JP3795729B2 - Manufacturing method of hydrodynamic bearing - Google Patents

Manufacturing method of hydrodynamic bearing Download PDF

Info

Publication number
JP3795729B2
JP3795729B2 JP2000158143A JP2000158143A JP3795729B2 JP 3795729 B2 JP3795729 B2 JP 3795729B2 JP 2000158143 A JP2000158143 A JP 2000158143A JP 2000158143 A JP2000158143 A JP 2000158143A JP 3795729 B2 JP3795729 B2 JP 3795729B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure groove
electrode
sheet
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000158143A
Other languages
Japanese (ja)
Other versions
JP2001336532A (en
Inventor
康裕 小林
慎二 松榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2000158143A priority Critical patent/JP3795729B2/en
Publication of JP2001336532A publication Critical patent/JP2001336532A/en
Application granted granted Critical
Publication of JP3795729B2 publication Critical patent/JP3795729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は動圧軸受の製造方法に関する。
【0002】
【従来の技術】
従来、動圧軸受の製造方法としては、図3に示すように、動圧溝パターンを有する非導電体製シート35を張り付けた電極31をワーク32に対して所定間隙を隔てて対向させた後、その電極31とワーク32との間の間げきに電解液33を流しながら電極31に通電して、シート35で覆われていない電極露出部31aに対応する形状の動圧溝34をワーク32に形成するものがある。
【0003】
【発明が解決しようとする課題】
ところが、上記動圧軸受の製造方法では、シート35とワーク32との間に間隙があるため、電流が放射状に発生しシート35の先端面側に回り込んでしまい、動圧溝34間の丘部36の角部が溶出して、その丘部36の断面形状が台形になってしまう。つまり、上記動圧溝34は、断面台形状になってしまうという問題がある。
【0004】
また、上記シート35とワーク32との距離のわずかな変化により、ワーク32に形成される動圧溝の形状が変化してしまう。より詳しくは、上記シート35とワーク32との間の距離が設定値から少しでもずれると、ワーク32に形成される動圧溝の幅や深さが変動し、ワーク32において所望の動圧溝を得られない。したがって、上記シート35とワーク32との間の距離と、ワーク32に形成される動圧溝の形状との関係を検討しつつ、さらに、シート35とワーク32との間の間隙に対してシビアな管理が必要になるという問題がある。
【0005】
そこで、本発明の目的は、動圧溝の断面が台形になることがなくて、ワークに形成される動圧溝の形状と、シートの動圧溝パターンの形状とを一致させることができると共に、シートとワークとの間の間隙に対するシビアな管理を不要にできる動圧軸受の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明の動圧軸受の製造方法は、ワークよりも外方に延伸する動圧溝パターンを有する非導電体製のシートの両面に、電極と、上記シート及び上記電極よりも径の小さい上記ワークとを密着させて、上記ワークと上記電極とで両面が塞がれた上記動圧溝パターン内に上記電極側の供給口から電解液を流して、上記動圧溝パターン内を流動させて、上記動圧溝パターンの径方向外側の端部に位置する排出口から排出しながら上記電極に通電して、上記ワークに、壁面が傾斜しなくて断面が矩形になる動圧溝を形成することを特徴としている。
【0007】
上記請求項1の発明の動圧軸受の製造方法によれば、上記動圧溝パターンを有する非導電体製のシートの各端面に、ワークと電極とを夫々密着させる。そして、上記ワーク,電極およびシートで囲まれた動圧溝パターン内に電解液を流しながら電極に通電する。このとき、上記シートがワークに密着しているから、シートとワークとの間に電流が入り込まず、ワークにおいて動圧溝パターンに対応する部位のみが溶出する。つまり、動圧溝の壁面が傾斜することがなくて、動圧溝の断面が矩形になって、シートの動圧溝パターンと、ワークに形成される動圧溝の形状とを一致させることができる。
【0008】
また、上記シートとワークとを密着させた状態で動圧溝を形成するから、シートとワークとの間の隙間に対するシビアな管理を不要にできる。
【0009】
【0010】
また、上記電解液を、電極側の供給口から動圧溝パターン内に流入させ、ワークの外縁から電解液を排出させるから、電解液をワークの外縁から容易に回収できると共に、新鮮な電解液が絶えず加工面に供給される。
【0011】
【発明の実施の形態】
以下、本発明の動圧軸受の製造方法を図示の実施の形態により詳細に説明する。
【0012】
図1を参照して、本発明の実施の一形態の動圧軸受の製造方法を説明する。
【0013】
この動圧軸受の製造方法では、図1に示す電極1を使用する。この電極1の先端面には、円板形状の非導電体製のシート5を張り付けている。上記シート5は、図2(平面図)に模式的に示すように、一方の端面から他方の端面まで貫通し、動圧溝パターン10を形成する貫通穴7を有している。この貫通穴7は、シート5の中央を貫通する円形の中央穴7aと、その中央穴7aの周りに複数個形成されたV字形状の溝穴7bとからなっている。この溝穴7bは、周方向に一定間隔をあけて配列している。また、上記溝穴7bの径方向内側の端部は中央穴7aに連なる一方、溝穴7bの径方向外側の端部は電解液の排出口17になっている。このシート5が電極1の先端面を覆っていることで、動圧溝パターン10に対応して、電極1の先端面の一部が露出し、電極露出部1a(図1に示す)になっている。逆に、上記シート5の動圧溝パターン10に非対向の電極部分がシート5で覆われている。なお、図2では、上記貫通穴7からワーク2が露出している部分を斜線で示している。この図2から判るように、上記貫通穴7の径方向の大きさをワーク2の径方向の大きさよりも大きく設定している。また、図2において、上記溝穴7bは4つのみ図示して、他の溝穴7bの図示を省略している。
【0014】
上記動圧軸受の製造方法は次のようにして行われる。
【0015】
まず、図1に示すように、上記電極1のシート5をワーク2に密着させ、電極1とワーク2とがシート5の両面に夫々密着した状態にする。そして、上記電極1側の供給口8から電解液を矢印I方向に流す。すると、この電解液は貫通穴7の中央穴7aから穴溝7bに向って放射状に流れて、電極1とワーク2とで両面が塞がれた動圧溝パターン10内に供給される。この状態で、上記電極1に通電することで、動圧溝をワーク2に形成する。このとき、上記電解液は溝穴7bに導かれた後、溝穴7bの排出口17から矢印O方向に排出されるので、加工面には、絶えず電解液が供給される。
【0016】
このように、上記シート5がワーク2に対して隙間なく密着した状態であるから、ワーク2と電極1とで両面が塞がれた動圧溝パターン10内に電解液を流しながら電極1に通電したときに、ワーク2とシート5との間に電流が侵入せず、ワーク2において電極露出部1aに対向する部位のみが溶出する。つまり、上記動圧溝が断面台形状になることがなくて、動圧溝が断面矩形状になって、電極露出部1aの形状(シート5の動圧溝パターン10)と、ワーク2に形成される動圧溝の形状とを一致させることができる。また、上記動圧溝のエッジをシャープすることができる。
【0017】
また、上記シート5が電極1およびワーク2に密着した状態で動圧溝を形成するから、シート5とワーク2との間に隙間がなく、シート5とワーク2との間の隙間を厳格に管理する必要がない。
【0018】
また、上記電解液は排出口17を介してワーク2の外縁から排出されているので、そこから電解液を容易に回収することができると共に、加工面に絶えず新鮮な電解液を供給することができる。
【0019】
上記実施の形態では、上記電極1側の供給口8から電解液を動圧溝パターン10内に供給し、ワーク2の外縁から電解液を排出していたが、逆に、電解液を溝穴7bの径方向外側の端部側から動圧溝パターン10内に供給し、中央穴7aを介して電極1側の供給口8から電解液を排出してもよい。この場合においても、上記電極1とワーク2とがシート5の両面に夫々密着した状態であることは言うまでもない。
【0020】
また、例えば、上記ワーク2の中央部に貫通穴を設けて、電解液を溝穴7bの径方向外側の端部側から動圧溝パターン10内に供給し、そのワーク2の中央部の貫通穴から電解液を排出してもよい。
【0021】
また、上記電解液を溝穴7bの径方向略中央部側から動圧溝パターン10内に供給し、ワーク2の中央部の貫通穴とワーク2の外縁とから電解液を排出してもよい。
【0022】
【発明の効果】
以上より明らかなように、請求項1の発明の動圧軸受の製造方法は、シートの両面にワークと電極が密着した状態であるから、ワークと電極とで両面が塞がれた動圧溝パターン内に電解液を流しながら電極に通電したときに、シートとワークとの間に電流が流れず、ワークにおいて動圧溝パターンに対応する部位のみが溶出し、動圧溝の壁面が斜めにならず、動圧溝の断面が矩形になり、シートの動圧溝パターンと、ワークに形成される動圧溝の形状との整合を得ることができる。
【0023】
また、上記シートをワークに対して隙間なく密着させた状態で動圧溝を形成するから、シートとワークとの間の隙間に対するシビアな管理が不要である。
【0024】
また、上記電極側の供給口から動圧溝パターン内に供給された電解液は、ワークの外縁から排出されているので、そこから電解液を容易に回収することができる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の一形態の動圧軸受の製造方法を説明するための図である。
【図2】 図2は上記動圧軸受の製造方法で使用するシートの模式的な平面図である。
【図3】 図3は従来の動圧軸受の製造方法を説明するための図である。
【符号の説明】
1 電極
1a 電極露出部
2 ワーク
5 シート
7 貫通穴
7a 中央穴
7b 溝穴
8 供給口
10 動圧溝パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a hydrodynamic bearing.
[0002]
[Prior art]
Conventionally, as a method of manufacturing a hydrodynamic bearing, as shown in FIG. 3, an electrode 31 on which a non-conductive sheet 35 having a hydrodynamic groove pattern is attached is opposed to a work 32 with a predetermined gap therebetween. The electrode 31 is energized while flowing the electrolytic solution 33 between the electrode 31 and the workpiece 32, and the dynamic pressure groove 34 having a shape corresponding to the electrode exposed portion 31 a not covered with the sheet 35 is formed in the workpiece 32. There is something to form.
[0003]
[Problems to be solved by the invention]
However, in the manufacturing method of the dynamic pressure bearing described above, since there is a gap between the sheet 35 and the workpiece 32, current is generated in a radial manner and wraps around the front end surface side of the sheet 35, and the hill between the dynamic pressure grooves 34. The corner portion of the portion 36 is eluted, and the cross-sectional shape of the hill portion 36 becomes a trapezoid. That is, there is a problem that the dynamic pressure groove 34 has a trapezoidal cross section.
[0004]
In addition, a slight change in the distance between the sheet 35 and the workpiece 32 changes the shape of the dynamic pressure groove formed in the workpiece 32. More specifically, when the distance between the sheet 35 and the workpiece 32 is slightly deviated from the set value, the width and depth of the dynamic pressure groove formed in the workpiece 32 changes, and the desired dynamic pressure groove in the workpiece 32 is changed. I can't get it. Therefore, while examining the relationship between the distance between the sheet 35 and the workpiece 32 and the shape of the dynamic pressure groove formed in the workpiece 32, the gap between the sheet 35 and the workpiece 32 is further severe. There is a problem that necessitating proper management.
[0005]
Accordingly, an object of the present invention is that the cross section of the dynamic pressure groove does not become trapezoidal, and the shape of the dynamic pressure groove formed on the workpiece can be matched with the shape of the dynamic pressure groove pattern of the sheet. Another object of the present invention is to provide a method of manufacturing a hydrodynamic bearing that can eliminate the need for severe control over the gap between the sheet and the workpiece.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a hydrodynamic bearing of the invention of claim 1 is characterized in that an electrode and the sheet are formed on both surfaces of a non-conductive sheet having a hydrodynamic groove pattern extending outward from a work. And the work piece having a diameter smaller than that of the electrode is brought into close contact with each other, and an electrolyte solution is caused to flow from the supply port on the electrode side in the dynamic pressure groove pattern in which both surfaces are closed with the work and the electrode. Flowing through the dynamic pressure groove pattern , energizing the electrode while discharging from the discharge port located at the radially outer end of the dynamic pressure groove pattern, the cross section of the work is not inclined It is characterized by forming a rectangular dynamic pressure groove.
[0007]
According to the method for manufacturing a hydrodynamic bearing of the first aspect of the invention, the workpiece and the electrode are brought into close contact with each end face of the non-conductive sheet having the hydrodynamic groove pattern. Then, the electrode is energized while flowing the electrolytic solution in the dynamic pressure groove pattern surrounded by the workpiece, the electrode and the sheet. At this time, since the sheet is in close contact with the workpiece, no current flows between the sheet and the workpiece, and only the portion of the workpiece corresponding to the dynamic pressure groove pattern is eluted. That is, the wall surface of the dynamic pressure groove is not inclined, the cross section of the dynamic pressure groove is rectangular, and the dynamic pressure groove pattern of the sheet can be matched with the shape of the dynamic pressure groove formed on the workpiece. it can.
[0008]
Further, since the dynamic pressure groove is formed in a state where the sheet and the workpiece are in close contact with each other, it is possible to eliminate the need for severe management with respect to the gap between the sheet and the workpiece.
[0009]
[0010]
In addition , since the electrolytic solution is allowed to flow into the dynamic pressure groove pattern from the supply port on the electrode side, and the electrolytic solution is discharged from the outer edge of the workpiece, the electrolytic solution can be easily recovered from the outer edge of the workpiece, and the fresh electrolytic solution Is constantly supplied to the machined surface.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the hydrodynamic bearing of the present invention will be described in detail with reference to the illustrated embodiments.
[0012]
With reference to FIG. 1, the manufacturing method of the hydrodynamic bearing of one Embodiment of this invention is demonstrated.
[0013]
In this method for manufacturing a hydrodynamic bearing, an electrode 1 shown in FIG. 1 is used. A disc-shaped non-conductive sheet 5 is attached to the tip surface of the electrode 1. As schematically shown in FIG. 2 (plan view), the sheet 5 has through holes 7 that penetrate from one end face to the other end face to form the dynamic pressure groove pattern 10. The through hole 7 includes a circular center hole 7a that passes through the center of the sheet 5, and a plurality of V-shaped groove holes 7b formed around the center hole 7a. The slots 7b are arranged at regular intervals in the circumferential direction. The radially inner end of the slot 7b is continuous with the central hole 7a, while the radially outer end of the slot 7b is an electrolyte outlet 17. Since this sheet 5 covers the tip surface of the electrode 1, a part of the tip surface of the electrode 1 is exposed corresponding to the dynamic pressure groove pattern 10 to form an electrode exposed portion 1 a (shown in FIG. 1). ing. On the contrary, a non-facing electrode portion of the dynamic pressure groove pattern 10 of the sheet 5 is covered with the sheet 5. In FIG. 2, a portion where the workpiece 2 is exposed from the through hole 7 is indicated by hatching. As can be seen from FIG. 2, the size of the through hole 7 in the radial direction is set larger than the size of the workpiece 2 in the radial direction. In FIG. 2, only four slots 7b are shown, and the other slots 7b are not shown.
[0014]
The manufacturing method of the hydrodynamic bearing is performed as follows.
[0015]
First, as shown in FIG. 1, the sheet 5 of the electrode 1 is brought into close contact with the work 2, and the electrode 1 and the work 2 are brought into close contact with both surfaces of the sheet 5. Then, an electrolytic solution is caused to flow in the direction of arrow I from the supply port 8 on the electrode 1 side. Then, the electrolytic solution flows radially from the central hole 7a of the through hole 7 toward the hole groove 7b, and is supplied into the dynamic pressure groove pattern 10 in which both surfaces are closed by the electrode 1 and the workpiece 2. In this state, the dynamic pressure groove is formed in the work 2 by energizing the electrode 1. At this time, since the electrolytic solution is guided to the slot 7b and then discharged from the outlet 17 of the slot 7b in the direction of the arrow O, the electrolytic solution is constantly supplied to the processed surface.
[0016]
Thus, since the sheet 5 is in close contact with the work 2 without a gap, the electrode 1 is applied to the electrode 1 while flowing the electrolyte in the dynamic pressure groove pattern 10 in which both surfaces are closed by the work 2 and the electrode 1. When energized, current does not enter between the workpiece 2 and the sheet 5, and only the portion of the workpiece 2 facing the electrode exposed portion 1a is eluted. That is, the dynamic pressure groove does not have a trapezoidal cross section, the dynamic pressure groove has a rectangular cross section, and is formed in the shape of the electrode exposed portion 1a (the dynamic pressure groove pattern 10 of the sheet 5) and the workpiece 2. The shape of the dynamic pressure groove to be made can be matched. Further, the edge of the dynamic pressure groove can be sharpened.
[0017]
Further, since the dynamic pressure groove is formed in a state where the sheet 5 is in close contact with the electrode 1 and the work 2, there is no gap between the sheet 5 and the work 2, and the gap between the sheet 5 and the work 2 is strictly set. There is no need to manage.
[0018]
Moreover, since the said electrolyte solution is discharged | emitted from the outer edge of the workpiece | work 2 via the discharge port 17, while being able to collect | recover electrolyte solution easily there, supplying fresh electrolyte solution to a processing surface continuously. it can.
[0019]
In the above embodiment, the electrolytic solution is supplied into the dynamic pressure groove pattern 10 from the supply port 8 on the electrode 1 side, and the electrolytic solution is discharged from the outer edge of the workpiece 2. 7b may be supplied into the dynamic pressure groove pattern 10 from the radially outer end side, and the electrolytic solution may be discharged from the supply port 8 on the electrode 1 side through the central hole 7a. Even in this case, it goes without saying that the electrode 1 and the work 2 are in close contact with both surfaces of the sheet 5.
[0020]
Further, for example, a through hole is provided in the central portion of the workpiece 2, and the electrolytic solution is supplied into the dynamic pressure groove pattern 10 from the radially outer end side of the slot 7 b, and the central portion of the workpiece 2 is penetrated. The electrolytic solution may be discharged from the hole.
[0021]
Further, the electrolytic solution may be supplied into the dynamic pressure groove pattern 10 from the substantially central portion in the radial direction of the slot 7b, and the electrolytic solution may be discharged from the through hole in the central portion of the work 2 and the outer edge of the work 2. .
[0022]
【The invention's effect】
As is clear from the above, the method for manufacturing a hydrodynamic bearing according to the first aspect of the present invention is in a state in which the workpiece and the electrode are in close contact with both surfaces of the sheet. When the electrode is energized while flowing the electrolyte in the pattern, no current flows between the sheet and the workpiece, and only the portion of the workpiece corresponding to the dynamic pressure groove pattern is eluted, and the wall surface of the dynamic pressure groove is slanted. In other words, the cross section of the dynamic pressure groove is rectangular, and it is possible to obtain matching between the dynamic pressure groove pattern of the sheet and the shape of the dynamic pressure groove formed on the workpiece.
[0023]
In addition, since the dynamic pressure groove is formed in a state where the sheet is in close contact with the workpiece without any gap, severe management of the gap between the sheet and the workpiece is unnecessary.
[0024]
Further , since the electrolytic solution supplied into the dynamic pressure groove pattern from the supply port on the electrode side is discharged from the outer edge of the workpiece, the electrolytic solution can be easily recovered therefrom.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a method of manufacturing a dynamic pressure bearing according to an embodiment of the present invention.
FIG. 2 is a schematic plan view of a sheet used in the method for manufacturing a hydrodynamic bearing.
FIG. 3 is a diagram for explaining a conventional method of manufacturing a hydrodynamic bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode 1a Electrode exposed part 2 Work 5 Sheet 7 Through-hole 7a Center hole 7b Groove hole 8 Supply port 10 Dynamic pressure groove pattern

Claims (3)

ワークよりも外方に延伸する動圧溝パターンを有する非導電体製のシートの両面に、電極と、上記シート及び上記電極よりも径の小さい上記ワークとを密着させて、
上記ワークと上記電極とで両面が塞がれた上記動圧溝パターン内に上記電極側の供給口から電解液を流して、上記動圧溝パターン内を流動させて、上記動圧溝パターンの径方向外側の端部に位置する排出口から排出しながら上記電極に通電して、上記ワークに、壁面が傾斜しなくて断面が矩形になる動圧溝を形成することを特徴とする動圧軸受の製造方法。
The electrode and the sheet and the work having a smaller diameter than the electrode are brought into close contact with both surfaces of the non-conductive sheet having a dynamic pressure groove pattern extending outward from the work ,
An electrolyte is flowed from the supply port on the electrode side into the dynamic pressure groove pattern in which both surfaces are closed by the work and the electrode, and the inside of the dynamic pressure groove pattern is caused to flow . The dynamic pressure is characterized in that the electrode is energized while discharging from a discharge port located at the radially outer end, and a dynamic pressure groove having a rectangular wall surface is not formed in the work and the cross section is rectangular. Manufacturing method of bearing.
請求項1に記載の動圧軸受の製造方法において、
上記電解液を、上記シートの中央穴を介して上記中央穴の周りに周方向に一定間隔をあけて配列している複数の溝穴を有する上記動圧溝パターン内に放射状に流すことを特徴とする動圧軸受の製造方法。
In the manufacturing method of the hydrodynamic bearing according to claim 1 ,
The electrolytic solution is caused to flow radially through the central hole of the sheet into the dynamic pressure groove pattern having a plurality of grooves arranged at regular intervals around the central hole in the circumferential direction. A method for manufacturing a hydrodynamic bearing.
請求項1に記載の動圧軸受の製造方法において、
上記ワークは貫通穴を中央部に有し、
上記電解液を、上記シートの中央穴の周りに周方向に一定間隔をあけて配列している複数の溝穴を有する上記動圧溝パターン内に、上記溝穴の径方向略中央部から供給し、上記中央穴を介して上記ワークの貫通穴上記排出口から排出することを特徴とする動圧軸受の製造方法。
In the manufacturing method of the hydrodynamic bearing according to claim 1,
The work has a transmural throughbore in the central portion,
The electrolytic solution is supplied from a substantially central portion in the radial direction of the slot into the dynamic pressure groove pattern having a plurality of slots arranged at regular intervals in the circumferential direction around the center hole of the sheet. and method for producing a dynamic pressure bearing, characterized in that discharged from the through hole and the outlet of the work through the central hole.
JP2000158143A 2000-05-29 2000-05-29 Manufacturing method of hydrodynamic bearing Expired - Fee Related JP3795729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000158143A JP3795729B2 (en) 2000-05-29 2000-05-29 Manufacturing method of hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000158143A JP3795729B2 (en) 2000-05-29 2000-05-29 Manufacturing method of hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2001336532A JP2001336532A (en) 2001-12-07
JP3795729B2 true JP3795729B2 (en) 2006-07-12

Family

ID=18662661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158143A Expired - Fee Related JP3795729B2 (en) 2000-05-29 2000-05-29 Manufacturing method of hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP3795729B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235168B2 (en) 2002-05-28 2007-06-26 Seagate Technology. Llc Method for electrochemically forming a hydrodynamic bearing surface
JP5130697B2 (en) * 2006-11-15 2013-01-30 株式会社デンソー Electrolytic processing method and method for manufacturing component having uneven surface
CN113210772B (en) * 2021-05-12 2022-07-15 浙江工业大学 Flow equalizing device and method for gap flow field in metal revolving body micro electrolytic machining
CN114515877B (en) * 2022-03-29 2023-07-28 江苏集萃精密制造研究院有限公司 Electrolytic machining method and tool clamp for array microstructure on surface of weak-rigidity sheet

Also Published As

Publication number Publication date
JP2001336532A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
KR100442041B1 (en) Bearings including electrochemically processed bearing rings and bearings electrokinically machined
US8696252B2 (en) Rotary cutting tool having an adjustable cooling mechanism
CN101490430B (en) Gas bearing fabrication method
KR101380422B1 (en) A boring bar for internal turning
JP2002502711A (en) Cutting insert with cooling groove
JP6039543B2 (en) Chip guidance system, cooling channel, cooling channel system, and high performance reamer comprising at least one of these
JP3795729B2 (en) Manufacturing method of hydrodynamic bearing
CN112739482B (en) Tool for machining decoration and connecting hole of disc flange by PECM and method for using the tool
JP2017030075A (en) Hole drilling tool
KR102012546B1 (en) Fuel-injection metering device, fuel-injection nozzle, mould for producing a fuel-injection metering device and method for producing a fuel-injection metering device
JPS6210867A (en) Separator for fuel cell
JP3614749B2 (en) Hydrodynamic groove processing method for hydrodynamic bearings
US11433468B2 (en) Electrode for an electro-erosion process and an associated method thereof
JP2002348722A (en) Method for producing nozzle for various fluid
JP2004142936A (en) Suction roll device
JPH09295212A (en) Throw-away type drill, and throw-away tip
US3427239A (en) Tool electrode for electro-erosive machinery
US20240189918A1 (en) Indexable cutting tool and cutting insert
KR20010023125A (en) Manufacture of screen plate with screen slots obtained by laser beam cutting
JP7347263B2 (en) Machining fluid discharge nozzle and wire electrical discharge machine
JP2000033510A (en) Hole drilling tool
JPS62251014A (en) Electrode for electro-chemical machining and electrolytic deburring
JP4614494B2 (en) Cast hole processing method
KR20230100866A (en) Hydrogen fuel cell, Manufacturing method of Hydrogen fuel cell
KR20230165510A (en) mold device for manufacturing of billets

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees