JP3796774B2 - Method for producing enal using alkaline earth metal oxide - Google Patents

Method for producing enal using alkaline earth metal oxide Download PDF

Info

Publication number
JP3796774B2
JP3796774B2 JP21884195A JP21884195A JP3796774B2 JP 3796774 B2 JP3796774 B2 JP 3796774B2 JP 21884195 A JP21884195 A JP 21884195A JP 21884195 A JP21884195 A JP 21884195A JP 3796774 B2 JP3796774 B2 JP 3796774B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
formula
represented
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21884195A
Other languages
Japanese (ja)
Other versions
JPH0959201A (en
Inventor
勝 市川
隆一郎 大西
優博 福井
日路史 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP21884195A priority Critical patent/JP3796774B2/en
Publication of JPH0959201A publication Critical patent/JPH0959201A/en
Application granted granted Critical
Publication of JP3796774B2 publication Critical patent/JP3796774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアセトアルデヒドと飽和アルデヒドとから合成するクロトンアルデヒドなどの直鎖不飽和アルデヒドの製造方法に関する。
詳しくはアセトアルデヒドと飽和アルデヒドとのクロスアルドール縮合につゞいて脱水反応により直鎖不飽和アルデヒドを選択性よく製造する方法に関する。
【0002】
【従来の技術】
直鎖不飽和アルデヒドを製造する場合には、一般にはアセトアルデヒドと飽和アルデヒドを、水酸化ナトリウム水溶液のような塩基触媒を用いて、いわゆるクロスアルドール縮合を行いアルドールを生成させた後、引き続き脱水反応を行い、生成した不飽和アルデヒドなどを蒸留などの分離精製操作を施して、製品として収得する。
【0003】
このクロスアルドール縮合と脱水反応は、たとえばアセトアルデヒドとブチルアルデヒドとを水酸化ナトリウムのような塩基触媒を用いてつぎのようになる。
【化1】

Figure 0003796774
【0004】
すなわち、クロトンアルデヒド、ヘキセナールのような直鎖不飽和アルデヒド以外に分岐鎖不飽和アルデヒドである2−エチル−2−ブテナール、2−エチル−2−ヘキセナールも生成する。直鎖不飽和アルデヒドの選択率をあげる目的でブチルアルデヒドに対するアセトアルデヒドのモル比を大きくするとクロトンアルデヒドの選択率は向上するがヘキセナールの選択率が向上せず、直鎖不飽和アルデヒドの選択率が高い製造法が望まれる。
しかも水酸化ナトリウム水溶液のような塩基触媒を用いて反応を行う場合、反応の終了後に残留する含有機物水酸化ナトリウム水溶液などを廃液として処分する時に、水酸化ナトリウムなどの中和のみならず、廃水の活性汚泥処理のような多大な費用を要する操作を余儀なくされるというような不都合も生じる。
【0005】
【発明が解決しようとする課題】
本発明の目的は上記従来技術の問題点に鑑み、アセトアルデヒドと飽和アルデヒドから直鎖不飽和アルデヒドを選択性よく製造する方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者らはクロスアルドール反応の触媒として固体塩基が有効であることに着目して、鋭意研究を重ねた結果、アセトアルデヒドと特定の飽和アルデヒドとをアルカリ土類金属酸化物、水もしくはジメチルスルホキシド極性溶媒の存在下でクロスアルドール縮合を行うことにより、クロトンアルデヒドなどの直鎖不飽和アルデヒドを選択性よく得る方法を見出し、本発明を完成するに至った。
【0007】
本発明の直鎖不飽和アルデヒドの製造方法は、
式(I)
MO ……(I)
(式中、MはCa、Mg、Sr、Baを表す)
で表されるアルカリ土類金属酸化物を含む触媒、および極性溶媒の存在下、
式(II)
CH3CHO ……(II)
で表されるアセトアルデヒドと
式(III)
1−CH2−CHO ……(III)
で表される飽和アルデヒドとのクロスアルドール縮合反応、つゞいて脱水反応によって
式(IV)
CH3−CH=CH−CHO ……(IV)
で表されるクロトンアルデヒドおよび
式(V)
1−CH2−CH=CH−CHO ……(V)
〔(III)〜(V)式中、R1は炭素数1〜6の直鎖アルキル基を表わす〕
で表される直鎖不飽和アルデヒドを選択性良く合成することを特徴とする。
【0008】
【発明の実施の形態】
本発明の製造方法は次式で示され、式(VI)および(VII)で示される分岐鎖不飽和アルデヒドが副生する。
【化2】
Figure 0003796774
(たゞしR1は1〜6の直鎖アルキルを示す)
【0009】
本発明の製造方法におけるアルドール縮合反応は、所定のアルデヒドに極性溶媒を添加混合し、つづいて触媒を加えて行なう。このクロスアルドール縮合の反応温度は特に限定されないが、好ましくは−20〜100℃、さらに好ましくは0〜70℃の範囲である。また、引き続いて行う脱水反応における反応温度も特に限定されさないが、好ましくは50〜200℃、さらに好ましくは80〜150℃の範囲である。
【0010】
本発明の製造方法における式(III)で表される飽和アルデヒドとしては、プロピオンアルデヒド、n−ブチルアルデヒド、n−バレルアルデヒド、n−ヘキシルアルデヒド、n−ヘプチルアルデヒド、n−オクチルアルデヒドが挙げられる。
【0011】
本発明の製造方法において用いる極性溶媒としては、水、N,N−ジメチルホルムアミド、ジメチルスルホキシドなどが好ましく用いられる。原料のアルデヒド全量に対して5〜70mole%、好ましくは10〜60mole%である。必要であればメタノール、エタノール、i−ブタノールなどのアルコール類、ジエチルエーテル、トリエチレングリコールなどのエーテル類、アセトニトリル、N−メチルホルムアミドなどの極性溶媒類を用いることができる。
脱水反応では特に溶媒もしくは添加剤は使用しなくてもよいが、上記極性溶媒その他脱水反応を阻害しないような溶媒を使用しても差し支えない。
【0012】
本発明の製造方法で使用される触媒のアルカリ土類金属酸化物としては、例えば酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)などが挙げられるが、特に酸化カルシウムもしくは酸化ストロンチウムが好ましい。
触媒の調製法としては、対応するアルカリ土類金属酸化物、アルカリ土類金属水酸化物、アルカリ土類金属硝酸塩を水酸化ナトリウム水溶液で処理する方法、好ましくはアルカリ土類金属炭酸塩を、真空中もしくは窒素などの不活性ガス気流中で400〜1000℃好ましくは500〜900℃の範囲で焼成する方法などがある。
触媒の使用量はアルデヒドおよび極性溶媒の総重量に対して0.1〜20重量%好ましくは1.0〜5.0重量%である。
【0013】
本発明の製造方法によって得られる直鎖不飽和アルデヒドは、そのままで、好ましくは精留などの精製操作を施して、医薬、農薬、香料、界面活性剤、染料など合成薬品の原料として、あるいは対応する飽和アルデヒド、アルコール、カルボン酸、アミンなどの原料として用いられる。特にクロトンアルデヒドは、ソルビン酸、ソルビン酸カリウムなどの食品の保存料の原料として、また式(V)で表されるアルデヒドの内、n−ヘキセナールはそれ自身もしくはこれを原料として製造される不飽和アルコール、及びそのエステルは香料として用いることができる。
【0014】
【実施例】
実施例1
(1)触媒の調製
ブレーカブルシールを装着した20mmφの石英ガラス反応管中に、市販の炭酸カルシウムの1.20gを仕込み、この反応管を真空にして電気炉中で、2℃/min.の速度で0℃から600℃まで昇温した。引き続き600℃で2時間真空排気を行った。冷却後、反応管中に窒素を通じながらブレーカブルシールを割り、生成した酸化カルシウム触媒を取り出した。
【0015】
(2)クロスアルドール縮合反応
撹拌機、温度計、冷却コンデンサおよび窒素導入管を装着している窒素で十分置換された100mlの四つ口フラスコに、n−ブチルアルデヒドの13.70g(0.19mole)、アセトアルデヒドの8.38g(0.19mole)および水の1.80g(0.10mole)を投入し、氷水槽でフラスコ内を12℃に保ち撹拌しながら上記(1)で調製した触媒の全量を加えて3時間反応させた。
反応の停止は、撹拌を続けながら水の19.0g、50%酢酸水溶液の0.67g、25%酢酸ソーダ水溶液の0.67gを投入して行った。
【0016】
(3)脱水反応
上記反応後、フラスコに装着した冷却コンデンサをラッシッヒリングを充填した蒸留用ヘッド付きのカラム(充填高30cm位)に取り替えて、そのカラムにリボンヒーターを巻いて105〜115℃位に加熱しておく。ウォーターバスを、マントルヒーターに取り替え、加熱を始め、油分の留出がなくなるまで蒸留を続けた。フラスコ内温度が約105℃まで上昇したら、加熱を止め、留分の水を分離して、ガスクロマトグラフィー分析を行った。分析の結果を表1に示す。
【0017】
実施例2
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
n−ブチルアルデヒドを14.42g(0.20mole)、アセトアルデヒドを8.82g(0.20mole)および水を2.70g(0.15mole)とする以外は実施例1の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表1に示す。
【0018】
比較例1
(1)クロスアルドール縮合反応
撹拌機、温度計、冷却コンデンサおよび窒素導入管を装着している窒素で十分置換された200mlの四つ口フラスコに、n−ブチルアルデヒドの45.4g(0.63mole)、およびアセトアルデヒドの27.8g(0.63mole)を投入し、ウォーターバスでフラスコ内を12℃に保ち撹拌しながら2%水酸化ナトリウム水溶液の24.4gを加え1.5時間反応させた。
反応の停止は、撹拌を続けながら、水の63.0g、50%酢酸水溶液の2.2g、25%酢酸ソーダ水溶液の2.2gを投入して行った。
(2)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表1に示す。
【0019】
比較例2
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
水の2.70g(0.15mole)を使用しない以外は実施例2の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表1に示す。
【0020】
実施例3
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
水を1.44g(0.08mole)とする以外は実施例2の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表2に示す。
【0021】
実施例4
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
n−ブチルアルデヒドを15.14g(0.21mole)、アセトアルデヒドを9.26g(0.21mole)および水を0.90g(0.05mole)とする以外は実施例1の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表2に示す。
【0022】
実施例5
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
水を3.60g(0.20mole)とする以外は実施例4の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表2に示す。
【0023】
比較例3
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
水を54.7g(3.04mole)とする以外は実施例1の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表2に示す。
【0024】
実施例6
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
200mlの四つ口フラスコを用いること、水の代わりにN,N−ジメチルホルムアミドの58.4g(0.80mole)を用いる以外は実施例2の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表3に示す。
【0025】
実施例7
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
水の代わりにジメチルスルホキシドの56.0g(0.70mole)を用いる以外は実施例1の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表3に示す。
【0026】
実施例8
(1)触媒の調製
ブレーカブルシールを装着した20mmφの石英ガラス反応管中に、市販の炭酸ストロンチウムの1.20gを仕込み、この反応管を真空にして電気炉中で、2℃/min.の速度で0℃から900℃まで昇温した。引き続き900℃で2時間真空排気を行った。冷却後、反応管中に窒素を通じながらブレーカブルシールを割り、生成した酸化ストロンチウム触媒を取り出した。
(2)クロスアルドール縮合反応
上記(1)で調製した触媒の全量を用いる以外は実施例1の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表3に示す。
【0027】
比較例4
(1)触媒の調製
触媒は実施例8の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
水を使用しない以外は実施例8の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表3に示す。
【0028】
実施例9
(1)触媒の調製
ブレーカブルシールを装着した20mmφの石英ガラス反応管中に、市販の炭酸マグネシウムの1.20gを仕込み、この反応管を真空にして電気炉中で、2℃/min.の速度で0℃から400℃まで昇温した。引き続き400℃で2時間真空排気を行った。冷却後、反応管中に窒素を通じながらブレーカブルシールを割り、生成した酸化マグネシウム触媒を取り出した。
(2)クロスアルドール縮合反応
上記(1)で調製した触媒を用いる以外は実施例8の(2)に準じて行った。
(3)脱水反応
脱水反応は実施例1の(3)と同じ方法で行い、分析の結果を表4に示す。
【0029】
比較例5
(1)触媒の調製
触媒は実施例9の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
水を使用しない以外は実施例9の(2)に準じて行った。
(3)脱水反応
実施例1の(3)と同じ方法で行い、分析の結果を表4に示す。
【0030】
実施例10
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
プロピオンアルデヒドを11.62g(0.20mole)、アセトアルデヒドを8.82g(0.20mole)および水を1.80g(0.10mole)とする以外は実施例1の(2)に準じて行った。
(3)脱水反応
上記反応後、フラスコに装着された冷却コンデンサをラッシッヒリングを充填した蒸留用ヘッド付きのカラム(充填高30cm位)に取り替えて、そのカラムにリボンヒーターを巻いて、100〜110℃位に加熱しておく。ウォーターバスを、マントルヒーターに取り替え、加熱を始め、油分の留出がなくなるまで蒸留を続けた。フラスコ内温度が約101℃まで上昇したら、加熱を止め、留分の水を分離して、ガスクロマトグラフィー分析を行った。分析の結果を表4に示す。
【0031】
実施例11
(1)触媒の調製
触媒は実施例1の(1)と同じ方法で調製した。
(2)クロスアルドール縮合反応
プロピオンアルデヒド11.62g(0.20mole)をn−ヘキシルアルデヒドの20.02g(0.20mole)に代える以外は、実施例10の(2)に準じて行った。
(3)脱水反応
上記反応後、フラスコに装着された冷却コンデンサをラッシッヒリングを充填した蒸留用ヘッド付きのカラム(充填高30cm位)に取り替えて、そのカラムにリボンヒーターを巻いて、115〜125℃位に加熱しておく。ウォーターバスを、マントルヒーターに取り替え、加熱を始め、油分の留出がなくなるまで蒸留を続けた。フラスコの温度が約115℃まで上昇したら、加熱を止め、留分の水を分離して、ガスクロマトグラフィー分析を行った。分析の結果を表4に示す。
【0032】
【表1】
Figure 0003796774
【0033】
【表2】
Figure 0003796774
【0034】
【表3】
Figure 0003796774
【0035】
【表4】
Figure 0003796774
【0036】
【発明の効果】
本発明の製造方法は直鎖不飽和アルデヒドを選択性良く得ることができる。また、本発明の製造方法は反応の終了後、従来の技術のように廃水の活性汚泥処理負荷が大きくならず、なおかつ使用した触媒を回収することが可能で、回収した触媒は多数回リサイクルして用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a linear unsaturated aldehyde such as crotonaldehyde synthesized from acetaldehyde and a saturated aldehyde.
More specifically, the present invention relates to a method for producing a linear unsaturated aldehyde with good selectivity by dehydration reaction in connection with cross-aldol condensation of acetaldehyde and saturated aldehyde.
[0002]
[Prior art]
When producing a linear unsaturated aldehyde, generally acetaldehyde and saturated aldehyde are subjected to a so-called cross-aldol condensation using a base catalyst such as an aqueous sodium hydroxide solution to form an aldol, followed by a dehydration reaction. The obtained unsaturated aldehyde is subjected to a separation and purification operation such as distillation to obtain a product.
[0003]
The cross-aldol condensation and dehydration reaction are as follows, for example, using a base catalyst such as sodium hydroxide for acetaldehyde and butyraldehyde.
[Chemical 1]
Figure 0003796774
[0004]
That is, 2-ethyl-2-butenal and 2-ethyl-2-hexenal, which are branched chain unsaturated aldehydes, are generated in addition to linear unsaturated aldehydes such as crotonaldehyde and hexenal. Increasing the molar ratio of acetaldehyde to butyraldehyde to increase the selectivity of linear unsaturated aldehyde improves the selectivity of crotonaldehyde but does not improve the selectivity of hexenal, and the selectivity of linear unsaturated aldehyde is high A manufacturing method is desired.
In addition, when the reaction is carried out using a base catalyst such as an aqueous sodium hydroxide solution, when the contained sodium hydroxide aqueous solution remaining after the completion of the reaction is disposed of as waste liquid, not only neutralization of sodium hydroxide, but also waste water Inconveniences such as forced operation that requires a great deal of cost, such as activated sludge treatment, occur.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a linear unsaturated aldehyde with high selectivity from acetaldehyde and a saturated aldehyde in view of the above-mentioned problems of the prior art.
[0006]
[Means for Solving the Problems]
The present inventors paid attention to the fact that a solid base is effective as a catalyst for the cross-aldol reaction, and as a result of extensive research, acetaldehyde and a specific saturated aldehyde were converted to alkaline earth metal oxide, water or dimethyl sulfoxide polarity. The inventors have found a method for obtaining a linear unsaturated aldehyde such as crotonaldehyde with high selectivity by performing cross-aldol condensation in the presence of a solvent, and have completed the present invention.
[0007]
The method for producing the linear unsaturated aldehyde of the present invention comprises:
Formula (I)
MO …… (I)
(Wherein M represents Ca, Mg, Sr, Ba)
In the presence of a catalyst containing an alkaline earth metal oxide represented by
Formula (II)
CH 3 CHO (II)
Acetaldehyde represented by the formula (III)
R 1 —CH 2 —CHO (III)
A cross-aldol condensation reaction with a saturated aldehyde represented by formula (IV)
CH 3 —CH═CH—CHO (IV)
Crotonaldehyde represented by the formula (V)
R 1 —CH 2 —CH═CH—CHO (V)
[In the formulas (III) to (V), R 1 represents a linear alkyl group having 1 to 6 carbon atoms]
Is synthesized with high selectivity.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention is represented by the following formula, and a branched chain unsaturated aldehyde represented by the formulas (VI) and (VII) is produced as a by-product.
[Chemical 2]
Figure 0003796774
(Note that R 1 represents 1 to 6 linear alkyl)
[0009]
The aldol condensation reaction in the production method of the present invention is performed by adding and mixing a polar solvent to a predetermined aldehyde, and then adding a catalyst. The reaction temperature of the cross aldol condensation is not particularly limited, but is preferably in the range of -20 to 100 ° C, more preferably 0 to 70 ° C. Also, the reaction temperature in the subsequent dehydration reaction is not particularly limited, but is preferably in the range of 50 to 200 ° C, more preferably 80 to 150 ° C.
[0010]
Examples of the saturated aldehyde represented by the formula (III) in the production method of the present invention include propionaldehyde, n-butyraldehyde, n-valeraldehyde, n-hexylaldehyde, n-heptylaldehyde, and n-octylaldehyde.
[0011]
As the polar solvent used in the production method of the present invention, water, N, N-dimethylformamide, dimethyl sulfoxide and the like are preferably used. It is 5 to 70 mole%, preferably 10 to 60 mole%, based on the total amount of raw material aldehydes. If necessary, alcohols such as methanol, ethanol and i-butanol, ethers such as diethyl ether and triethylene glycol, and polar solvents such as acetonitrile and N-methylformamide can be used.
In the dehydration reaction, no solvent or additive may be used, but the above polar solvent or other solvent that does not inhibit the dehydration reaction may be used.
[0012]
Examples of the alkaline earth metal oxide of the catalyst used in the production method of the present invention include calcium oxide (CaO), magnesium oxide (MgO), strontium oxide (SrO), and barium oxide (BaO). In particular, calcium oxide or strontium oxide is preferable.
As a method for preparing the catalyst, a corresponding alkaline earth metal oxide, alkaline earth metal hydroxide, alkaline earth metal nitrate is treated with an aqueous sodium hydroxide solution, preferably alkaline earth metal carbonate is vacuumed. There is a method of firing in a range of 400 to 1000 ° C., preferably 500 to 900 ° C. in an inert gas stream such as nitrogen or nitrogen.
The amount of the catalyst used is 0.1 to 20% by weight, preferably 1.0 to 5.0% by weight, based on the total weight of the aldehyde and the polar solvent.
[0013]
The linear unsaturated aldehyde obtained by the production method of the present invention is used as it is, preferably subjected to a purification operation such as rectification, as a raw material for synthetic chemicals such as pharmaceuticals, agricultural chemicals, fragrances, surfactants, dyes, or the like. It is used as a raw material for saturated aldehydes, alcohols, carboxylic acids, amines and the like. In particular, crotonaldehyde is used as a raw material for food preservatives such as sorbic acid and potassium sorbate, and among the aldehydes represented by the formula (V), n-hexenal is an unsaturated compound produced by itself or using it as a raw material. Alcohol and its esters can be used as perfumes.
[0014]
【Example】
Example 1
(1) Preparation of catalyst 1.20 g of commercially available calcium carbonate was charged into a 20 mmφ quartz glass reaction tube equipped with a breakable seal, and the reaction tube was evacuated in an electric furnace at 2 ° C./min. The temperature was increased from 0 ° C. to 600 ° C. at a rate. Subsequently, evacuation was performed at 600 ° C. for 2 hours. After cooling, the breakable seal was broken while passing nitrogen through the reaction tube, and the produced calcium oxide catalyst was taken out.
[0015]
(2) To a 100 ml four-necked flask fully substituted with nitrogen equipped with a cross aldol condensation reaction stirrer, thermometer, cooling condenser and nitrogen introducing tube, 13.70 g (0.19 mole) of n-butyraldehyde was added. ), 8.38 g (0.19 mole) of acetaldehyde and 1.80 g (0.10 mole) of water were added, and the total amount of the catalyst prepared in (1) above was stirred while keeping the inside of the flask at 12 ° C. in an ice water bath. And reacted for 3 hours.
The reaction was stopped by adding 19.0 g of water, 0.67 g of 50% aqueous acetic acid solution, and 0.67 g of 25% aqueous sodium acetate solution while continuing stirring.
[0016]
(3) Dehydration reaction After the above reaction, the cooling condenser attached to the flask is replaced with a column with a distillation head packed with a Raschig ring (packing height of about 30 cm), and a ribbon heater is wound around the column to about 105 to 115 ° C. Keep it heated. The water bath was replaced with a mantle heater, heating was started, and distillation was continued until no oil distills. When the temperature in the flask rose to about 105 ° C., the heating was stopped, the water of the fraction was separated, and gas chromatography analysis was performed. The results of the analysis are shown in Table 1.
[0017]
Example 2
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Cross Aldol Condensation Reaction Example 1 except that n-butyraldehyde was 14.42 g (0.20 mole), acetaldehyde was 8.82 g (0.20 mole) and water was 2.70 g (0.15 mole). It carried out according to (2).
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 1.
[0018]
Comparative Example 1
(1) To a 200 ml four-necked flask fully substituted with nitrogen equipped with a cross aldol condensation reaction stirrer, thermometer, cooling condenser and nitrogen introducing tube, 45.4 g (0.63 mole) of n-butyraldehyde was added. And 27.8 g (0.63 mole) of acetaldehyde were added, and 24.4 g of 2% aqueous sodium hydroxide solution was added and reacted for 1.5 hours with stirring in a water bath at 12 ° C.
The reaction was stopped by adding 63.0 g of water, 2.2 g of 50% aqueous acetic acid solution, and 2.2 g of 25% aqueous sodium acetate solution while continuing stirring.
(2) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 1.
[0019]
Comparative Example 2
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Performed according to (2) of Example 2 except that 2.70 g (0.15 mole) of the cross-aldol condensation reaction water was not used.
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 1.
[0020]
Example 3
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Performed according to (2) of Example 2 except that the cross aldol condensation reaction water was changed to 1.44 g (0.08 mole).
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 2.
[0021]
Example 4
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Cross Aldol Condensation Reaction Example 1 except that 15.14 g (0.21 mole) of n-butyraldehyde, 9.26 g (0.21 mole) of acetaldehyde and 0.90 g (0.05 mole) of water were used. It carried out according to (2).
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 2.
[0022]
Example 5
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Performed in accordance with (2) of Example 4 except that the cross-aldol condensation reaction water was changed to 3.60 g (0.20 mole).
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 2.
[0023]
Comparative Example 3
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Performed in accordance with (2) of Example 1 except that the cross-aldol condensation reaction water was changed to 54.7 g (3.04 mole).
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 2.
[0024]
Example 6
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Cross Aldol Condensation Reaction According to (2) of Example 2 except that a 200 ml four-necked flask is used and 58.4 g (0.80 mole) of N, N-dimethylformamide is used instead of water. went.
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 3.
[0025]
Example 7
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Cross aldol condensation reaction The reaction was carried out in accordance with (2) of Example 1 except that 56.0 g (0.70 mole) of dimethyl sulfoxide was used instead of water.
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 3.
[0026]
Example 8
(1) Preparation of catalyst 1.20 g of commercially available strontium carbonate was charged into a 20 mmφ quartz glass reaction tube equipped with a breakable seal, and the reaction tube was evacuated in an electric furnace at 2 ° C./min. The temperature was increased from 0 ° C. to 900 ° C. at a rate. Subsequently, evacuation was performed at 900 ° C. for 2 hours. After cooling, the breakable seal was broken while passing nitrogen through the reaction tube, and the produced strontium oxide catalyst was taken out.
(2) Cross-aldol condensation reaction The reaction was carried out according to (2) of Example 1 except that the total amount of the catalyst prepared in (1) above was used.
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 3.
[0027]
Comparative Example 4
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 8 (1).
(2) Performed according to (2) of Example 8 except that water for cross-aldol condensation reaction was not used.
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 3.
[0028]
Example 9
(1) Preparation of catalyst 1.20 g of commercially available magnesium carbonate was charged into a 20 mmφ quartz glass reaction tube equipped with a breakable seal, and the reaction tube was evacuated in an electric furnace at 2 ° C./min. The temperature was raised from 0 ° C. to 400 ° C. at a rate. Subsequently, evacuation was performed at 400 ° C. for 2 hours. After cooling, the breakable seal was broken while passing nitrogen through the reaction tube, and the produced magnesium oxide catalyst was taken out.
(2) Cross Aldol Condensation Reaction The cross aldol condensation reaction was carried out in accordance with (2) of Example 8 except that the catalyst prepared in (1) above was used.
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 4.
[0029]
Comparative Example 5
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 9, (1).
(2) Performed in accordance with (2) of Example 9 except that water for cross-aldol condensation reaction was not used.
(3) Dehydration reaction The dehydration reaction was carried out in the same manner as in Example 1 (3), and the results of the analysis are shown in Table 4.
[0030]
Example 10
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Cross Aldol Condensation Reaction (2) of Example 1 except that propionaldehyde is 11.62 g (0.20 mole), acetaldehyde is 8.82 g (0.20 mole) and water is 1.80 g (0.10 mole). ).
(3) Dehydration reaction After the above reaction, the cooling condenser attached to the flask was replaced with a column with a distillation head filled with a Raschig ring (packing height of about 30 cm), a ribbon heater was wound around the column, and the temperature was 100 to 110 ° C. Heat to the proper position. The water bath was replaced with a mantle heater, heating was started, and distillation was continued until no oil distills. When the temperature in the flask rose to about 101 ° C., the heating was stopped, the water in the fraction was separated, and gas chromatography analysis was performed. The results of the analysis are shown in Table 4.
[0031]
Example 11
(1) Preparation of catalyst The catalyst was prepared in the same manner as in Example 1 (1).
(2) Cross-aldol condensation reaction The procedure was carried out in accordance with (2) of Example 10 except that 11.62 g (0.20 mole) of propionaldehyde was replaced with 20.02 g (0.20 mole) of n-hexylaldehyde.
(3) Dehydration reaction After the above reaction, the cooling condenser attached to the flask was replaced with a column with a distillation head (packing height of about 30 cm) packed with a Raschig ring, and a ribbon heater was wound around the column, and the temperature was 115 to 125 ° C. Heat to the proper position. The water bath was replaced with a mantle heater, heating was started, and distillation was continued until no oil distills. When the temperature of the flask rose to about 115 ° C., the heating was stopped, the water of the fraction was separated, and gas chromatography analysis was performed. The results of the analysis are shown in Table 4.
[0032]
[Table 1]
Figure 0003796774
[0033]
[Table 2]
Figure 0003796774
[0034]
[Table 3]
Figure 0003796774
[0035]
[Table 4]
Figure 0003796774
[0036]
【The invention's effect】
The production method of the present invention can obtain a linear unsaturated aldehyde with good selectivity. Furthermore, the production method of the present invention does not increase the activated sludge treatment load of wastewater after the reaction is completed, and can recover the used catalyst. The recovered catalyst is recycled many times. Can be used.

Claims (3)

式(I)
MO ……(I)
(式中、MはCa、Mg、Sr、Baを表す)
で表されるアルカリ土類金属酸化物を含む触媒、および極性溶媒の存在下、式(II)
CH3CHO ……(II)
で表されるアセトアルデヒドと式(III)
1−CH2−CHO ……(III)
で表される飽和アルデヒドとのクロスアルドール縮合反応、つゞいて脱水反応によって式(IV)
CH3−CH=CH−CHO ……(IV)
で表されるクロトンアルデヒドおよび式(V)
1−CH2−CH=CH−CHO ……(V)
〔(III)〜(V)式中、R1は炭素数1〜6の直鎖アルキル基を表わす〕
で表される直鎖不飽和アルデヒドを選択性良く合成することを特徴とする直鎖不飽和アルデヒドの製造方法。
Formula (I)
MO …… (I)
(Wherein M represents Ca, Mg, Sr, Ba)
In the presence of a catalyst containing an alkaline earth metal oxide represented by formula (II) and a polar solvent
CH 3 CHO (II)
Acetaldehyde represented by the formula (III)
R 1 —CH 2 —CHO (III)
A cross-aldol condensation reaction with a saturated aldehyde represented by formula (IV)
CH 3 —CH═CH—CHO (IV)
Crotonaldehyde represented by the formula (V)
R 1 —CH 2 —CH═CH—CHO (V)
[In the formulas (III) to (V), R 1 represents a linear alkyl group having 1 to 6 carbon atoms]
A method for producing a linear unsaturated aldehyde, which comprises synthesizing a linear unsaturated aldehyde represented by formula (1) with good selectivity.
触媒が、CaまたはSrの炭酸化合物を400〜1000℃の範囲で真空もしくは不活性ガス中で焼成することからなるアルカリ土類金属酸化物である請求項1記載の直鎖不飽和アルデヒドの製造方法。2. The method for producing a linear unsaturated aldehyde according to claim 1, wherein the catalyst is an alkaline earth metal oxide comprising calcining a carbonic acid compound of Ca or Sr in a vacuum or an inert gas in a range of 400 to 1000 ° C. . 前記極性溶媒がアルデヒド全量に対して5〜70mole%である請求項1もしくは2記載の直鎖不飽和アルデヒドの製造方法。The method for producing a linear unsaturated aldehyde according to claim 1 or 2, wherein the polar solvent is 5 to 70 mole% with respect to the total amount of aldehyde.
JP21884195A 1995-08-28 1995-08-28 Method for producing enal using alkaline earth metal oxide Expired - Fee Related JP3796774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21884195A JP3796774B2 (en) 1995-08-28 1995-08-28 Method for producing enal using alkaline earth metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21884195A JP3796774B2 (en) 1995-08-28 1995-08-28 Method for producing enal using alkaline earth metal oxide

Publications (2)

Publication Number Publication Date
JPH0959201A JPH0959201A (en) 1997-03-04
JP3796774B2 true JP3796774B2 (en) 2006-07-12

Family

ID=16726185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21884195A Expired - Fee Related JP3796774B2 (en) 1995-08-28 1995-08-28 Method for producing enal using alkaline earth metal oxide

Country Status (1)

Country Link
JP (1) JP3796774B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801292A (en) * 1996-03-28 1998-09-01 Eastman Chemical Company Aldehyde process
ES2159259B1 (en) * 1999-11-24 2002-04-16 Univ Valencia Politecnica PROCEDURE AND CATALYSTS FOR OBTAINING INSFAIRED ALFA-BETA CARBONY COMPOUNDS OF INTEREST IN THE PERFUMES AND AROMAS INDUSTRY.
JP7342865B2 (en) * 2018-07-18 2023-09-12 Jnc株式会社 Ketone production method

Also Published As

Publication number Publication date
JPH0959201A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
US2484067A (en) Production of unsaturated organic compounds
JP3796774B2 (en) Method for producing enal using alkaline earth metal oxide
JP2007538065A (en) Method for producing indenol ester or ether
IE910521A1 (en) Novel ó-hydroxyl acids, preparation process and the use¹thereof
US4435585A (en) Process for the preparation of dihydrocinnamaldehyde derivatives
US3236869A (en) Allenic acids
US5189202A (en) Process for the preparation of 3,3-dimethyl-4-pentenoic acid
JP4380024B2 (en) Process for producing 2- (1-hydroxyalkyl) cycloalkanone
JP3795970B2 (en) Method for producing α, β-unsaturated aldehyde
JP5297036B2 (en) Process for producing a mixture of 2- (1-hydroxyalkyl) cycloalkanone and its dehydrated product
US4181683A (en) 1,7-Octadien-3-one and process for preparing the same
US5183908A (en) Process for the preparation of substituted furanones
JP2854266B2 (en) 3-Substituted 2-hydroxy-3-formyl-propionates and process for preparing the same
Woo et al. Carbonylation in strong acid. Lactones from allylic derivatives
US5256813A (en) 3-substituted 2-hydroxy-3-formylpropionic esters, the preparation thereof and the use thereof for preparing 3-substituted 3-formylacrylic esters
JP2759348B2 (en) Method for producing 2-alkyl-3-alkoxycarbonylmethylcyclopentanone
EP0348549A1 (en) Improved process for the preparation of substituted furanones
JP3838682B2 (en) Process for producing 2-methyl-4-oxo-2-cyclohexenecarboxylic acid ester and novel intermediate thereof
JPS6313975B2 (en)
SU1595834A1 (en) Method of producing 2-methylsubstituted aldehydes
JPH04974B2 (en)
JPS61118348A (en) Manufacture of hydroxymethylenealkoxyacetic acid ester
JPH0147464B2 (en)
US3236901A (en) Allenic alcohols and process of manufacturing them
JPS62283944A (en) Production of sinensal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees