JP3797807B2 - Hard film for high temperature sliding members - Google Patents

Hard film for high temperature sliding members Download PDF

Info

Publication number
JP3797807B2
JP3797807B2 JP30225998A JP30225998A JP3797807B2 JP 3797807 B2 JP3797807 B2 JP 3797807B2 JP 30225998 A JP30225998 A JP 30225998A JP 30225998 A JP30225998 A JP 30225998A JP 3797807 B2 JP3797807 B2 JP 3797807B2
Authority
JP
Japan
Prior art keywords
hard film
sliding member
nitride
film
temperature sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30225998A
Other languages
Japanese (ja)
Other versions
JP2000129420A (en
Inventor
浩志 長坂
桃子 角谷
松甫 宮坂
匡史 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elliott Ebara Turbomachinery Corp
Original Assignee
Elliott Ebara Turbomachinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elliott Ebara Turbomachinery Corp filed Critical Elliott Ebara Turbomachinery Corp
Priority to JP30225998A priority Critical patent/JP3797807B2/en
Priority to KR1020017004900A priority patent/KR100632425B1/en
Priority to US09/807,436 priority patent/US6767657B1/en
Priority to PCT/JP1999/005838 priority patent/WO2000024947A1/en
Priority to EP99949366A priority patent/EP1135541B1/en
Priority to DE69925753T priority patent/DE69925753T2/en
Publication of JP2000129420A publication Critical patent/JP2000129420A/en
Application granted granted Critical
Publication of JP3797807B2 publication Critical patent/JP3797807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗性、低い摩擦係数が要求されるシール又は軸受及びその製造方法に関し、特に蒸気タービン、ガスタービン等の高温回転機械に好適な軸受またはシールなどの高温摺動部材に好適な高温摺動部材用硬質膜に関するものである。
【0002】
【従来の技術】
金属材料から構成される軸受またはシール部材の耐摩耗性または耐食性を高めるために、その表面にセラミックスコーティングを施すことが広く行われている。そのセラミックスコーティングに使用されている材質としては、窒化チタン(TiN)、炭化チタン(TiC)、窒化クロム(CrN)、窒化ボロン(BN)およびダイヤモンド状カーボン(DLC)などが挙げられる。これらの中でも、TiN、CrNはすでに広く工業化され、硬質膜として金型、切削工具等に応用されている。
【0003】
このような硬質膜を形成する方法としては、従来から、PVD法またはCVD法に代表されるイオンプレーティング法、スパッター蒸着法、プラズマCVD法およびイオン注入法などの表面改質技術が検討されている。特に、真空蒸着法にイオン注入技術を併用したダイナミックミキシング(DM)法は、基材との密着性に優れると同時に、低温での物質合成が可能な膜形成技術として注目されている。
【0004】
セラミックスコーティングの材料のうちで、広く実用化されているものの一つであるTiNは、侵入型化合物を形成する代表的物質であり、面心立方晶の結晶構造であることが知られている。TiNは、Tiの格子に窒素が侵入固溶体として入り、NaCl型結晶構造となる。TiNxの組成領域は、0.8<x<1.16と広くとることができ、この組成領域内でxを変化させた場合、TiNの格子定数が変化することが知られている。TiN膜は、耐摩耗性および耐食性に優れたことから、一部の軸受またはシール部材などにも使用されている。
【0005】
【発明が解決しようとする課題】
ところで、蒸気タービンおよびガスタービンなどの高温回転機械において、回転機械の高温化に伴い、耐摩耗性、耐高温腐食性および高摺動性に優れた硬質膜の開発が望まれている。TiN膜をこのような用途に適用することが考えられているが、高温大気または高温水蒸気中にTiN膜を暴露すると、TiN自体の耐高温腐食性が充分でなく、耐久性に問題があることがこれまでの実験から分かってきている。従って、現在のTiN膜ではこのような用途において充分な摺動特性を発揮することができない。
【0006】
本発明は上述の課題を解決するためになされたもので、TiN膜の優れた耐摩耗性および低摩擦係数を生かしつつ、耐高温腐食性を向上させた高温摺動部材用硬質膜を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、窒化チタンを主成分とし、Cr及びHfの少なくとも一方の元素を含有する窒化物であって、前記窒化物の結晶粒子の格子定数が0.414nmから0.423nmの範囲にある面心立方晶構造であることを特徴とする高温摺動部材用硬質膜である。
【0008】
発明者らは、窒化チタン膜の耐高温腐食性および耐酸化性を改善することを目的に、Ti及びN以外の各種元素を含有した窒化物薄膜を得ること、およびそのような窒化物薄膜の形成技術の開発を進めてきた。すなわち、窒化チタン薄膜の高摺動特性(耐摩耗性、低摩擦係数)を損なわずに耐高温腐食性を向上させることを念頭に、TiおよびN以外の各種元素を添加した窒化物薄膜の形成技術に関する研究を行った。その結果、窒化チタンを主成分に、Cr及びHfの少なくとも一方の元素を含有する窒化物の結晶構造が面心立方構造であることを解明し、さらに、その格子定数が0.423nmを超えると、ビッカース硬さが2000以下程度にとどまり、耐摩耗性が不十分であるとの知見を得た。
【0009】
窒化チタンを主成分に、 Cr及びHfの少なくとも一方の元素を含有してなる窒化物は、窒化チタン本来の面心立方構造のTiの占めるサイトにCr及びHfの少なくとも一方の元素が配置してなり、面心立方構造をとるものと発明者らは考えている。
【0010】
これまでの研究から、前記窒化物の結晶構造が面心立方構造である組成範囲は、請求項2記載の発明である。すなわち、前記窒化物が下記の化学組成であるとき、前記窒化物の結晶構造が面心立方構造であって、面心立方構造である前記窒化物の格子定数が0.414nmから0.423nmの範囲であること、および前記窒化物の結晶粒子の大きさが最適な範囲内であるときに、ビッカース硬さが2500以上であり、前記の目的が達成される。
化学組成:Ti(100−x)Mex窒化物
但し、Me:Cr及びHfの少なくとも一方の元素
x:2%≦x≦30%、原子濃度(%)
【0011】
このような高温摺動部材用硬質膜は、ダイナミックミキシング(DM)法を用い、金属元素であるTi及び添加元素を真空蒸着させながら窒素をイオン注入することにより形成するのが良い。この方法によれば、基材との密着性の高い成膜ができるとともに、低温での物質合成が可能である。基材としては、熱膨張係数が11×10−6以下であるSUS420J2鋼またはSUS630鋼などのステンレス鋼またはIncoloy909鋼などのNi基合金を用いることが密着性を維持する上で好ましい。
【0012】
イオンビームの加速電圧は40kV以下であることが好ましい。40kV以上であると、イオンビームの加速装置の大掛かりになり、処理コストが高くなったり放射線の対策が必要になる。また、イオンビームの投与エネルギーが1 kV以下では、基材との密着力が不足し、高温摺動部材に適した硬質膜が得られない。
【0013】
X線回折法(XRD)の測定結果から、窒化物薄膜の結晶粒子の大きさは数nmから100nmであることが望ましいことが推定された。形成する硬質膜の膜厚は、処理コストおよび膜残留応力などの種々の要因を考慮して、数十μm以下が好適であるが、その用途によって種々の厚さとすることができる。
【0014】
添加元素の比率は、DM法において、Ti及び添加元素の蒸発速度をそれぞれ制御することによって行なうことができる。TiNは、Tiの格子に窒素が侵入固溶体として入り、面心立方晶の結晶構造となる。TiNにCr及びHfの少なくとも一方の元素を添加した場合、その原子濃度の増加と共に、TiNの面心立方の結晶構造が失われ、アモルファス又は他の結晶構造となる。したがって、優れた耐摩耗性、低摩擦係数を発揮させるため、添加元素の原子濃度が30at%以下であることが望ましい。また、これまでの研究から、TiNの耐高温腐食性を高めるため、添加元素を添加するほど、耐高温腐食性が向上するものと考えられるが、高温蒸気または高温大気酸化などの使用条件の苛酷さで、添加元素の添加量の下限値を決めるのが望ましい。
【0015】
請求項3に記載の発明は、結晶粒子の結晶方位が(111)面に配向することを特徴とする請求項1又は2に記載の高温摺動部材用硬質膜である。DM法において、窒素イオンビームの照射条件、例えば、イオンの加速電圧、電流密度、投与エネルギー(W/cm)および照射角度などの条件を制御することによって結晶粒子の結晶方位を(111)面に配向させることが可能である。
【0016】
請求項4に記載の発明は、請求項1ないし3のいずれかに記載の高温摺動部材用硬質膜の製造方法において、Cr及びHfの少なくとも一方の元素Tiとを同時に真空蒸着すると共に、窒素を主体とするイオンビームを照射することにより、窒化物を形成することを特徴とする高温摺動部材用硬質膜の製造方法である。
【0017】
請求項5に記載の発明は、可動部材と静止部材との組み合わせからなり、該可動部材又は静止部材のいずれか一方が金属材料からなり、他方がカーボンを含む材料からなる摺動部材において、前記金属からなる可動部材又は静止部材の摺動面に請求項1ないしのいずれかに記載の高温摺動部材用硬質膜を形成したことを特徴とする高温摺動部材である。
【0018】
請求項6に記載の発明は、前記カーボンを含む材料が、カーボンを主体とする材料、カーボンを含浸した材料又はカーボンを含む薄膜からなることを特徴とする請求項5に記載の高温摺動部材である。
【0019】
【実施例】
以下、実施例によって、本発明を具体的に説明する。
まず、図1により、ダイナミックミキシング(DM)装置を説明する。これは、気密な成膜室11内に、基材Wを下面に保持する銅製のホルダ12と、これの下方に配置されたヒータ13a,14aを有する蒸発源13,14と、基材Wに対して斜め下方からイオンを入射可能なイオン源15を備えている。基材Wを面内均一に成膜するために回転軸16により回転させるようにしており、銅製ホルダ12は、イオンビーム照射による基材Wの温度上昇を防ぐため回転軸16を介して水冷されている。
【0020】
このような装置により、基材として、SUS420J2鋼およびIncoloy909鋼を用いて、以下のような工程で実施例と比較例の成膜を行った。基材Wの前処理として、この基材処理面を平均表面粗さが0.05μm以下の鏡面となるまで研磨し、アルコールで超音波洗浄を行った後、図1のDM装置のホルダ12に取り付けた。
【0021】
まず、成膜室11の内部を到達圧力が1×10−5Torr以下になるまで真空排気し、加速電圧10kV、イオン電流密度0.2mA/cm、照射角度45°で、窒素イオンビームを照射して、基材の表面のスパッタークリーニングを行った。次に、イオン源15において電流密度を制御しながら窒素ビームを照射しつつ、Ti及び添加元素の蒸発源13,14をヒータ13a,14aで加熱し、それぞれの蒸発速度を制御しつつ膜厚が4μmになるまで成膜を行った。成膜条件を表1に示す。
【0022】
【表1】

Figure 0003797807
【0023】
作製した硬質膜の組成は、表2に示すように、それぞれTiに対してCr及びHfの少なくとも一方の元素が2〜30at%含まれていた。ここでは、Ti及び添加元素の供給比は、Me元素の蒸着速度/チタンの蒸着速度の比として示されている。なお、膜厚は、水晶発振式膜厚計でモニターすることにより制御した。一方、比較例として、添加元素を加えないもの、面心立方晶構造を形成しないもの、格子定数が0.414nmから0.423nmの範囲に無いもの、Cr及びHfの少なくとも一方の元素が2〜30at%を超えて含まれているもの、Nb及びTaがそれぞれTiに対して4〜8at%加えられたもの等を同様の方法で作製した。
【0024】
【表2】
Figure 0003797807
【0025】
得られた各種硬質膜の特性を表3に示す。実施例の硬質膜は、全て(111)面に優先配向したもので、(111)面の面間隔は、0.239nm〜0.242nmの範囲内にあった。この面間隔の値から格子定数を求めると、0.414〜0.419nmである。
【0026】
【表3】
Figure 0003797807
【0027】
次に、図1の装置によって、添加元素を用いずに成膜を行い、あらかじめ基材表面にTiN硬質膜を膜厚0.1〜3μmまで形成したのち、上記の方法で各種元素を含有する窒化物膜を全厚さが約5μmになるまで形成し、高温蒸気暴露試験を行った。図2は、高温蒸気試験装置の概略を示すもので、トラップ17と、基材Wのサンプルを保持するケース18と、これを所定温度に維持するオーブン炉19と、これに水蒸気を供給する水蒸気発生装置20とから構成されている。高温蒸気暴露試験は、450℃で300hr保持して行った。
【0028】
試験後の硬質膜に、Arイオンビームによるスパッタリングを一定時間行って減厚し、その表面をX線光電子分光法(XPS)によって分析して組成を調べた。これを繰り返し行って、各厚さにおける酸素の含有量から腐食の程度の深さ方向の変化を推定した。表4は、その結果を示すもので、これから、各種元素を含有する窒化物膜は、耐高温腐食性に優れた硬質膜であることが分かる。
【0029】
【表4】
Figure 0003797807
【0030】
次に、本発明を蒸気タービン用メイティングリングヘ適用した具体的事例を説明する。図3は蒸気タービンの非接触端面シールの構成例を示す図である。同図において、シールハウジング21に収容された回転軸22には軸スリーブ23が設けられている。そして、軸スリーブ23はキー24,24を介して回転環25,25(メイティングリング)を保持している。各回転環25に対向して固定環26を設けている。回転環25の基材にはステンレス鋼(SUS42OJ2)を用い、その摺動面に本発明の高温摺動部材用硬質膜をダイナミックミキシング法で形成する。また、図示は省略するが、回転環25の摺動面には高圧側Hから低圧側Lに向けて溝が形成されている。
【0031】
各固定環26はピン27を介してシールリングリテーナ28に接続されており、該シールリングリテーナ28とシールハウジング21との間にはスプリング29を介装している。そしてスプリング29及びシールリングリテーナ28を介して各固定環26は回転環25に押し付けられている。なお、30はロックプレート、31はシエアリングキーである。
【0032】
上記構成の非接触端面シールにおいて、回転軸22が回転することにより、回転環25と固定環26とが相対運動し、これにより、回転環25に形成した溝が高圧側Hの流体を巻き込んで、密封面に流体膜を形成する。この流体膜により密封面は非接触状態となり、回転環25と固定環26との間の密封面間にわずかな隙間が形成される。
【0033】
【発明の効果】
以上説明したように、本発明によれば、TiN膜の優れた耐摩耗性および低摩擦係数を生かしつつ、耐高温腐食性を向上させた高温摺動部材用硬質膜を提供することができた。
【図面の簡単な説明】
【図1】本発明で使用した硬質膜形成装置の概念図を示す。
【図2】高温蒸気試験装置の概念図を示す。
【図3】蒸気タービンの非接触端面シールの構成例を示す図である。
【符号の説明】
12 基板ホルダ
13,14 蒸発源
15 イオン源
16 回転軸
W 基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seal or bearing that requires wear resistance and a low coefficient of friction, and a method for manufacturing the same, and particularly to a high-temperature sliding member such as a bearing or seal that is suitable for a high-temperature rotating machine such as a steam turbine or a gas turbine. The present invention relates to a hard film for a high temperature sliding member.
[0002]
[Prior art]
In order to increase the wear resistance or corrosion resistance of a bearing or seal member made of a metal material, a ceramic coating is widely applied to the surface thereof. Examples of the material used for the ceramic coating include titanium nitride (TiN), titanium carbide (TiC), chromium nitride (CrN), boron nitride (BN), and diamond-like carbon (DLC). Among these, TiN and CrN have already been widely industrialized and applied to dies, cutting tools and the like as hard films.
[0003]
As methods for forming such a hard film, surface modification techniques such as an ion plating method, a sputter deposition method, a plasma CVD method and an ion implantation method typified by the PVD method or the CVD method have been studied. Yes. In particular, a dynamic mixing (DM) method in which an ion implantation technique is used in combination with a vacuum deposition method is attracting attention as a film forming technique capable of synthesizing a substance at a low temperature while having excellent adhesion to a substrate.
[0004]
Among ceramic coating materials, TiN, which is one of the widely used materials, is a representative substance that forms interstitial compounds, and is known to have a face-centered cubic crystal structure. TiN has a NaCl-type crystal structure by entering nitrogen as a penetrating solid solution into the lattice of Ti. The composition region of TiNx can be widely set as 0.8 <x <1.16, and it is known that when x is changed in this composition region, the lattice constant of TiN changes. TiN films are excellent in wear resistance and corrosion resistance, and are used in some bearings or seal members.
[0005]
[Problems to be solved by the invention]
By the way, in high-temperature rotating machines such as steam turbines and gas turbines, development of hard films having excellent wear resistance, high-temperature corrosion resistance, and high slidability is desired as the rotating machines increase in temperature. Although it is considered that the TiN film is applied to such a use, if the TiN film is exposed to high temperature air or high temperature steam, the high temperature corrosion resistance of TiN itself is not sufficient and there is a problem in durability. Is known from previous experiments. Therefore, the current TiN film cannot exhibit sufficient sliding characteristics in such applications.
[0006]
The present invention has been made to solve the above-described problems, and provides a hard film for a high-temperature sliding member having improved high-temperature corrosion resistance while taking advantage of the excellent wear resistance and low friction coefficient of a TiN film. It is for the purpose.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a nitride containing titanium nitride as a main component and containing at least one element of Cr and Hf, and the lattice constant of crystal grains of the nitride is 0.414 nm to 0.423 nm. It is a hard film for high temperature sliding members characterized by having a face centered cubic crystal structure in the range.
[0008]
The inventors have obtained a nitride thin film containing various elements other than Ti and N for the purpose of improving the high temperature corrosion resistance and oxidation resistance of the titanium nitride film, and of such a nitride thin film. The development of forming technology has been promoted. That is, the formation of a nitride thin film with various elements other than Ti and N added, with the aim of improving the high temperature corrosion resistance without impairing the high sliding properties (wear resistance, low friction coefficient) of the titanium nitride thin film Research on technology was conducted. As a result, it was clarified that the crystal structure of the nitride containing titanium nitride as a main component and containing at least one element of Cr and Hf is a face-centered cubic structure, and when the lattice constant exceeds 0.423 nm. And the Vickers hardness stayed at about 2000 or less, and the knowledge that abrasion resistance was inadequate was acquired.
[0009]
A nitride containing titanium nitride as a main component and containing at least one element of Cr and Hf has at least one element of Cr and Hf arranged at a site occupied by Ti in the face-centered cubic structure inherent to titanium nitride. Therefore, the inventors consider that it has a face-centered cubic structure.
[0010]
From the research so far, the composition range in which the crystal structure of the nitride has a face-centered cubic structure is the invention according to claim 2. That is, when the nitride has the following chemical composition, the crystal structure of the nitride is a face-centered cubic structure, and the lattice constant of the nitride having the face-centered cubic structure is 0.414 nm to 0.423 nm. When the range and the size of the crystal grains of the nitride are within the optimum range, the Vickers hardness is 2500 or more, and the above object is achieved.
Chemical composition: Ti (100-x) Mex nitride Me = at least one element of Cr and Hf x: 2% ≦ x ≦ 30%, atomic concentration (%)
[0011]
Such a hard film for a high temperature sliding member is preferably formed by using a dynamic mixing (DM) method and implanting nitrogen ions while vacuum-depositing Ti, which is a metal element, and an additive element. According to this method, it is possible to form a film with high adhesion to the base material and to synthesize a substance at a low temperature. As the base material, it is preferable to use a Ni-based alloy such as stainless steel such as SUS420J2 steel or SUS630 steel having a thermal expansion coefficient of 11 × 10 −6 or less or Incoloy 909 steel, in order to maintain adhesion.
[0012]
The acceleration voltage of the ion beam is preferably 40 kV or less. If it is 40 kV or more, the ion beam acceleration device becomes large, and the processing cost becomes high and it is necessary to take measures against radiation. Further, when the ion beam administration energy is 1 kV or less, the adhesion with the substrate is insufficient, and a hard film suitable for a high-temperature sliding member cannot be obtained.
[0013]
From the measurement result of the X-ray diffraction method (XRD), it was estimated that the crystal grain size of the nitride thin film is desirably several nm to 100 nm. The thickness of the hard film to be formed is preferably several tens of μm or less in consideration of various factors such as processing cost and film residual stress. However, it can be set to various thicknesses depending on the application.
[0014]
The ratio of the additive element can be determined by controlling the evaporation rate of Ti and the additive element in the DM method. TiN has a face-centered cubic crystal structure with nitrogen entering the Ti lattice as a penetrating solid solution. When at least one element of Cr and Hf is added to TiN, as the atomic concentration increases, the face-centered cubic crystal structure of TiN is lost, resulting in an amorphous or other crystal structure. Therefore, in order to exhibit excellent wear resistance and a low friction coefficient, it is desirable that the atomic concentration of the additive element is 30 at% or less. In addition, it is considered from previous studies that the higher the corrosion resistance of TiN, the higher the resistance to high temperature corrosion, the more the additive elements are added. However, the use conditions such as high temperature steam or high temperature atmospheric oxidation are severe. Now, it is desirable to determine the lower limit of the amount of additive element added.
[0015]
The invention according to claim 3 is the hard film for high-temperature sliding members according to claim 1 or 2, characterized in that the crystal orientation of crystal grains is oriented in the (111) plane. In the DM method, the crystal orientation of crystal grains is controlled by controlling conditions such as irradiation conditions of nitrogen ion beam, such as ion acceleration voltage, current density, dose energy (W / cm 2 ), and irradiation angle. Can be oriented.
[0016]
The invention according to claim 4 is the method for producing a hard film for a high temperature sliding member according to any one of claims 1 to 3, wherein at least one element of Cr and Hf and Ti are simultaneously vacuum deposited, A method of manufacturing a hard film for a high-temperature sliding member, wherein nitride is formed by irradiating an ion beam mainly composed of nitrogen.
[0017]
The invention according to claim 5 is a sliding member comprising a combination of a movable member and a stationary member, wherein either the movable member or the stationary member is made of a metal material, and the other is made of a material containing carbon. A high temperature sliding member characterized in that the hard film for a high temperature sliding member according to any one of claims 1 to 3 is formed on a sliding surface of a movable member or a stationary member made of metal.
[0018]
6. The high temperature sliding member according to claim 5, wherein the carbon-containing material comprises a material mainly composed of carbon, a material impregnated with carbon, or a thin film containing carbon. It is.
[0019]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
First, a dynamic mixing (DM) apparatus will be described with reference to FIG. This is because the copper holder 12 holding the substrate W on the lower surface, the evaporation sources 13 and 14 having the heaters 13 a and 14 a disposed below the holder 12, and the substrate W in the airtight film forming chamber 11. On the other hand, the ion source 15 which can inject ion from diagonally downward is provided. The substrate W is rotated by the rotating shaft 16 in order to form the substrate W uniformly in the plane, and the copper holder 12 is water-cooled through the rotating shaft 16 to prevent the temperature of the substrate W from rising due to the ion beam irradiation. ing.
[0020]
With such an apparatus, SUS420J2 steel and Incoloy 909 steel were used as the base material, and the film formation of Examples and Comparative Examples was performed in the following steps. As a pretreatment of the substrate W, this substrate treated surface is polished until it becomes a mirror surface having an average surface roughness of 0.05 μm or less, and after ultrasonic cleaning with alcohol, the holder 12 of the DM apparatus in FIG. Attached.
[0021]
First, the inside of the film forming chamber 11 is evacuated until the ultimate pressure becomes 1 × 10 −5 Torr or less, and a nitrogen ion beam is applied at an acceleration voltage of 10 kV, an ion current density of 0.2 mA / cm 2 , and an irradiation angle of 45 °. Irradiation was performed to perform sputter cleaning on the surface of the substrate. Next, while irradiating a nitrogen beam while controlling the current density in the ion source 15 , the evaporation sources 13 and 14 of Ti and additive elements are heated by the heaters 13a and 14a, and the film thickness is controlled while controlling the respective evaporation rates. Film formation was performed until the thickness became 4 μm. The film forming conditions are shown in Table 1.
[0022]
[Table 1]
Figure 0003797807
[0023]
As shown in Table 2, the composition of the produced hard film contained 2 to 30 at% of at least one of Cr and Hf with respect to Ti. Here, the supply ratio of Ti and additive elements is shown as the ratio of the deposition rate of Me element / titanium deposition rate. The film thickness was controlled by monitoring with a crystal oscillation type film thickness meter. On the other hand, as comparative examples, those without added elements, those without forming a face-centered cubic structure, those without a lattice constant in the range of 0.414 nm to 0.423 nm, and at least one element of Cr and Hf is 2 to 2 A material containing more than 30 at% and a material in which 4 to 8 at% of Nb and Ta were added to Ti were prepared in the same manner.
[0024]
[Table 2]
Figure 0003797807
[0025]
Table 3 shows the characteristics of the obtained various hard films. The hard films of the examples were all preferentially oriented in the (111) plane, and the (111) plane spacing was in the range of 0.239 nm to 0.242 nm. When the lattice constant is determined from the value of the surface spacing, it is 0.414 to 0.419 nm.
[0026]
[Table 3]
Figure 0003797807
[0027]
Next, after forming a film without using an additive element and forming a TiN hard film in a thickness of 0.1 to 3 μm in advance on the surface of the substrate with the apparatus of FIG. 1, various elements are contained by the above method. A nitride film was formed until the total thickness was about 5 μm, and a high temperature vapor exposure test was conducted. FIG. 2 shows an outline of a high-temperature steam test apparatus. The trap 17, a case 18 for holding a sample of the substrate W, an oven furnace 19 for maintaining the sample at a predetermined temperature, and steam for supplying water vapor thereto. The generator 20 is comprised. The high-temperature steam exposure test was performed by holding at 450 ° C. for 300 hours.
[0028]
The hard film after the test was subjected to sputtering with an Ar ion beam for a certain period of time to reduce the thickness, and the surface was analyzed by X-ray photoelectron spectroscopy (XPS) to examine the composition. This was repeated, and the change in the depth direction of the degree of corrosion was estimated from the oxygen content at each thickness. Table 4 shows the results. From this, it can be seen that the nitride film containing various elements is a hard film excellent in high-temperature corrosion resistance.
[0029]
[Table 4]
Figure 0003797807
[0030]
Next, specific examples in which the present invention is applied to a steam turbine mating ring will be described. FIG. 3 is a diagram illustrating a configuration example of the non-contact end face seal of the steam turbine. In the figure, a shaft sleeve 23 is provided on the rotary shaft 22 accommodated in the seal housing 21. The shaft sleeve 23 holds rotating rings 25 and 25 (mating rings) via keys 24 and 24. A fixed ring 26 is provided to face each rotating ring 25. Stainless steel (SUS42OJ2) is used as the base material of the rotating ring 25, and the hard film for a high-temperature sliding member of the present invention is formed on the sliding surface by a dynamic mixing method. Although not shown, a groove is formed on the sliding surface of the rotary ring 25 from the high pressure side H to the low pressure side L.
[0031]
Each stationary ring 26 is connected to a seal ring retainer 28 via a pin 27, and a spring 29 is interposed between the seal ring retainer 28 and the seal housing 21. Each stationary ring 26 is pressed against the rotating ring 25 via the spring 29 and the seal ring retainer 28. Reference numeral 30 denotes a lock plate, and reference numeral 31 denotes a shearing key.
[0032]
In the non-contact end face seal configured as described above, when the rotary shaft 22 rotates, the rotary ring 25 and the fixed ring 26 move relative to each other, so that the groove formed in the rotary ring 25 entrains the fluid on the high-pressure side H. And forming a fluid film on the sealing surface. This fluid film brings the sealing surface into a non-contact state, and a slight gap is formed between the sealing surfaces between the rotating ring 25 and the stationary ring 26.
[0033]
【The invention's effect】
As described above, according to the present invention, it was possible to provide a hard film for a high-temperature sliding member having improved high-temperature corrosion resistance while taking advantage of the excellent wear resistance and low friction coefficient of the TiN film. .
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a hard film forming apparatus used in the present invention.
FIG. 2 is a conceptual diagram of a high-temperature steam test apparatus.
FIG. 3 is a diagram showing a configuration example of a non-contact end face seal of a steam turbine.
[Explanation of symbols]
12 Substrate holders 13 and 14 Evaporation source 15 Ion source 16 Rotating shaft W Substrate

Claims (6)

窒化チタンを主成分とし、Cr及びHfの少なくとも一方の元素を含有する窒化物であって、前記窒化物の結晶粒子の格子定数が0.414nmから0.423nmの範囲にある面心立方晶構造であることを特徴とする高温摺動部材用硬質膜。A face-centered cubic structure comprising titanium nitride as a main component and containing at least one element of Cr and Hf , wherein the lattice constant of crystal grains of the nitride is in the range of 0.414 nm to 0.423 nm A hard film for a high-temperature sliding member, characterized in that 前記窒化物が下記の化学組成であることを特徴とする請求項1に記載の高温摺動部材用硬質膜。
化学組成:Ti(100−x)Mex窒化物
但し、Me:Cr及びHfの少なくとも一方の元素
x:2at%≦x≦30at%(原子濃度)
The hard film for a high temperature sliding member according to claim 1, wherein the nitride has the following chemical composition.
Chemical composition: Ti (100-x) Mex nitride where Me: at least one element of Cr and Hf
x: 2 at% ≦ x ≦ 30 at% (atomic concentration)
結晶粒子の結晶方位が(111)面に配向していることを特徴とする請求項1又は2に記載の高温摺動部材用硬質膜。  The hard film for a high-temperature sliding member according to claim 1 or 2, wherein the crystal orientation of crystal grains is oriented in a (111) plane. 請求項1ないし3のいずれかに記載の高温摺動部材用硬質膜の製造方法において、
Cr及びHfの少なくとも一方の元素Tiとを同時に真空蒸着すると共に、窒素を主体とするイオンビームを照射することにより、窒化物を形成することを特徴とする高温摺動部材用硬質膜の製造方法。
In the manufacturing method of the hard film for high temperature sliding members in any one of Claims 1 thru | or 3,
Production of a hard film for a high-temperature sliding member, characterized in that at least one element of Cr and Hf and Ti are simultaneously vacuum-deposited, and nitride is formed by irradiating an ion beam mainly composed of nitrogen. Method.
可動部材と静止部材との組み合わせからなり、該可動部材又は静止部材のいずれか一方が金属材料からなり、他方がカーボンを含む材料からなる摺動部材において、前記金属からなる可動部材又は静止部材の摺動面に請求項1ないしのいずれかに記載の高温摺動部材用硬質膜を形成したことを特徴とする高温摺動部材。A sliding member made of a combination of a movable member and a stationary member, wherein either the movable member or the stationary member is made of a metal material and the other is made of a material containing carbon. hot sliding member, characterized in that the formation of the high-temperature sliding member for hard film according to any one of claims 1 to 3 the sliding surface. 前記カーボンを含む材料が、カーボンを主体とする材料、カーボンを含浸した材料又はカーボンを含む薄膜からなることを特徴とする請求項5に記載の高温摺動部材。  The high-temperature sliding member according to claim 5, wherein the carbon-containing material is a material mainly composed of carbon, a material impregnated with carbon, or a thin film containing carbon.
JP30225998A 1998-10-23 1998-10-23 Hard film for high temperature sliding members Expired - Lifetime JP3797807B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP30225998A JP3797807B2 (en) 1998-10-23 1998-10-23 Hard film for high temperature sliding members
KR1020017004900A KR100632425B1 (en) 1998-10-23 1999-10-22 Sliding member and manufacturing method thereof
US09/807,436 US6767657B1 (en) 1998-10-23 1999-10-22 Sliding member and manufacturing method therefor
PCT/JP1999/005838 WO2000024947A1 (en) 1998-10-23 1999-10-22 Sliding member and manufacturing method therefor
EP99949366A EP1135541B1 (en) 1998-10-23 1999-10-22 Sliding member and manufacturing method therefor
DE69925753T DE69925753T2 (en) 1998-10-23 1999-10-22 SLIDING BODIES AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30225998A JP3797807B2 (en) 1998-10-23 1998-10-23 Hard film for high temperature sliding members

Publications (2)

Publication Number Publication Date
JP2000129420A JP2000129420A (en) 2000-05-09
JP3797807B2 true JP3797807B2 (en) 2006-07-19

Family

ID=17906868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30225998A Expired - Lifetime JP3797807B2 (en) 1998-10-23 1998-10-23 Hard film for high temperature sliding members

Country Status (1)

Country Link
JP (1) JP3797807B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245827B2 (en) * 2000-05-25 2009-04-02 株式会社荏原エリオット Cr-containing titanium nitride film
BR112013032280B1 (en) 2011-06-17 2020-11-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) limb covered with hard coating
WO2015011812A1 (en) * 2013-07-24 2015-01-29 東京電力株式会社 Tandem double seal for nuclear power plant
US11383207B2 (en) 2017-12-28 2022-07-12 National University Corporation Hokkaido University Hydrogen separation membrane

Also Published As

Publication number Publication date
JP2000129420A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
US5688557A (en) Method of depositing synthetic diamond coatings with intermediates bonding layers
Hirvonen et al. Present progress in the development of low friction coatings
KR100414325B1 (en) Method for Preserving Precision Edges using Diamond-Like Nanocomposite Film
US6558822B2 (en) Cr-containing titanium nitride film
US7402206B2 (en) Method of synthesizing a compound of the formula Mn+1AXn, film of the compound and its use
EP0474369B1 (en) Diamond-like carbon coatings
US6767657B1 (en) Sliding member and manufacturing method therefor
JP3797807B2 (en) Hard film for high temperature sliding members
US7132129B2 (en) Method of forming a diamond coating on an iron-based substrate and use of an iron-based substrate for hosting a CVD diamond coating
JP3838796B2 (en) Hard film for sliding members
JPH05208806A (en) Rigid and solid lubricating film having self-repairing property and its production
JP4245827B2 (en) Cr-containing titanium nitride film
Premkumar et al. Synthesis and Characterization of Ni and Ni/CrN Nanocomposite Coatings by Plasma Assisted Metal‐Organic CVD
JP2001152320A (en) Sliding member
JP3122070B2 (en) Friction sliding member and manufacturing method thereof
JP6653851B2 (en) Coating film, method for producing the same, and PVD apparatus
Kiryukhantsev-Korneev et al. Studying the Diffusion-barrier Properties, Thermal Stability and Oxidation Resistance of TiAlSiCN, TiAlSiCN/AlO x, and TiAlSiCN/SiBCN Coatings
JP3491288B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JP2018172706A (en) Hard carbon coating film
JPH07292456A (en) Film coated substrate
Uglov et al. Modification of (Ti, Cr) N coatings on a hard alloy under the action of high-power pulsed ion beams
JPH05320870A (en) Substrate coated with boron nitride containing film and its manufacture
JPH10330913A (en) Frictional sliding member and its production
Hruba et al. Evolution of Magnetron-Sputtered TiB2
JPS60194066A (en) Production of hard film-coated material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term