2, an increase in the fluidity of the slag, burn the bead surface occur sputtering is increased, the slag removability is deteriorated. Therefore, Si in the coating is 15 to 30 wt% in terms of SiO 2.
[0018]
“TiO 2 fine powder: 3 to 15% by mass”
The fixing strength of the coating material has a great influence on the workability of welding, but if this is strong, a protective cylinder is formed during welding, which increases the stability of the arc and improves the concentration of the arc. Workability is significantly improved. As a result of studying various raw materials by the present inventors in order to enhance the adhesion of the coating material, the inventors found that the fine powder of TiO 2 significantly increases the adhesion strength of the coating material.
[0019]
The fine powder of TiO 2, particle size is less TiO 2 powder source 10 [mu] m, in general, there is a white titanium, common name, such as titanium white or white titanium. The effect of TiO 2 fine powder can be obtained by adding a small amount, but in order to obtain a sufficient effect, it is preferable to add 3% by mass or more based on the total mass of the coating agent. However, if it exceeds 15% by mass, dry cracking is likely to occur, so the TiO fine powder is preferably 3 to 15% by mass.
[0020]
“Outer diameter d2 of coating layer: Formulas 1 and 2”
FIG. 2 is a cross-sectional view of the coated arc welding rod cut in a direction perpendicular to its axis. In the figure, d1 is the diameter of the core wire, and d2 is the outer diameter of the coating layer. In the present invention, Na and K in the coating material are reduced and Si is actively added, so the range of the outer diameter d2 of the coating material layer where the welding workability is optimal is particularly narrow. In the present invention, since Na and K of the coating agent are reduced, it is difficult to ensure arc startability and arc stability. When d2 is small, it is difficult to form a protective cylinder during welding, the arc becomes unstable, and when the spatter is increased, the arc voltage during welding increases and arc breakage occurs. On the other hand, the addition of Si to the coating increases the fluidity of the molten slag, and when the slag is covered, the arc is likely to stop, so it is not preferable that d2 is large. In order to obtain optimum welding workability, the outer diameter (d2) of the covering rod has to be particularly narrow. For this reason, the present inventors conducted various tests on the outer diameter d2 of the coating layer for each welding rod size (core wire diameter d1), and obtained the optimum outer diameter d2 of the coating layer.
[0021]
As a result of the test, it was found that there is a range with good workability as shown in FIG. In FIG. 1, the core axis diameter d1 is taken on the horizontal axis, and the outer diameter d2 of the coating layer is taken on the vertical axis. The combination of (d1, d2), the workability is good, and the workability is bad. And organized. As shown in FIG. 1, in a region where the outer diameter d2 of the coating layer is larger than the line segment L1 and the line segment L2, slag fogging occurred and workability deteriorated. On the other hand, in the region where the outer diameter d2 of the coating layer is smaller than the line segment L3 and the line segment L4, the arc becomes unstable and workability deteriorates due to the occurrence of spatter. On the other hand, workability was good in the area between the line segments L1 and L2 and the line segments L3 and L4.
[0022]
The line segment L1 is represented by d2 = 1.28 × d1 + 1.83, and the line segment L3 is represented by d2 = 1.28 × d1 + 1.43. The line segment L2 is represented by d2 = 1.67 × d1 + 0.47, and the line segment L4 is represented by d2 = 1.67 × d1 + 0.17. The line segment L1 and the line segment L2 and the line segments L3 and L4 intersect with each other with a core wire diameter d1 of about 3 mm, and the region with good workability is a range represented by the above formulas 1 and 2. .
[0023]
If the outer diameter of the coating layer is too large, arc breakage is likely to occur, slag is excessively covered, and welding workability is deteriorated. On the other hand, if the outer diameter of the coating layer is too thin, the arc becomes unstable and the amount of spatter increases, so that the welding workability is deteriorated.
[0024]
“Ratio of hydrolyzable Na and K contained in the coating agent”
Conventionally, if Na and K in the coating material are reduced, fading and dry cracking are likely to occur, making the production difficult, and even if it can be produced, the adhesive has a weak adhesive force, so that sufficient protection is provided during welding. A tube was not formed, and it was difficult to obtain satisfactory welding workability. Therefore, in order to maintain the productivity and workability of the welding rod, a small amount of Na and K are blended as a fixing agent, a swelling agent or a slip agent, and a component that can obtain satisfactory productivity and workability is obtained. Then, the coating composition was examined. As a result, when Na and K contained in the coating agent are added in the form of a hydrolyzable fixing agent or swelling agent, the maximum effect is achieved in reducing Cr soluble in water in fume and ensuring welding workability. It has been found that it is effective to control the ratio of Na and K that can be hydrolyzed.
[0025]
The sodium and potassium contents obtained by converting the hydrolyzable Na component and K component contained in the coating agent into Na 2 O and K 2 O, respectively, are sol.Na 2 O and sol.K 2 O, respectively. When the sodium and potassium contents obtained by converting the Na component and K component contained in the coating material into Na 2 O and K 2 O, respectively, are T.Na 2 O and T.K 2 O, respectively. , (Sol.Na 2 O + sol.K 2 O) / (T.Na 2 O + T.K 2 O) is preferably 0.5 to 1.0. When (sol.Na 2 O + sol.K 2 O) / (T.Na 2 O + T.K 2 O) is less than 0.5, a large amount of Na and K in the coating material is contained in the blended raw material, and the fixing agent And since it is small in a swelling agent, while a protection cylinder becomes weak and workability | operativity deteriorates, soluble Cr increases in the water of a fume. In principle, (sol.Na 2 O + sol.K 2 O) / (T.Na 2 O + T.K 2 O) cannot take a value higher than 1. Therefore, (sol.Na 2 O + sol.K 2 O) / (T.Na 2 O + T.K 2 O) is preferably set to 0.5 to 1.0.
[0026]
In the present invention, the values in terms of oxides of Na and K contained in the coating are referred to as T.Na 2 O and T.K 2 O, respectively, and hydrolysis is added in the form of a sticking agent and a swelling agent. The values obtained by converting the possible Na and K into oxides are handled as Sol.Na 2 O and Sol.K 2 O, respectively, and both are handled separately. For hydrolysable Na and K, the following method is used. Can be separated and measured.
[0027]
That is, Sol.Na 2 O and Sol.K 2 O were prepared by pulverizing the coating material peeled off from the coating rod in an agate mortar, adding distilled water to a certain amount of coating material, and maintaining boiling for 4 hours. It can be measured by analyzing the dissolved component by atomic absorption.
[0028]
“Aluminum fluoride contained in coating agent: 0.5 to 5% by mass”
Furthermore, the inventors of the present application have examined various additive raw materials in order to improve welding workability and reduce the amount of Cr soluble in water in the fume. It has been found that it is effective for exerting the above characteristics. Aluminum fluoride reduces Cr soluble in water in the fumes, but does not increase the amount of fumes generated, and at the same time has the effect of softening the arc.
[0029]
When aluminum fluoride is less than 0.5% by mass per total mass of the coating agent, a sufficient effect is not seen, and when it exceeds 5% by mass, the flowability of slag becomes too high and spatter increases. For this reason, the aluminum fluoride contained in the coating agent is 0.5 to 5% by mass.
[0030]
In addition, oxide raw materials such as alumina and zircon sand can be used as the slag former. Metal raw materials such as Mn, Cr, Ni, and Mo can be used for adjusting the components of the weld metal.
[0031]
【Example】
Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. The coated arc welding rods of Examples and Comparative Examples were manufactured, and the amount of Cr soluble in fume water and welding workability were evaluated. As a coating agent, prepare a flux material mixed with a fixing agent such as water glass, lithium silicate, colloidal silica, colloidal alumina, etc., apply this coating agent around the metal core, and then coat A coated arc welding rod is produced by drying the agent. Usually, the content of the fixing agent in the coating of the coated arc welding rod is 3 to 10% by weight. Table 1 below shows the composition of the core wire. Tables 2 to 4 and Tables 5 to 7 below show the core wire diameter, the composition of the coating layer, and the outer diameter.
[0032]
As shown in Tables 2 to 4 and Tables 5 to 7, the chemical composition of the coating agent, the core wire diameter, and the outer diameter of the coating layer were variously changed, and the coating material was a metal core wire (20Cr -10Ni stainless steel) and dried to produce a coated arc welding rod. In addition, lithium silicate was mainly used for the fixing agent, and a small amount of soda water glass and potassium glass were mixed and used. The produced coated arc welding rod was evaluated by the following welding conditions and test methods.
[0033]
[Table 1]
Figure 0003798345
[0034]
[Table 2]
Figure 0003798345
[0035]
[Table 3]
Figure 0003798345
[0036]
[Table 4]
Figure 0003798345
[0037]
[Table 5]
Figure 0003798345
[0038]
[Table 6]
Figure 0003798345
[0039]
[Table 7]
Figure 0003798345
[0040]
(1) Welding conditions The welding conditions are as shown in Table 8 below. The polarity is direct current.
[0041]
[Table 8]
Figure 0003798345
[0042]
(2) Workability evaluation T-shaped fillet specimens were prepared from a SUS304 welded base material having a thickness of 3 mm, a width of 50 mm, and a length of 300 mm, and workability was evaluated by horizontal fillet welding.
[0043]
(3) Fume sampling method This was performed in accordance with JIS Z3930 (a method for measuring the total fume amount of a coated arc welding rod). That is, the lower part was opened, the fume was sucked while welding in an iron box equipped with a high volume air sampler on the upper part, and the fume was collected with a glass fiber filter paper.
[0044]
(4) Fume analysis method Fume is immersed in 250 ml of water with a filter paper on which 0.4 to 1.0 g of fume is adsorbed, shaken at room temperature and normal pressure for 5 minutes, and then heated to 70 ° C. in a constant temperature shaking water bath. Shaking time. The solution was allowed to stand, cooled to room temperature, and then filtered through a glass fiber filter (0.45 μm) to obtain an elution test solution. This elution test solution was measured by JIS K0102, and the content of Cr soluble in water in the fume was determined from the measured value.
[0045]
Tables 9 to 11 below show the evaluation results obtained by this welding test. In the workability evaluation column, ◎ is extremely excellent, ○ is excellent, ○ △ is acceptable, Δ is slightly inferior, and × is inferior.
[0046]
[Table 9]
Figure 0003798345
[0047]
[Table 10]
Figure 0003798345
[0048]
[Table 11]
Figure 0003798345
[0049]
Since Examples A1 to A10 of the present invention satisfy all the constituent requirements of claims 1 to 5 of the present invention, all of them are good in terms of productivity, Cr soluble in water in fume, and welding workability The amount of Cr soluble in water was small, and the welding workability was excellent.
[0050]
In Example A6, although the Si component in the coating agent was slightly less, the workability was maintained in order to satisfy claims 1 and 2 . On the other hand, Example A7, on the contrary, has a slightly high Si component in the coating agent, but satisfies the claims 1 and 2 and therefore has good welding workability. In Example A8, although the outer diameter of the coating layer is slightly large, the workability of welding is still good in order to satisfy Claim 1 . In Example A9, although the outer diameter of the coating layer is slightly smaller, the stability of the arc is not impaired in order to satisfy claim 1 . In Example A10, although the blending amount of the TiO 2 fine powder is slightly small, since it satisfies claim 4 , the strength of the arc is sufficient, and posture welding is possible. In Example A11, TiO 2 fine powder was added in a large amount, but since Claim 4 is satisfied, dry cracking is almost satisfactory.
[0051]
In addition, although Example A12 contains TiO 2 fine powder, the blending amount thereof is small (departing from claim 2), so that the arc start property and the suppression of sputtering are slightly insufficient. In Example A13, since the blending amount of the TiO 2 fine powder was too large (departed from claim 4 ), dry cracking occurred and the yield was slightly deteriorated. In Reference Example A14, the outer diameter of the coating layer is out of the range of claim 1 and is too thick, so that the protective cylinder becomes longer and arc breakage tends to occur. On the contrary, in Reference Example A15, since the outer diameter of the coating layer is too small outside the range of claim 1 , arc instability occurs.
[0052]
Furthermore, in Reference Example A16, the amount of Na and K that can be hydrolyzed is small compared to that of the entire coating material, and deviates from claim 2. Therefore, the amount of Cr soluble in water in the fume is increased. In Example A17, since aluminum fluoride is not contained in the coating agent, the amount of Cr soluble in water and welding workability (particularly, arc stability) are slightly inferior. Since Example A18 contains a minimum amount of aluminum fluoride, the welding workability (arc stability) is better than that of Example A17. In Example A19, since the amount of aluminum fluoride is too large (departing from claim 5), the viscosity of the slag is low and the amount of spatter tends to be slightly high. In Examples A11 to A13 and Examples A17 to A19 , the characteristics are slightly lower than those in Examples A1 to A10, which are superior to the conventional coated arc welding rod. .
[0053]
In Comparative Example B1, the total (Na 2 O + K 2 O) is 1.20%, which is outside the scope of claim 1, so that the contents of Na and K in the coating become too high and are soluble in the water in the fume. The amount of Cr is extremely high.
[0054]
Since Comparative Example B2 has a low Si content in the coating agent of 14% and deviates from Claim 1, there is a problem that welding workability, particularly arc startability is poor.
[0055]
In Comparative Example B3, the amount of Si in the coating agent was too high at 36%, which was outside the scope of claim 1, and therefore a large amount of spatter was generated.
[0056]
Since Comparative Example B4 does not contain TiO 2 fine powder and deviates from Claim 1, there is a problem that arc starting is difficult and short-circuiting is likely to occur during welding.
[0057]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a coated arc welding rod that can reduce the amount of Cr soluble in water in the fume and is excellent in workability such as arc start performance and arc stability.
[Brief description of the drawings]
FIG. 1 is a graph showing a preferred range between an outer diameter d2 of a coating layer and a core wire diameter d1.
FIG. 2 is a view showing a cross section of a wire.

Claims (5)

心線及び被覆剤のいずれか一方又は双方にCrを含有する被覆アーク溶接棒において、前記被覆剤の組成は、被覆剤全質量あたり、Na含有成分及びK含有成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量の総和が1質量%以下、Si含有成分をSiOに換算して得られるシリコンの含有量が15乃至30質量%であり、直径が10μm以下の粒子からなるTiO微粉末を含み、前記心線の直径をd1、前記被覆剤層の外径をd2とした場合に、d1及びd2が下記数式を満足することを特徴とする被覆アーク溶接棒。
d1が3mm未満の場合
1.67×d1+0.17≦d2≦1.67×d1+0.47
d1が3mm以上の場合
1.28×d1+1.43≦d2≦1.28×d1+1.83
In the coated arc welding rod containing Cr in one or both of the core wire and the coating agent, the composition of the coating agent is such that the Na-containing component and the K-containing component are Na 2 O and K 2 , respectively, with respect to the total mass of the coating agent. The total content of sodium and potassium obtained by converting to O is 1% by mass or less, the content of silicon obtained by converting the Si-containing component to SiO 2 is 15 to 30% by mass, and the diameter is 10 μm or less. look including the TiO 2 fine powder consisting of particles, the diameter of the core wire d1, the outer diameter of the coating layer when the d2, shielded metal arc, characterized in that d1 and d2 satisfy the following formula Welding rods.
When d1 is less than 3 mm, 1.67 × d1 + 0.17 ≦ d2 ≦ 1.67 × d1 + 0.47
When d1 is 3 mm or more 1.28 × d1 + 1.43 ≦ d2 ≦ 1.28 × d1 + 1.83
心線及び被覆剤のいずれか一方又は双方にCrを含有する被覆アーク溶接棒において、前記被覆剤の組成は、被覆剤全質量あたり、Na含有成分及びK含有成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量の総和が1質量%以下、Si含有成分をSiOに換算して得られるシリコンの含有量が15乃至30質量%であり、直径が10μm以下の粒子からなるTiO微粉末を含み、被覆剤に含有されている加水分解可能なNa成分及びK成分を夫々Na O及びK Oに換算して得られるナトリウム及びカリウムの含有量を夫々 sol. Na O及び sol. Oとし、被覆剤に含まれるNa成分及びK成分を夫々Na O及びK Oに換算して得られるナトリウム及びカリウムの含有量を夫々 T. Na O及び T. Oとした場合に、( sol. Na O+ sol. O)/( T. Na O+ T. O)が0.5乃至1.0であることを特徴とする被覆アーク溶接棒。In the coated arc welding rod containing Cr in one or both of the core wire and the coating agent, the composition of the coating agent is such that the Na-containing component and the K-containing component are Na 2 O and K 2 , respectively, with respect to the total mass of the coating agent. The total content of sodium and potassium obtained by converting to O is 1% by mass or less, the content of silicon obtained by converting the Si-containing component to SiO 2 is 15 to 30% by mass, and the diameter is 10 μm or less. the viewing including the TiO 2 fine powder consisting of particles, the content of sodium and potassium obtained by converting the hydrolyzable Na component and a K component contained in the coating agent in each Na 2 O and K 2 O each sol. Na 2 O and sol. K 2 O and to husband the content of sodium and potassium obtained by converting the Na component and a K component contained in the coating agent, respectively Na 2 O and K 2 O people T. when the a 2 O and T. K 2 O, (sol. Na 2 O + sol. K 2 O) / (T. Na 2 O + T. K 2 O) is from 0.5 to 1.0 Coated arc welding rod characterized by 被覆剤に含有されている加水分解可能なNa成分及びK成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量を夫々sol.NaO及びsol.KOとし、被覆剤に含まれるNa成分及びK成分を夫々NaO及びKOに換算して得られるナトリウム及びカリウムの含有量を夫々T.NaO及びT.KOとした場合に、(sol.NaO+sol.KO)/(T.NaO+T.KO)が0.5乃至1.0であることを特徴とする請求項に記載の被覆アーク溶接棒。The sodium and potassium contents obtained by converting the hydrolyzable Na component and K component contained in the coating agent into Na 2 O and K 2 O, respectively, are sol.Na 2 O and sol.K 2 O, respectively. When the sodium and potassium contents obtained by converting the Na component and K component contained in the coating material into Na 2 O and K 2 O, respectively, are T.Na 2 O and T.K 2 O, respectively. , (sol.Na 2 O + sol.K 2 O) / (T.Na 2 O + T.K 2 O) is covered electrode as claimed in claim 1, characterized in that from 0.5 to 1.0. 前記TiO微粉末を被覆剤全質量あたり、3乃至15質量%含有することを特徴とする請求項1乃至3のいずれか1項に記載の被覆アーク溶接棒。The covered arc welding rod according to any one of claims 1 to 3, wherein the TiO 2 fine powder is contained in an amount of 3 to 15% by mass based on the total mass of the coating agent. 前記被覆剤にフッ化アルミニウムを、被覆剤全質量あたり、0.5乃至5質量%含有することを特徴とする請求項1乃至4のいずれか1項に記載の被覆アーク溶接棒。  The coated arc welding rod according to any one of claims 1 to 4, wherein the coating material contains 0.5 to 5% by mass of aluminum fluoride per total mass of the coating material.
JP2002177629A 2002-06-18 2002-06-18 Covered arc welding rod Expired - Fee Related JP3798345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177629A JP3798345B2 (en) 2002-06-18 2002-06-18 Covered arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177629A JP3798345B2 (en) 2002-06-18 2002-06-18 Covered arc welding rod

Publications (2)

Publication Number Publication Date
JP2004017119A JP2004017119A (en) 2004-01-22
JP3798345B2 true JP3798345B2 (en) 2006-07-19

Family

ID=31175620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177629A Expired - Fee Related JP3798345B2 (en) 2002-06-18 2002-06-18 Covered arc welding rod

Country Status (1)

Country Link
JP (1) JP3798345B2 (en)

Also Published As

Publication number Publication date
JP2004017119A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US6784401B2 (en) Welding electrode and method for reducing manganese in fume
JP5874068B2 (en) Flux for single-sided submerged arc welding
JPH02299796A (en) Welding flux and electrode
EP3266560B1 (en) Multi-coated electrode for welding stainless steel
JP5802624B2 (en) Covered arc welding rod
JP3798345B2 (en) Covered arc welding rod
JPH06292990A (en) Flux cored wire
JP6845094B2 (en) High titanium oxide shielded metal arc welding rod
JPH0335033B2 (en)
JPS63220996A (en) Filler metal for tig welding
JP4454112B2 (en) Flux-cored wire for gas shielded arc welding
JPH09314382A (en) Flux-cored wire for welding ni alloy
JP3856650B2 (en) Stainless steel coated arc welding rod
JP4662641B2 (en) Stainless steel coated arc welding rod
JP2021109200A (en) Iron powder low hydrogen type coated arc welding electrode
JP2003320480A (en) Wire containing flux for stainless steel welding
JP4311888B2 (en) Low hydrogen coated arc welding rod
JP2005088039A (en) Titania-based flux cored wire
JPS59179292A (en) Coated arc welding electrode for steel for low temperature service
JPS6313695A (en) Flux cored wire for welding stainless steel
JPS63199093A (en) Arc welding electrode coated on stainless core wire
JP2577714B2 (en) Cr containing arc welding rod
JP6999461B2 (en) High titanium oxide-based shielded metal arc welding rod
JP6938361B2 (en) Lime titania-based shielded metal arc welding rod
JPH09239586A (en) Flux cored wire for welding stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees