JP3797754B2 - Construction method of underground slab bottom plate - Google Patents

Construction method of underground slab bottom plate

Info

Publication number
JP3797754B2
JP3797754B2 JP18908397A JP18908397A JP3797754B2 JP 3797754 B2 JP3797754 B2 JP 3797754B2 JP 18908397 A JP18908397 A JP 18908397A JP 18908397 A JP18908397 A JP 18908397A JP 3797754 B2 JP3797754 B2 JP 3797754B2
Authority
JP
Japan
Prior art keywords
open caisson
bottom plate
underground
slab
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18908397A
Other languages
Japanese (ja)
Other versions
JPH1121918A (en
Inventor
恭博 喜志
克博 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP18908397A priority Critical patent/JP3797754B2/en
Publication of JPH1121918A publication Critical patent/JPH1121918A/en
Application granted granted Critical
Publication of JP3797754B2 publication Critical patent/JP3797754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地下躯体となるオープンケーソンの、底版の構築方法に関する。
【0002】
【従来の技術】
地下躯体を構築する方法の一つとして、オープンケーソン工法がある。
オープンケーソン工法は、壁体の剛性が高いことを利用して、沈設完了後、底部に水中コンクリートを打設し、底版を構築して閉塞することにより、地下躯体の構築を行うものである。
しかし、構造物が大型化する現在においては、オープンケーソンの底版平面も拡大化し、底版の設計上のスパンは長くなり、これに伴ってコンクリートの厚さが増加することになる。
以下、図面を参照して従来技術を説明する。
オープンケーソン工法の底版1は、水中コンクリートとして打設するのが普通で、一般には無筋コンクリートで施工される。
底版1の設計は、図6の縦断面図に示すように、底版1内の応力伝達を45度とすると、両側壁2からの応力伝達線Sが、底面で重複する点Pとなるような、小型のオープンケーソン径であれば塊体として考えてよく、底版1の曲げ応力は問題とならない。
しかし、最近では図7の縦断面図に示すように、底版1内の応力伝達は、両側壁2からの応力伝達線Sが底面で重複しない大型のオープンケーソン3が増加しており、底版1はP1 、P2 を設計上のスパンとする曲げ応力を考慮した設計を行うことが必要となり、その結果、底版1の厚さを、両側壁2からの応力伝達線Sが、底面で重複する点Pとなるまで増加しなければならないことになる。
【0003】
そのため、オープンケーソン3の内部空間を容器等として利用する構造物の場合は、オープンケーソン3の沈設深度を増加する必要があり、工期、工費の増加を招き、経済性、効率化の点で問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解決するためなされたもので、簡単な方法で、経済的、効率的な地下躯体底版の構築方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
オープンケーソン沈設後、オープンケーソン底面上に、下部先端近くに耐圧板を有する支柱を建込み、支柱天端と、オープンケーソン側壁天端間にわたって、反力桁を架設し、水中コンクリートを打設して、躯体底版を構築することを特徴とする、地下躯体底版の構築方法であり、また、オープンケーソン底面上に建込まれる支柱は、オープンケーソンの内空断面に対応して、複数本設置されることを特徴とする、地下躯体底版の構築方法である。
【0006】
【発明の実施の形態】
以下図面を参照しながら本発明の実施形態について説明する。
【0007】
【構築方法の概要】
図3は、本発明による地下躯体底版の構築状況を示す縦断面図である。
オープンケーソン3を沈設後、オープンケーソン底面G上に支柱4を建込み、支柱4天端と、オープンケーソン側壁2天端間にわたって、反力桁5を架設し、水中コンクリートを打設して、躯体底版1を構築する。
【0008】
【施工順序】
以下、図面を参照して施工順序に従って説明する。
【0009】
<イ>支柱の建込み
図1は、沈設が終わったオープンケーソン3内部空間に、支柱4を建込んでいる状況を示す縦断面図である。
支柱4の平面形状は、円柱、角柱いずれでもよく、下端先端近くに耐圧板41が取付けてある。
この耐圧板41は、後述する底盤1内からの応力伝達を受持つ機能を有するものである。
支柱4は、オープンケーソン3の底面G上に、図示しないクレーンなどにより建込まれる。
また、オープンケーソン3の内部空間が広く、耐圧板41が底版1内からの応力伝達を受持つ機能が不足する場合は、オープンケーソン3の内空断面に対応して、複数本設置される。(図示せず)
【0010】
<ロ>反力桁の架設
図2は、オープンケーソン3上に反力桁5を架設した状況を示す縦断面図である。
反力桁5は、前記支柱4天端と、オープンケーソン3の側壁2天端間にわたって架設され、引張鋼材7により固定される。
反力桁5は、支柱4からの反力に対応し、複数本設置する場合もある。
支柱4に設けた耐圧板41からの反力を、支柱4を介して反力桁5に伝達し、その力は、引張鋼材7を介して側壁2に伝達され、後述の底版1内からの応力伝達を受止める機能を果たすものである。
【0011】
<ハ>底版の構築
図3は、地下躯体となるオープンケーソン3の底版1構築状況を示す縦断面図である。
底版1は、図示しないトレミー管等により、水中コンクリートを打設して構築される。
構築された底版1の反力は、支柱4に設けた耐圧板41で受止め、支柱4を介して反力桁5に伝達されるものである。
この支柱4及び耐圧板41の設置により、両側壁2からの応力伝達線Sは、底面GのP1 、P2 で重複し、塊体として考えてよく、底版1の曲げ応力は問題とならない構造物とすることができる。
そのため、底版1となる水中コンクリートの打設厚さも薄くてよく、さらに、オープンケーソン3の内部空間も有効に利用できることになる。
【0012】
<ニ>底床版の構築
図4は、底版1上に底床版を構築した状況を示す縦断面図である。
底版1を構築後、オープンケーソン3内部の水を排出し、ドライな状態で、鉄筋コンクリートの底床版6を構築する。
【0013】
<ホ>反力桁の撤去
図5は、地下躯体の構築が完了した状態を示す縦断面図である。
側壁2、支柱4上に固定した反力桁5を撤去し、オープンケーソン3による地下躯体の構築が完成する。
支柱4の撤去は、底床版6の天端で切断し、切断された支柱4は回収され、別途工事に転用できる。
【0014】
【発明の効果】
本発明は以上説明したようになるから、次のような効果を得ることができる。<イ>オープンケーソン内に、耐圧板を有する支柱を設置したので、開口面積の大きいオープンケーソンであっても、底版設計上のスパンが減少でき、底版厚を薄くできる。
<ロ>底版厚を薄くできるので、オープンケーソンの沈設深度は少なくてよく、工期、工費の低減となる。
<ハ>支柱は回収でき、転用が可能である。
【図面の簡単な説明】
【図1】本発明による支柱をオープンケーソンの内部に建込んでいる状況を示す縦断面図。
【図2】オープンケーソン上に反力桁を架設した状況を示す縦断面図。
【図3】底版の構築状況を示す縦断面図。
【図4】底版上に底床版を構築した状態を示す縦断面図。
【図5】地下躯体の構築が完成した状態を示す縦断面図。
【図6】従来技術を示す縦断面図。
【図7】同上の、大型オープンケーソンの場合を示す縦断面図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing a bottom plate of an open caisson that is an underground structure.
[0002]
[Prior art]
One method for constructing underground structures is the open caisson method.
The open caisson method uses the high rigidity of the wall to construct the underground structure by placing underwater concrete in the bottom after construction is completed, and constructing and closing the bottom slab.
However, at the present time when the structure is increased in size, the bottom plate plane of the open caisson is also enlarged, and the design span of the bottom plate becomes longer, and the thickness of the concrete increases accordingly.
The prior art will be described below with reference to the drawings.
The bottom slab 1 of the open caisson method is usually cast as underwater concrete, and is generally constructed of unreinforced concrete.
As shown in the longitudinal sectional view of FIG. 6, when the stress transmission in the bottom slab 1 is 45 degrees, the design of the bottom slab 1 is such that the stress transmission line S from both side walls 2 becomes a point P overlapping on the bottom surface. If it is a small open caisson diameter, it may be considered as a lump, and the bending stress of the bottom plate 1 does not matter.
However, recently, as shown in the longitudinal sectional view of FIG. 7, the stress transmission in the bottom slab 1 has increased in large open caissons 3 in which the stress transmission lines S from both side walls 2 do not overlap on the bottom surface. Must be designed in consideration of bending stresses with P1 and P2 as the design span. As a result, the thickness of the bottom plate 1 and the stress transmission line S from both side walls 2 overlap at the bottom. It will have to increase until it reaches P.
[0003]
Therefore, in the case of a structure that uses the internal space of the open caisson 3 as a container or the like, it is necessary to increase the set depth of the open caisson 3, leading to an increase in construction period and cost, and problems in terms of economy and efficiency. was there.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide an economical and efficient method for constructing an underground frame bottom slab by a simple method.
[0005]
[Means for Solving the Problems]
After the open caisson is set up, a pillar with a pressure plate is built near the bottom of the open caisson, and a reaction girder is installed between the top of the pillar and the top of the open caisson side wall, and underwater concrete is placed. This is a method for constructing an underground slab bottom slab characterized by constructing a slab bottom slab, and a plurality of pillars built on the bottom of the open caisson are installed corresponding to the open cross section of the open caisson. It is the construction method of the underground frame bottom plate characterized by the above-mentioned.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0007]
[Overview of construction method]
FIG. 3 is a longitudinal sectional view showing the construction status of the underground slab bottom plate according to the present invention.
After the open caisson 3 is laid, a support column 4 is erected on the bottom surface G of the open caisson, a reaction girder 5 is installed between the top end of the support column 4 and the top end of the open caisson side wall 2, and underwater concrete is placed. Build the bottom frame version 1.
[0008]
[Construction order]
Hereinafter, it demonstrates according to a construction order with reference to drawings.
[0009]
<A> Construction of support column FIG. 1 is a longitudinal sectional view showing a state in which a support column 4 is installed in the internal space of the open caisson 3 that has been laid.
The planar shape of the column 4 may be either a cylinder or a prism, and a pressure plate 41 is attached near the lower end tip.
The pressure plate 41 has a function of receiving stress transmission from the bottom plate 1 to be described later.
The column 4 is built on the bottom G of the open caisson 3 by a crane (not shown).
When the open caisson 3 has a large internal space and the pressure plate 41 lacks the function of receiving stress from the inside of the bottom plate 1, a plurality of open caisson 3 are installed corresponding to the inner air cross section of the open caisson 3. (Not shown)
[0010]
<B> Installation of Reaction Force Girder FIG. 2 is a longitudinal sectional view showing a situation where the reaction force girder 5 is installed on the open caisson 3.
The reaction force beam 5 is installed between the top end of the support column 4 and the top end of the side wall 2 of the open caisson 3, and is fixed by a tensile steel material 7.
A plurality of reaction force girders 5 may be installed in response to the reaction force from the support column 4.
The reaction force from the pressure plate 41 provided on the support column 4 is transmitted to the reaction force beam 5 through the support column 4, and the force is transmitted to the side wall 2 through the tensile steel material 7, and from the inside of the bottom plate 1 described later. It fulfills the function of receiving stress transmission.
[0011]
<C> Construction of Bottom Slab FIG. 3 is a longitudinal sectional view showing the construction situation of the bottom slab 1 of the open caisson 3 which is an underground skeleton.
The bottom plate 1 is constructed by placing underwater concrete with a tremy tube (not shown).
The reaction force of the constructed bottom plate 1 is received by a pressure plate 41 provided on the support column 4 and transmitted to the reaction force beam 5 via the support column 4.
Due to the installation of the support column 4 and the pressure plate 41, the stress transmission line S from the side walls 2 overlaps with P1 and P2 of the bottom surface G and can be considered as a mass, and the bending stress of the bottom plate 1 does not matter. It can be.
Therefore, the casting thickness of the underwater concrete used as the bottom slab 1 may be thin, and the internal space of the open caisson 3 can be used effectively.
[0012]
<D> Construction of Bottom Floor Slab FIG. 4 is a longitudinal sectional view showing a situation in which a bottom floor slab is constructed on the bottom slab 1.
After the bottom slab 1 is constructed, the water inside the open caisson 3 is discharged, and the bottom floor slab 6 of reinforced concrete is constructed in a dry state.
[0013]
<E> Removal of reaction force girder FIG. 5 is a longitudinal sectional view showing a state in which the construction of the underground frame has been completed.
The reaction beam girder 5 fixed on the side wall 2 and the column 4 is removed, and the construction of the underground frame by the open caisson 3 is completed.
The column 4 is removed by cutting at the top end of the bottom floor slab 6, and the cut column 4 is collected and can be diverted to construction separately.
[0014]
【The invention's effect】
Since the present invention has been described above, the following effects can be obtained. <A> Since the support post having the pressure plate is installed in the open caisson, even if the open caisson has a large opening area, the span in the bottom plate design can be reduced and the bottom plate thickness can be reduced.
<B> Since the thickness of the bottom plate can be reduced, the depth of the open caisson may be small, and the construction period and construction cost will be reduced.
<C> Struts can be collected and diverted.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a state in which a column according to the present invention is built in an open caisson.
FIG. 2 is a longitudinal sectional view showing a situation where a reaction force girder is installed on an open caisson.
FIG. 3 is a vertical cross-sectional view showing a bottom plate construction state.
FIG. 4 is a longitudinal sectional view showing a state in which a bottom floor slab is constructed on the bottom slab.
FIG. 5 is a longitudinal sectional view showing a state where construction of the underground structure is completed.
FIG. 6 is a longitudinal sectional view showing a conventional technique.
FIG. 7 is a longitudinal sectional view showing the case of the large open caisson.

Claims (2)

オープンケーソン底版の構築方法であって、
オープンケーソン沈設後、
オープンケーソン底面上に、下部先端近くに耐圧板を有する支柱を建込み、
支柱天端と、オープンケーソン側壁天端間にわたって、反力桁を架設し、
水中コンクリートを打設して、
躯体底版を構築することを特徴とする、
地下躯体底版の構築方法。
An open caisson bottom plate construction method,
After laying open caisson,
On the bottom of the open caisson, a column with a pressure plate is built near the bottom tip.
A reaction girder is installed between the top of the column and the top of the open caisson side wall.
Placing underwater concrete,
It is characterized by constructing a frame bottom plate,
How to build the underground slab bottom.
請求項1に記載の地下躯体底版の構築方法において、
オープンケーソン底面上に建込まれる支柱は、オープンケーソンの内空断面に対応して、複数本設置されることを特徴とする、
地下躯体底版の構築方法。
In the construction method of the underground frame bottom plate according to claim 1,
A plurality of pillars built on the bottom of the open caisson are installed in correspondence with the open cross section of the open caisson.
How to build the underground slab bottom.
JP18908397A 1997-06-30 1997-06-30 Construction method of underground slab bottom plate Expired - Fee Related JP3797754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18908397A JP3797754B2 (en) 1997-06-30 1997-06-30 Construction method of underground slab bottom plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18908397A JP3797754B2 (en) 1997-06-30 1997-06-30 Construction method of underground slab bottom plate

Publications (2)

Publication Number Publication Date
JPH1121918A JPH1121918A (en) 1999-01-26
JP3797754B2 true JP3797754B2 (en) 2006-07-19

Family

ID=16235039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18908397A Expired - Fee Related JP3797754B2 (en) 1997-06-30 1997-06-30 Construction method of underground slab bottom plate

Country Status (1)

Country Link
JP (1) JP3797754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619240B (en) * 2012-04-19 2014-06-11 河海大学 Device for testing counterforce of sunk well foundation subsealing concrete

Also Published As

Publication number Publication date
JPH1121918A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
CN100434615C (en) Roof with steel reinforced concrete and three-dimensional bearing structure
CN111364350B (en) Large cantilever arm quickly-mounted light steel-concrete combined bent cap
CN101644082A (en) Assembling method of gypsum evacuated mould
JP3797754B2 (en) Construction method of underground slab bottom plate
CN2804222Y (en) R.C. ribbed floor slab
JP2008144459A (en) Slab form and method of constructing composite floor slab
CN108716191A (en) A kind of concrete arch rib Covered with Angles sleeve-board group and its bracing means
CN115324249A (en) Whole pouring construction method for fully prefabricated kitchen and toilet floor and inverted ridge
JP3466961B2 (en) Reinforcement method for existing load-bearing walls with openings
CN214831853U (en) Hollow pier capping structure
CN100368642C (en) Hollow floor slab with small dense ribs and its production process
JP5356085B2 (en) Temporary strut foundation structure and construction method
JP2686570B2 (en) How to build a caisson bottom plate
JPH0754364A (en) Construction method of basement floor
JPS6134539B2 (en)
JP2008274567A (en) Circular steel pipe prefabricated bridge and its construction method
JP2000064314A (en) Construction of structural foundation building frame
CN208996023U (en) Liner wall construction with cavity armored concrete
JP3528141B2 (en) Method for concrete filling reinforcement of pedestal and reinforced pedestal
JPH08269912A (en) Fastening method of steel bridge pier to footing
CN217105550U (en) Reinforced concrete prefabricated integral-cast house structure
JP3105044B2 (en) How to build a unit building
JP2002201649A (en) Work caisson and its installation method
KR200247464Y1 (en) A arch bridge integrated a arch rib and a prestressed concrete box girder
CN100381662C (en) Hollow component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees