JP3795547B2 - Method for producing 1,5-pentanediol derivative - Google Patents

Method for producing 1,5-pentanediol derivative Download PDF

Info

Publication number
JP3795547B2
JP3795547B2 JP07274895A JP7274895A JP3795547B2 JP 3795547 B2 JP3795547 B2 JP 3795547B2 JP 07274895 A JP07274895 A JP 07274895A JP 7274895 A JP7274895 A JP 7274895A JP 3795547 B2 JP3795547 B2 JP 3795547B2
Authority
JP
Japan
Prior art keywords
dihydro
pyranol
pentanediol
compound
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07274895A
Other languages
Japanese (ja)
Other versions
JPH0848642A (en
Inventor
悟 水谷
利明 緒方
信仁 雨宮
健治 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Chemical Co Ltd filed Critical Kyowa Hakko Chemical Co Ltd
Priority to JP07274895A priority Critical patent/JP3795547B2/en
Priority to PCT/JP1995/002441 priority patent/WO1997019904A1/en
Priority claimed from PCT/JP1995/002441 external-priority patent/WO1997019904A1/en
Publication of JPH0848642A publication Critical patent/JPH0848642A/en
Application granted granted Critical
Publication of JP3795547B2 publication Critical patent/JP3795547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、1,5−ペンタンジオール誘導体の製造方法および1,5−ペンタンジオール誘導体の合成中間体として有用な5,6−ジヒドロ−2H−2−ピラノール誘導体に関する。
1,5−ペンタンジオール誘導体は、ポリエステル、ポリエステルポリオール、アルキッド、ポリウレタン、反応性モノマーなどの原料として、塗料、接着剤、インキ、繊維、フィルム、合成皮革、可塑剤、潤滑油、エラストマー、フォーム、成型材料などの分野で用いられるだけでなく、有機合成原料として、また、それ自体湿潤剤として有用である。
【0002】
【従来の技術】
2−ブテナール誘導体から2位および/または4位が置換された、もしくは無置換の1,5−ペンタンジオール誘導体を製造する方法としては、(A)2−ブテナール誘導体とホルムアルデヒドとを反応させ、生成した中間体5−ヒドロキシ−2−ペンテナール誘導体を反応液から分離して接触還元する方法が知られている[米国特許第 3,046,311号(1962)]。しかし、該特許の実施例によれば、消費した2−メチル−2−ペンテナールを基準とした中間体5−ヒドロキシ−2,4−ジメチル−2−ペンテナールの収率は63%と低く、また、クロトンアルデヒドからの5−ヒドロキシ−2−ペンテナールの収率は僅か12%に過ぎない。
【0003】
また、2,4−ジメチル−1,5−ペンタンジオールの製造法として、(B)メチルマロン酸ジエチルとメタクリル酸メチルを出発原料とし3工程の反応の後、水素化リチウムアルミニウムで還元する方法[The Journal of American Chemical Society, 77, 1862(1955); Chemical Abstracts, 50, 2583d(1956) ]、(C)2−エテニル−5−メチレン−1,3−ジオキサンを熱分解して得られる2−メチル−4−メチレングルタルアルデヒドをラネーニッケルを触媒として接触還元する方法[Bulletin de la Societe Chimique de France, 1965, 1355; Chemical Abstracts, 63, 11546e(1965) ]、(D)2,4−ジメチル−1,4−ペンタジエンにハイドロボレーションする方法[The Journal of American Chemical Society, 95, 6757(1973); Chemical Abstracts, 80, 3372k(1974) ]などが知られている。しかし、(B)あるいは(D)の方法は水素化リチウムアルミニウム、ボランなどの高価な試薬を使うために工業的には不向きであり、(C)の方法では低収率でしか目的物が得られない。
【0004】
また、2,4−ジエチル−1,5−ペンタンジオールの製造法としては、(E)2−エチル−2−ヘキセノールのヒドロホルミル化により生成する3,5−ジエチルテトラヒドロピランを接触還元する方法[ドイツ特許 2,410,156号(1975); Chemical Abstracts, 84, 43291x(1976)]が知られているが、2−エチル−3−プロピル−1,4−ブタンジオール合成の際の副生成物であり、極めて収率が低い。
【0005】
一方、5,6−ジヒドロ−2H−2−ピラノールの製造法としては、(F)3−ブロモテトラヒドロ−2−ピラノールをナトリウム存在下にアルコール中で反応させる方法[Tetrahedron, 18, 657(1962); Chemical Abstracts, 57, 11150c(1962)]、(G)5,6−ジヒドロ−2−ピロンを水素化ジイソブチルアルミニウムで還元する方法[Journal of Organic Chemistry, 48, 5170(1983)]、(H)2−ヒドロペルオキシ−5,6−ジヒドロ−2H−ピランを接触還元する方法(特開昭53-101308 号公報)などが知られている。しかしながら、3位および/または5位アルキル置換−5,6−ジヒドロ−2H−2−ピラノール誘導体を前記の(F)〜(H)の方法で合成することは、原料の入手が容易でなく、工業的には困難である。また、4位アルキル置換−5,6−ジヒドロ−2H−2−ピラノールが知られている(特開昭53-101308 号公報)。
【0006】
【発明が解決しようとする課題】
本発明の目的は、1,5−ペンタンジオール誘導体の効率的な工業的製造方法、および2位および/または4位アルキル置換−1,5−ペンタンジオール誘導体の合成中間体として有用な3位および/または5位アルキル置換−5,6−ジヒドロ−2H−2−ピラノール誘導体を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、一般式(I)
【0008】
【化5】

Figure 0003795547
【0009】
(式中、R1 およびR2 は同一または異なって水素または低級アルキルを表す)で表される2−ブテナール誘導体〔以下、化合物(I)という。他の式番号の化合物についても同様である〕とホルムアルデヒドとを反応させることにより、前記5−ヒドロキシ−2−ペンテナール誘導体〔後述する一般式(IV)で表される化合物に相当〕以外に一般式(III )
【0010】
【化6】
Figure 0003795547
【0011】
(式中、R1 およびR2 は前記と同義である)で表される不飽和ヘミアセタール構造の5,6−ジヒドロ−2H−2−ピラノール誘導体が生成し、この化合物(III )に対して水素化反応を行うことにより一般式(II)
【0012】
【化7】
Figure 0003795547
【0013】
(式中、R1 およびR2 は前記と同義である)で表される1,5−ペンタンジオール誘導体が生成することを見い出した。また、化合物(I)とホルムアルデヒドとの反応で生成する上記化合物(III )と一般式(IV)
【0014】
【化8】
Figure 0003795547
【0015】
(式中、R1 およびR2 は前記と同義である)で表される5−ヒドロキシ−2−ペンテナール誘導体の混合物に対して水素化反応を行うことにより効率よく化合物(II)が得られることを見い出した。
本発明は、化合物(I)とホルムアルデヒドとを反応させ、得られた反応生成物の混合物を水素化することを特徴とする化合物(II)の製造方法、および化合物(III )を水素化することを特徴とする化合物(II)の製造方法に関する。
【0016】
また、本発明により、一般式(III a)
【0017】
【化9】
Figure 0003795547
【0018】
(式中、R1aおよびR2aは同一または異なって水素または低級アルキルを表し、少なくとも一方は低級アルキルを表す)で表される5,6−ジヒドロ−2H−2−ピラノール誘導体を提供することができる。
一般式(I)〜一般式(IV)の各基の定義において、低級アルキルとしては、直鎖または分枝状の炭素数1〜6の、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert- ブチル、ペンチル、ネオペンチル、ヘキシルなどがあげられる。
【0019】
次に、本発明について詳細に説明する。
製造法1:
化合物(II)は、次の反応工程に従い製造することができる。
【0020】
【化10】
Figure 0003795547
【0021】
(式中、R1 およびR2 は前記と同義である)
(工程1)
化合物(I)とホルムアルデヒドとを、塩基性触媒を用い、水溶性の有機溶媒の存在下もしくは非存在下反応させることにより、化合物(III )と化合物(IV)の混合物を得ることができる。
【0022】
化合物(I)の具体例としては、クロトンアルデヒド(2−ブテナール)、2−ペンテナール、2−メチル−2−ブテナール、2−ヘキセナール、2−メチル−2−ペンテナール、2−エチル−2−ブテナール、2−ヘプテナール、2−メチル−2−ヘキセナール、2−エチル−2−ペンテナール、2−プロピル−2−ブテナール、2−メチル−2−ヘプテナール、2−エチル−2−ヘキセナール、2−プロピル−2−ペンテナール、2−エチル−2−ヘプテナール、2−プロピル−2−ヘキセナール、2−プロピル−2−ヘプテナール、5−メチル−2−ヘキセナール、2−イソプロピル−2−ブテナール、2,5−ジメチル−2−ヘキセナール、2−イソプロピル−2−ペンテナール、2−エチル−5−メチル−2−ヘキセナール、2−イソプロピル−2−ヘキセナール、2−イソプロピル−5−メチル−2−ヘキセナール、5−メチル−2−プロピル−2−ヘキセナール、2−イソプロピル−2−ヘプテナール、2−オクテナール、2−ノネナール、2−デセナールなどがあげられ、なかでもクロトンアルデヒド、2−メチル−2−ペンテナール、2−エチル−2−ヘキセナールまたは2−エチル−2−ブテナールが好ましい。
【0023】
これらの2−ブテナール誘導体は、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、オクチルアルデヒドなどから選ばれる1種もしくは2種のアルデヒドを原料とする、公知の方法であるアルドール縮合および脱水反応により容易に製造される。
【0024】
ホルムアルデヒドとしては、市販の30〜50重量%濃度の水溶液(ホルマリン)または70〜95重量%濃度のパラホルムアルデヒドが用いられるが、好適にはホルマリンが用いられる。化合物(I)に対するホルムアルデヒドのモル比は0.4〜2の範囲、好ましくは0.5〜1.5である。
塩基性触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウムなどのアルカリ土類金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、ナトリウムメチラート、ナトリウムエチラート、ナトリウムブチラートなどのナトリウムアルコラート、トリエチルアミン、トリブチルアミンなどの三級アミン、水酸化ベンジルトリメチルアンモニウム、水酸化テトラブチルアンモニウムなどの水酸化四級アンモニウム塩、強塩基性イオン交換樹脂などがあげられる。これらの中では、経済的にアルカリ金属水酸化物またはアルカリ金属炭酸塩が好ましく、特に水酸化ナトリウム、水酸化カリウムまたは炭酸カリウムが好適である。触媒量は、化合物(I)に対してモル比で0.01〜0.5、好ましくは0.02〜0.3である。また、上記塩基性触媒は、水溶液として用いることもできる。
【0025】
化合物(I)および生成する化合物は実質的に水に不溶である。ホルムアルデヒドとしてホルマリンを用いる場合、前記のモル比範囲内で反応液は2層に分離し不均一であり、水溶性の有機溶媒を添加することが好ましい。水溶性の有機溶媒としては、反応条件下に不活性な水溶性有機溶媒であれば特に制限はないが、例えばメタノール、エタノール、プロパノール、イソプロピルアルコール、エチレングリコール、プロピレングリコールなどのアルコール類、ジメトキシエタン、テトラヒドロフラン、ジオキサンなどのエーテル類、エチレングリコールモノエチルエーテルなどのグリコールエーテル類が好適に用いられる。有機溶媒の量は特に制限されないが、化合物(I)とホルマリンの仕込み合計に対して100重量%以下が好ましい。
【0026】
反応温度は、触媒の種類や量によっても異なるが、15〜100℃、好ましくは30〜80℃である。反応時間は、反応温度や触媒の種類、量によっても異なるが、通常1〜10時間である。
反応終了後、化合物(III )と化合物(IV)の混合物は、有機合成化学で常用される精製法、例えば濾過、抽出、洗浄、乾燥、濃縮、蒸留、各種クロマトグラフィーなどに付して精製することができる。また、得られた反応混合物はそのまま次の水素化反応に供することもできるが、好ましくは、不純物の除去などのため、中和、濃縮、分液、水洗などの通常の方法により後処理操作を行うことにより化合物(III )と化合物(IV)を主成分とする混合物を得る。例えば、反応液を減圧濃縮することにより有機溶媒を留去し、有機層と水層に分液させ、次いで目的の中間体を含む有機層を水洗する。反応時に用いる有機溶媒の量によっては濃縮しないでも分液するが、一般に使用した有機溶媒は回収する方が好ましい。反応液の中和の有無に関しては、いずれでも構わない。中和剤に関しても特に制限はないが、硫酸や塩酸などの鉱酸が好適である。水洗に使用される水の量および水洗の回数は特に制限されないが、有機層の量に対して0.2〜1.5倍量で、1〜5回が好ましい。水洗するときの温度は、通常10〜90℃、好ましくは20〜70℃である。水洗の時間は、1回当たり5〜60分、好ましくは10〜30分である。
【0027】
(工程2)
化合物(II)は、工程1で得られた化合物(III )と化合物(IV)の混合物を水素化反応に付すことにより得ることができる。
化合物(III )と化合物(IV)の混合物から化合物(II)への水素化反応は、水素共存下、適当な溶媒中もしくは無溶媒で水素化触媒を分散または懸濁させるか、あるいは該触媒を充填した反応管に化合物(III )と化合物(IV)の混合物の溶液を供給する方法で行われる。
【0028】
適当な溶媒としては、反応条件下に不活性であれば特に制限はないが、例えばメタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなどのアルコール類、ジメトキシエタン、テトラヒドロフラン、ジオキサンなどのエーテル類、水、あるいはこれらの混合溶媒などがあげられる。水素化触媒としては、ニッケル、ルテニウム、白金、銅、ロジウムなどの金属の1種または2種以上を触媒活性成分として含有するものがあげられる。また、これらの金属にクロム、亜鉛、バリウム、アルミニウム、マグネシウム、タングステンなどの金属をさらなる成分として含有するものも好適な触媒としてあげられる。
【0029】
一般に、水素化反応は、30〜200℃、好ましくは50〜150℃の温度範囲で、1〜150kg/cm2 、好ましくは5〜80kg/cm2 の水素圧で、例えば攪拌オートクレーブまたは反応管中において、回分式または連続式のいずれの方法によっても行われる。
反応終了後、反応液から通常の方法により目的化合物(II)を単離精製することができる。例えば触媒を除去した反応液中の低沸点化合物を常圧または減圧下に留去し、次いで得られる残査を減圧蒸留することにより精製することができる。
【0030】
化合物(II)の具体例としては、1,5−ペンタンジオール、2−メチル−1,5−ペンタンジオール、2−エチル−1,5−ペンタンジオール、2,4−ジメチル−1,5−ペンタンジオール、2−プロピル−1,5−ペンタンジオール、2−エチル−4−メチル−1,5−ペンタンジオール、2−メチル−4−プロピル−1,5−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、2−エチル−4−プロピル−1,5−ペンタンジオール、2,4−ジプロピル−1,5−ペンタンジオール、2−イソプロピル−1,5−ペンタンジオール、2−イソプロピル−4−メチル−1,5−ペンタンジオール、2−エチル−4−イソプロピル−1,5−ペンタンジオール、2,4−ジイソプロピル−1,5−ペンタンジオール、2−イソプロピル−4−プロピル−1,5−ペンタンジオール、2−ブチル−1,5−ペンタンジオール、2−ペンチル−1,5−ペンタンジオール、2−ヘキシル−1,5−ペンタンジオールなどがあげられ、なかでも、1,5−ペンタンジオール、2,4−ジメチル−1,5−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオールまたは2−エチル−1,5−ペンタンジオールが好ましい。
【0031】
製造法2:
化合物(III a)は、化合物(I)の中でR1 およびR2 が同時には水素でない化合物(Ia)から製造法1工程1の方法に準じて製造することができる。
反応液から目的の化合物(III a)を単離するには、中和、濃縮、分液、水洗、蒸留などの通常の方法が用いられる。例えば、反応液を減圧濃縮することにより有機溶媒を留去し、有機層と水層に分液させ、次いで目的化合物を含む有機層を水洗し、該有機層を蒸留に付す。反応時に用いる有機溶媒の量によっては濃縮しないでも分液するが、一般に使用した有機溶媒は回収する方が好ましい。反応液の中和の有無に関しては、いずれでも構わない。中和剤に関しても特に制限はないが、硫酸や塩酸などの鉱酸が好適である。水洗に使用される水の量および水洗の回数は特に制限されないが、有機層の量に対して0.2〜1.5倍量で、1〜5回が好ましい。水洗するときの温度は、通常10〜90℃、好ましくは20〜70℃の範囲である。水洗の時間は、1回当たり5〜60分、好ましくは10〜30分である。蒸留は常圧または減圧下に行われる。
【0032】
化合物(III a)の具体例としては、3−メチル−5,6−ジヒドロ−2H−2−ピラノール、5−メチル−5,6−ジヒドロ−2H−2−ピラノール、3−エチル−5,6−ジヒドロ−2H−2−ピラノール、5−エチル−5,6−ジヒドロ−2H−2−ピラノール、3,5−ジメチル−5,6−ジヒドロ−2H−2−ピラノール、3−プロピル−5,6−ジヒドロ−2H−2−ピラノール、5−プロピル−5,6−ジヒドロ−2H−2−ピラノール、3−エチル−5−メチル−5,6−ジヒドロ−2H−2−ピラノール、5−エチル−3−メチル−5,6−ジヒドロ−2H−2−ピラノール、3−メチル−5−プロピル−5,6−ジヒドロ−2H−2−ピラノール、5−メチル−3−プロピル−5,6−ジヒドロ−2H−2−ピラノール、3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノール、3−エチル−5−プロピル−5,6−ジヒドロ−2H−2−ピラノール、5−エチル−3−プロピル−5,6−ジヒドロ−2H−2−ピラノール、3,5−ジプロピル−5,6−ジヒドロ−2H−2−ピラノール、3−イソプロピル−5,6−ジヒドロ−2H−2−ピラノール、5−イソプロピル−5,6−ジヒドロ−2H−2−ピラノール、3−イソプロピル−5−メチル−5,6−ジヒドロ−2H−2−ピラノール、5−イソプロピル−3−メチル−5,6−ジヒドロ−2H−2−ピラノール、3−エチル−5−イソプロピル−5,6−ジヒドロ−2H−2−ピラノール、5−エチル−3−イソプロピル−5,6−ジヒドロ−2H−2−ピラノール、3,5−ジイソプロピル−5,6−ジヒドロ−2H−2−ピラノール、3−イソプロピル−5−プロピル−5,6−ジヒドロ−2H−2−ピラノール、5−イソプロピル−3−プロピル−5,6−ジヒドロ−2H−2−ピラノール、5−ブチル−5,6−ジヒドロ−2H−2−ピラノール、5−ペンチル−5,6−ジヒドロ−2H−2−ピラノール、5−ヘキシル−5,6−ジヒドロ−2H−2−ピラノールなどがあげられ、なかでも3,5−ジメチル−5,6−ジヒドロ−2H−2−ピラノール、3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノールまたは3−エチル−5,6−ジヒドロ−2H−2−ピラノールが好ましい。
【0033】
製造法3:
化合物(II)は、化合物(III )から製造法1工程2の方法に準じて製造することもできる。
以下に、実施例により本発明の態様を説明する。
【0034】
【実施例】
実施例1:
50℃に加熱した2−エチル−2−ヘキセナール726g(純度99.0%、5.7モル)、37%ホルマリン308g(3.8モル)およびメタノール517gの混合液に、攪拌しながら25%水酸化ナトリウム水溶液60.8g(0.38モル)を1時間かけて滴下した。滴下終了後、さらに50℃で3時間攪拌を行った。反応液をガスクロマトグラフィー(ジエチレングリコールジメチルエーテルを内部標準とする内部標準法)により分析したところ、2,4−ジエチル−5−ヒドロキシ−2−ペンテナールおよび3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノールの仕込みホルムアルデヒド基準および消費した2−エチル−2−ヘキセナール基準の収率は次のとおりであった。
【0035】
【表1】
Figure 0003795547
【0036】
反応液からメタノールを減圧下に留去(100〜50mmHg、浴温65℃)した後、残査に水430mlを加えた。55℃で10分間攪拌後、約20分間静置し、水層を除去した。同様の水洗操作をさらに2回行い、有機層769gを得た。このうち675gをニッケル触媒(エヌ・イー・ケムキャット社製、ハーショウ−Ni5258E)34gと共に1000mlのオートクレーブに仕込み、水素圧を25kg/cm2 に保ちながら120℃で4時間加熱攪拌した。反応終了後、反応液をガスクロマトグラフィーにより分析したところ、水素化反応による2,4−ジエチル−1,5−ペンタンジオールの収率は91%であった。
【0037】
反応液から触媒を濾別した後、減圧蒸留により沸点133〜137℃/2mmHgの留分として2,4−ジエチル−1,5−ペンタンジオール375gを得た。2,4−ジエチル−1,5−ペンタンジオールの通算収率はホルムアルデヒド基準で70%、消費した2−エチル−2−ヘキセナール基準で80%であった。
構造は、マススペクトルおよび 1H−NMRで確認した。
【0038】
Figure 0003795547
1H−NMR(CDCl3 ,δ)0.91(6H,t,J=7.4Hz),1.1−1.6(8H,m),2.66(1H,br,−OH),3.03(1H,br,−OH),3.42−3.66(4H,m)
1H−NMR(CDCl3 +D2 O,δ)0.90(6H,t,J=7.4Hz),1.1−1.6(8H,m),3.43(1H,dd,J=5.6,10.7Hz),3.49(1H,dd,J=6.4,10.5Hz),3.55(1H,dd,J=5.3,10.5Hz),3.62(1H,dd,J=3.9,10.7Hz)
【0039】
実施例2:
50℃に加熱した2−エチル−2−ヘキセナール28.7g(純度99.0%、0.225モル)、37%ホルマリン12.5g(0.15モル)およびメタノール25mlの混合物に、25%水酸化カリウム水溶液3.37g(0.015モル)を20分かけて滴下した。滴下終了後、さらに50℃で4時間攪拌を行った。反応液をガスクロマトグラフィー(ジエチレングリコールジメチルエーテルを内部標準とする内部標準法)により分析したところ、2,4−ジエチル−5−ヒドロキシ−2−ペンテナールおよび3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノールの仕込みホルムアルデヒド基準および消費した2−エチル−2−ヘキセナール基準の収率は次のとおりであった。
【0040】
【表2】
Figure 0003795547
【0041】
反応液からメタノールを減圧下に留去(100〜50mmHg、浴温65℃)した後、残査に水18mlを加えた。55℃で10分間攪拌後、約20分間静置し、水層を除去した。同様の水洗操作をさらに2回行った後、有機層をラネーニッケル1.5g、メタノール25mlおよび水5mlと共に100m1のオートクレーブに仕込み、水素圧25kg/cm2 、120℃で4時間加熱攪拌した。反応終了後、反応液をガスクロマトグラフィーにより分析したところ、水素化反応による2,4−ジエチル−1,5−ペンタンジオールの収率は92%であった。
【0042】
実施例3:
50℃に加熱した2−エチル−2−ヘキセナール776g(純度97.6%、6.0モル)、37%ホルマリン324g(4.0モル)およびメタノール550gの混合液に、攪拌しながら25%水酸化ナトリウム水溶液64g(0.4モル)を1時間かけて滴下した。滴下終了後、さらに50℃で3時間攪拌を行った。反応液をガスクロマトグラフィー(ジエチレングリコールジメチルエーテルを内部標準とする内部標準法)により分析したところ、3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノールの仕込みホルムアルデヒド基準および消費した2−エチル−2−ヘキセナール基準の収率はそれぞれ26%および30%であった。
【0043】
反応液からメタノールを減圧下に留去(100〜50mmHg、浴温60℃)した後、残査に水550mlを加えた。55〜60℃で10分間攪拌後、約10分間静置し、水層を除去した。同様の水洗操作をさらに2回行った後、有機層を内径50mm、高さ1mのマクマホン充填塔を用いて精留し、沸点97〜98℃/1mmHgの留分として3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノール(純度99%)89.1gを、沸点110℃/1mmHgの留分として2,4−ジエチル−5−ヒドロキシ−2−ペンテナール(純度95%)99.5gを得た。
【0044】
構造は、マススペクトルおよび 1H−NMRで確認した。 1H−NMRの結果から、3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノールは約3:2のシス−トランス異性体混合物であることがわかった。
Figure 0003795547
1H−NMR(CDCl3 ,δ)0.95(3H,t,J=7.4Hz),1.06(3H,t,J=7.4Hz),1.25−1.35および1.35−1.5(2H,3:2,m),1.85および2.22(1H,2:3,2bs),2.0−2.2(2H,m),2.88および2.89(1H,2d,J=5.6および5.4Hz),3.57および3.57(1H,tおよびdt,t:J=10.7Hz,dt:J=1.6,11.3Hz),3.74および4.05(1H,3:2,dddおよびdd,ddd:J=1.2,5.6,10.7Hz,dd:J=4.0,11.3Hz),5.16および5.20(1H,2:3,2d,J=5.1および4.9Hz),5.56および5.66(1H,3:2,sおよびd,d:J=4.9Hz)
2,4−ジエチル−5−ヒドロキシ−2−ペンテナール
マススペクトル(CI法、m/z)157(M+1)
マススペクトル(EI法、m/z)126(M−HCHO)
1H−NMR(CDCl3 ,δ)0.92(3H,t,J=7.5Hz),1.00(3H,t,J=7.6Hz),1.3−1.45(1H,m),1.6−1.75(1H,m),2.25−2.4(2H,m),2.7−2.85(1H,m),3.05(1H,br),3.61(1H,dd,J=7.1,10.7Hz),3.70(1H,dd,J=5.4,10.7Hz),6.25(1H,d,J=10.5Hz),9.39(1H,s)
【0045】
実施例4:
実施例3で得られた3,5−ジエチル−5,6−ジヒドロ−2H−2−ピラノール5gをラネーニッケル0.25gおよび水0.5mlと共に100mlのオートクレーブに仕込み、水素圧30kg/cm2 、120℃で5時間攪拌した。反応液から触媒を濾別した後、水を減圧留去し、2,4−ジエチル−1,5−ペンタンジオールを定量的に得た。
【0046】
【発明の効果】
本発明により、1,5−ペンタンジオール誘導体の製造方法および1,5−ペンタンジオール誘導体の合成中間体として有用な5,6−ジヒドロ−2H−2−ピラノール誘導体が提供される。[0001]
[Industrial application fields]
The present invention relates to a method for producing a 1,5-pentanediol derivative and a 5,6-dihydro-2H-2-pyranol derivative useful as a synthetic intermediate for the 1,5-pentanediol derivative.
1,5-pentanediol derivatives are used as raw materials for polyesters, polyester polyols, alkyds, polyurethanes, reactive monomers, paints, adhesives, inks, fibers, films, synthetic leather, plasticizers, lubricants, elastomers, foams, In addition to being used in fields such as molding materials, it is useful as a raw material for organic synthesis and as a wetting agent.
[0002]
[Prior art]
As a method for producing a 1,5-pentanediol derivative substituted or unsubstituted at the 2-position and / or 4-position from a 2-butenal derivative, (A) a 2-butenal derivative is reacted with formaldehyde A method is known in which the intermediate 5-hydroxy-2-pentenal derivative is separated from the reaction solution and subjected to catalytic reduction [US Pat. No. 3,046,311 (1962)]. However, according to the examples of the patent, the yield of the intermediate 5-hydroxy-2,4-dimethyl-2-pentenal based on the consumed 2-methyl-2-pentenal is as low as 63%, The yield of 5-hydroxy-2-pentenal from crotonaldehyde is only 12%.
[0003]
In addition, as a method for producing 2,4-dimethyl-1,5-pentanediol, (B) a method in which diethyl methylmalonate and methyl methacrylate are used as starting materials and the reaction is performed in three steps, followed by reduction with lithium aluminum hydride [ The Journal of American Chemical Society, 77 , 1862 (1955); Chemical Abstracts, 50 , 2583d (1956)], (C) A method of catalytically reducing 2-methyl-4-methyleneglutaraldehyde obtained by thermally decomposing 2-ethenyl-5-methylene-1,3-dioxane using Raney nickel as a catalyst [Bulletin de la Societe Chimique de France, 1965, 1355; Chemical Abstracts, 63, 11546e (1965)], (D) a method of hydroborating 2,4-dimethyl-1,4-pentadiene [The Journal of American Chemical Society, 95 , 6757 (1973); Chemical Abstracts, 80 , 3372k (1974)]. However, the method (B) or (D) is unsuitable industrially because of the use of expensive reagents such as lithium aluminum hydride and borane, and the method (C) provides the target product only in a low yield. I can't.
[0004]
As a method for producing 2,4-diethyl-1,5-pentanediol, (E) catalytic reduction of 3,5-diethyltetrahydropyran produced by hydroformylation of 2-ethyl-2-hexenol [Germany] Patent 2,410,156 (1975); Chemical Abstracts, 84 , 43291x (1976)], which is a by-product in the synthesis of 2-ethyl-3-propyl-1,4-butanediol and has a very low yield.
[0005]
On the other hand, as a method for producing 5,6-dihydro-2H-2-pyranol, (F) a method of reacting 3-bromotetrahydro-2-pyranol in alcohol in the presence of sodium [Tetrahedron, 18, 657 (1962); Chemical Abstracts, 57 , 11150c (1962)], (G) a method of reducing 5,6-dihydro-2-pyrone with diisobutylaluminum hydride [Journal of Organic Chemistry, 48 , 5170 (1983)], (H) a method of catalytic reduction of 2-hydroperoxy-5,6-dihydro-2H-pyran (JP-A-53-101308), and the like are known. However, the synthesis of the 3- and / or 5-position alkyl-substituted-5,6-dihydro-2H-2-pyranol derivatives by the methods (F) to (H) described above is not easy to obtain the raw materials, It is difficult industrially. Also, 4-position alkyl substituted 5,6-dihydro-2H-2-pyranol is known (Japanese Patent Laid-Open No. 53-101308).
[0006]
[Problems to be solved by the invention]
The object of the present invention is to provide an efficient industrial process for the production of 1,5-pentanediol derivatives, and the 3-positions useful as synthesis intermediates for 2- and / or 4-position alkyl-substituted-1,5-pentanediol derivatives and Another object is to provide a 5-position alkyl-substituted-5,6-dihydro-2H-2-pyranol derivative.
[0007]
[Means for Solving the Problems]
The inventors have the general formula (I)
[0008]
[Chemical formula 5]
Figure 0003795547
[0009]
(Wherein R 1 And R 2 Are the same or different and each represents hydrogen or lower alkyl) (hereinafter referred to as compound (I)). The same applies to compounds of other formula numbers] and formaldehyde to react with the compound other than the 5-hydroxy-2-pentenal derivative (corresponding to a compound represented by the general formula (IV) described later). (III)
[0010]
[Chemical 6]
Figure 0003795547
[0011]
(Wherein R 1 And R 2 Is an unsaturated hemiacetal structure 5,6-dihydro-2H-2-pyranol derivative represented by the above formula (III), and this compound (III) is subjected to a hydrogenation reaction to form a general formula (II)
[0012]
[Chemical 7]
Figure 0003795547
[0013]
(Wherein R 1 And R 2 It is found that a 1,5-pentanediol derivative represented by the above formula is produced. Further, the compound (III) produced by the reaction of the compound (I) with formaldehyde and the general formula (IV)
[0014]
[Chemical 8]
Figure 0003795547
[0015]
(Wherein R 1 And R 2 It is found that compound (II) can be obtained efficiently by carrying out a hydrogenation reaction on a mixture of 5-hydroxy-2-pentenal derivatives represented by the above.
The present invention relates to a method for producing compound (II) characterized by reacting compound (I) with formaldehyde and hydrogenating the resulting mixture of reaction products, and hydrogenating compound (III) To a process for producing compound (II) characterized by
[0016]
According to the invention, the general formula (IIIa)
[0017]
[Chemical 9]
Figure 0003795547
[0018]
(Wherein R 1a And R 2a Are the same or different and each represents hydrogen or lower alkyl, and at least one of them represents lower alkyl), can provide a 5,6-dihydro-2H-2-pyranol derivative.
In definition of each group of general formula (I)-general formula (IV), as lower alkyl, linear or branched C1-C6, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl and the like.
[0019]
Next, the present invention will be described in detail.
Production method 1:
Compound (II) can be produced according to the following reaction steps.
[0020]
[Chemical Formula 10]
Figure 0003795547
[0021]
(Wherein R 1 And R 2 Is as defined above)
(Process 1)
A mixture of compound (III) and compound (IV) can be obtained by reacting compound (I) with formaldehyde in the presence or absence of a water-soluble organic solvent using a basic catalyst.
[0022]
Specific examples of compound (I) include crotonaldehyde (2-butenal), 2-pentenal, 2-methyl-2-butenal, 2-hexenal, 2-methyl-2-pentenal, 2-ethyl-2-butenal, 2-heptenal, 2-methyl-2-hexenal, 2-ethyl-2-pentenal, 2-propyl-2-butenal, 2-methyl-2-heptenal, 2-ethyl-2-hexenal, 2-propyl-2- Pentenal, 2-ethyl-2-heptenal, 2-propyl-2-hexenal, 2-propyl-2-heptenal, 5-methyl-2-hexenal, 2-isopropyl-2-butenal, 2,5-dimethyl-2- Hexenal, 2-isopropyl-2-pentenal, 2-ethyl-5-methyl-2-hexenal, 2- Sopropyl-2-hexenal, 2-isopropyl-5-methyl-2-hexenal, 5-methyl-2-propyl-2-hexenal, 2-isopropyl-2-heptenal, 2-octenal, 2-nonenal, 2-decenal, etc. Among them, crotonaldehyde, 2-methyl-2-pentenal, 2-ethyl-2-hexenal or 2-ethyl-2-butenal is preferable.
[0023]
These 2-butenal derivatives are known methods using as raw materials one or two aldehydes selected from acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, isovaleraldehyde, hexylaldehyde, heptylaldehyde, octylaldehyde, and the like. It is easily produced by aldol condensation and dehydration reaction.
[0024]
As the formaldehyde, a commercially available aqueous solution (formalin) having a concentration of 30 to 50% by weight or paraformaldehyde having a concentration of 70 to 95% by weight is used, and formalin is preferably used. The molar ratio of formaldehyde to compound (I) is in the range of 0.4-2, preferably 0.5-1.5.
Basic catalysts include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and alkalis such as sodium carbonate and potassium carbonate. Metal carbonates, sodium alcoholates such as sodium methylate, sodium ethylate, sodium butyrate, tertiary amines such as triethylamine, tributylamine, quaternary ammonium hydroxide salts such as benzyltrimethylammonium hydroxide, tetrabutylammonium hydroxide, For example, strong basic ion exchange resins. Of these, alkali metal hydroxides or alkali metal carbonates are preferred economically, and sodium hydroxide, potassium hydroxide, or potassium carbonate is particularly preferred. The amount of the catalyst is 0.01 to 0.5, preferably 0.02 to 0.3, as a molar ratio with respect to the compound (I). The basic catalyst can also be used as an aqueous solution.
[0025]
Compound (I) and the resulting compound are substantially insoluble in water. When formalin is used as formaldehyde, the reaction solution is separated into two layers within the above molar ratio range and is non-uniform, and it is preferable to add a water-soluble organic solvent. The water-soluble organic solvent is not particularly limited as long as it is inactive under the reaction conditions. For example, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, ethylene glycol and propylene glycol, dimethoxyethane , Ethers such as tetrahydrofuran and dioxane, and glycol ethers such as ethylene glycol monoethyl ether are preferably used. The amount of the organic solvent is not particularly limited, but is preferably 100% by weight or less with respect to the total amount of compound (I) and formalin charged.
[0026]
The reaction temperature varies depending on the type and amount of the catalyst, but is 15 to 100 ° C, preferably 30 to 80 ° C. The reaction time varies depending on the reaction temperature and the type and amount of the catalyst, but is usually 1 to 10 hours.
After completion of the reaction, the mixture of compound (III) and compound (IV) is purified by a purification method commonly used in organic synthetic chemistry, for example, filtration, extraction, washing, drying, concentration, distillation, various chromatography, etc. be able to. The obtained reaction mixture can be used for the next hydrogenation reaction as it is, but preferably, after removal of impurities, post-treatment operations are carried out by ordinary methods such as neutralization, concentration, liquid separation, and water washing. By carrying out, the mixture which has compound (III) and compound (IV) as a main component is obtained. For example, the organic solvent is distilled off by concentrating the reaction solution under reduced pressure, the organic layer and the aqueous layer are separated, and then the organic layer containing the target intermediate is washed with water. Depending on the amount of the organic solvent used in the reaction, the liquid is separated without being concentrated, but it is generally preferable to recover the used organic solvent. Any of neutralization of the reaction solution may be used. There are no particular restrictions on the neutralizing agent, but mineral acids such as sulfuric acid and hydrochloric acid are preferred. The amount of water used for water washing and the number of times of water washing are not particularly limited, but are 0.2 to 1.5 times the amount of the organic layer, preferably 1 to 5 times. The temperature when washing with water is usually 10 to 90 ° C, preferably 20 to 70 ° C. The washing time is 5 to 60 minutes, preferably 10 to 30 minutes per time.
[0027]
(Process 2)
Compound (II) can be obtained by subjecting a mixture of compound (III) and compound (IV) obtained in step 1 to a hydrogenation reaction.
In the hydrogenation reaction from the mixture of compound (III) and compound (IV) to compound (II), the hydrogenation catalyst is dispersed or suspended in a suitable solvent or without solvent in the presence of hydrogen, or the catalyst is This is performed by supplying a solution of a mixture of compound (III) and compound (IV) to the filled reaction tube.
[0028]
Suitable solvents are not particularly limited as long as they are inert under the reaction conditions. For example, alcohols such as methanol, ethanol, propanol, isopropyl alcohol and butanol, ethers such as dimethoxyethane, tetrahydrofuran and dioxane, water, Alternatively, a mixed solvent thereof can be used. Examples of the hydrogenation catalyst include those containing one or more metals such as nickel, ruthenium, platinum, copper and rhodium as catalytic active components. Moreover, what contains metals, such as chromium, zinc, barium, aluminum, magnesium, and tungsten, in these metals as a further component is mention | raise | lifted as a suitable catalyst.
[0029]
In general, the hydrogenation reaction is carried out in the temperature range of 30 to 200 ° C., preferably 50 to 150 ° C., and 1 to 150 kg / cm. 2 , Preferably 5-80 kg / cm 2 For example, in a stirred autoclave or reaction tube, either batchwise or continuously.
After completion of the reaction, the target compound (II) can be isolated and purified from the reaction solution by a conventional method. For example, the low boiling point compound in the reaction solution from which the catalyst has been removed can be purified by distilling off under normal pressure or reduced pressure, and then the resulting residue can be purified by distillation under reduced pressure.
[0030]
Specific examples of the compound (II) include 1,5-pentanediol, 2-methyl-1,5-pentanediol, 2-ethyl-1,5-pentanediol, and 2,4-dimethyl-1,5-pentane. Diol, 2-propyl-1,5-pentanediol, 2-ethyl-4-methyl-1,5-pentanediol, 2-methyl-4-propyl-1,5-pentanediol, 2,4-diethyl-1 , 5-pentanediol, 2-ethyl-4-propyl-1,5-pentanediol, 2,4-dipropyl-1,5-pentanediol, 2-isopropyl-1,5-pentanediol, 2-isopropyl-4 -Methyl-1,5-pentanediol, 2-ethyl-4-isopropyl-1,5-pentanediol, 2,4-diisopropyl-1,5-pentanediol, -Isopropyl-4-propyl-1,5-pentanediol, 2-butyl-1,5-pentanediol, 2-pentyl-1,5-pentanediol, 2-hexyl-1,5-pentanediol, etc. Of these, 1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol or 2-ethyl-1,5-pentanediol is preferable.
[0031]
Production method 2:
Compound (IIIa) is R in Compound (I). 1 And R 2 Can be produced from compound (Ia) which is not hydrogen at the same time according to the production method 1 step 1.
In order to isolate the target compound (IIIa) from the reaction solution, usual methods such as neutralization, concentration, liquid separation, water washing and distillation are used. For example, the organic solvent is distilled off by concentrating the reaction solution under reduced pressure, the organic layer and the aqueous layer are separated, then the organic layer containing the target compound is washed with water, and the organic layer is subjected to distillation. Depending on the amount of the organic solvent used in the reaction, the liquid is separated without being concentrated, but it is generally preferable to recover the used organic solvent. Any of neutralization of the reaction solution may be used. There are no particular restrictions on the neutralizing agent, but mineral acids such as sulfuric acid and hydrochloric acid are preferred. The amount of water used for water washing and the number of times of water washing are not particularly limited, but are 0.2 to 1.5 times the amount of the organic layer, preferably 1 to 5 times. The temperature at the time of washing with water is usually 10 to 90 ° C, preferably 20 to 70 ° C. The washing time is 5 to 60 minutes, preferably 10 to 30 minutes per time. Distillation is performed under normal pressure or reduced pressure.
[0032]
Specific examples of compound (IIIa) include 3-methyl-5,6-dihydro-2H-2-pyranol, 5-methyl-5,6-dihydro-2H-2-pyranol, 3-ethyl-5,6. -Dihydro-2H-2-pyranol, 5-ethyl-5,6-dihydro-2H-2-pyranol, 3,5-dimethyl-5,6-dihydro-2H-2-pyranol, 3-propyl-5,6 -Dihydro-2H-2-pyranol, 5-propyl-5,6-dihydro-2H-2-pyranol, 3-ethyl-5-methyl-5,6-dihydro-2H-2-pyranol, 5-ethyl-3 -Methyl-5,6-dihydro-2H-2-pyranol, 3-methyl-5-propyl-5,6-dihydro-2H-2-pyranol, 5-methyl-3-propyl-5,6-dihydro-2H -2-pyranol, 3,5-diethyl-5,6-dihydro-2H-2-pyranol, 3-ethyl-5-propyl-5,6-dihydro-2H-2-pyranol, 5-ethyl-3-propyl-5,6- Dihydro-2H-2-pyranol, 3,5-dipropyl-5,6-dihydro-2H-2-pyranol, 3-isopropyl-5,6-dihydro-2H-2-pyranol, 5-isopropyl-5,6- Dihydro-2H-2-pyranol, 3-isopropyl-5-methyl-5,6-dihydro-2H-2-pyranol, 5-isopropyl-3-methyl-5,6-dihydro-2H-2-pyranol, 3- Ethyl-5-isopropyl-5,6-dihydro-2H-2-pyranol, 5-ethyl-3-isopropyl-5,6-dihydro-2H-2-pyranol, 3,5-diisopropyl -5,6-dihydro-2H-2-pyranol, 3-isopropyl-5-propyl-5,6-dihydro-2H-2-pyranol, 5-isopropyl-3-propyl-5,6-dihydro-2H-2 -Pyranol, 5-butyl-5,6-dihydro-2H-2-pyranol, 5-pentyl-5,6-dihydro-2H-2-pyranol, 5-hexyl-5,6-dihydro-2H-2-pyranol Among them, 3,5-dimethyl-5,6-dihydro-2H-2-pyranol, 3,5-diethyl-5,6-dihydro-2H-2-pyranol or 3-ethyl-5,6 -Dihydro-2H-2-pyranol is preferred.
[0033]
Production method 3:
Compound (II) can also be produced from compound (III) according to the method of production method 1 step 2.
Hereinafter, embodiments of the present invention will be described by way of examples.
[0034]
【Example】
Example 1:
A mixture of 726 g of 2-ethyl-2-hexenal (purity 99.0%, 5.7 mol), 308 g of 37% formalin (3.8 mol) and 517 g of methanol heated to 50 ° C. was stirred with 25% water. 60.8 g (0.38 mol) of an aqueous sodium oxide solution was added dropwise over 1 hour. After completion of dropping, the mixture was further stirred at 50 ° C. for 3 hours. The reaction solution was analyzed by gas chromatography (internal standard method using diethylene glycol dimethyl ether as an internal standard). As a result, 2,4-diethyl-5-hydroxy-2-pentenal and 3,5-diethyl-5,6-dihydro-2H were analyzed. The yield based on the charged formaldehyde of 2-pyranol and the consumed 2-ethyl-2-hexenal was as follows.
[0035]
[Table 1]
Figure 0003795547
[0036]
Methanol was distilled off from the reaction solution under reduced pressure (100 to 50 mmHg, bath temperature 65 ° C.), and 430 ml of water was added to the residue. After stirring at 55 ° C. for 10 minutes, the mixture was allowed to stand for about 20 minutes, and the aqueous layer was removed. The same water washing operation was further performed twice to obtain 769 g of an organic layer. Of this, 675 g was charged into a 1000 ml autoclave together with 34 g of nickel catalyst (manufactured by N.E. Chemcat, Hersho-Ni5258E), and the hydrogen pressure was 25 kg / cm. 2 The mixture was heated and stirred at 120 ° C. for 4 hours. When the reaction solution was analyzed by gas chromatography after the reaction was completed, the yield of 2,4-diethyl-1,5-pentanediol by the hydrogenation reaction was 91%.
[0037]
After the catalyst was filtered off from the reaction solution, 375 g of 2,4-diethyl-1,5-pentanediol was obtained as a fraction having a boiling point of 133 to 137 ° C./2 mmHg by distillation under reduced pressure. The overall yield of 2,4-diethyl-1,5-pentanediol was 70% on the basis of formaldehyde and 80% on the basis of consumed 2-ethyl-2-hexenal.
The structure is the mass spectrum and 1 Confirmed by 1 H-NMR.
[0038]
Figure 0003795547
1 H-NMR (CDCl Three , Δ) 0.91 (6H, t, J = 7.4 Hz), 1.1-1.6 (8H, m), 2.66 (1H, br, —OH), 3.03 (1H, br) , -OH), 3.42-3.66 (4H, m)
1 H-NMR (CDCl Three + D 2 O, δ) 0.90 (6H, t, J = 7.4 Hz), 1.1-1.6 (8H, m), 3.43 (1H, dd, J = 5.6, 10.7 Hz) , 3.49 (1H, dd, J = 6.4, 10.5 Hz), 3.55 (1H, dd, J = 5.3, 10.5 Hz), 3.62 (1H, dd, J = 3 .9, 10.7 Hz)
[0039]
Example 2:
To a mixture of 28.7 g of 2-ethyl-2-hexenal heated to 50 ° C. (purity 99.0%, 0.225 mol), 12.5 g of 37% formalin (0.15 mol) and 25 ml of methanol, 25% water 3.37 g (0.015 mol) of an aqueous potassium oxide solution was added dropwise over 20 minutes. After completion of dropping, the mixture was further stirred at 50 ° C. for 4 hours. The reaction solution was analyzed by gas chromatography (internal standard method using diethylene glycol dimethyl ether as an internal standard). As a result, 2,4-diethyl-5-hydroxy-2-pentenal and 3,5-diethyl-5,6-dihydro-2H were analyzed. The yield based on the charged formaldehyde of 2-pyranol and the consumed 2-ethyl-2-hexenal was as follows.
[0040]
[Table 2]
Figure 0003795547
[0041]
Methanol was distilled off from the reaction solution under reduced pressure (100 to 50 mmHg, bath temperature 65 ° C.), and 18 ml of water was added to the residue. After stirring at 55 ° C. for 10 minutes, the mixture was allowed to stand for about 20 minutes, and the aqueous layer was removed. After performing the same water washing operation twice more, the organic layer was charged into a 100 ml autoclave together with 1.5 g of Raney nickel, 25 ml of methanol and 5 ml of water, and a hydrogen pressure of 25 kg / cm. 2 The mixture was heated and stirred at 120 ° C. for 4 hours. When the reaction solution was analyzed by gas chromatography after the reaction was completed, the yield of 2,4-diethyl-1,5-pentanediol by the hydrogenation reaction was 92%.
[0042]
Example 3:
A mixture of 776 g of 2-ethyl-2-hexenal (purity 97.6%, 6.0 mol), 37% formalin 324 g (4.0 mol) and methanol 550 g heated to 50 ° C. was stirred with 25% water. Sodium oxide aqueous solution 64g (0.4mol) was dripped over 1 hour. After completion of dropping, the mixture was further stirred at 50 ° C. for 3 hours. The reaction solution was analyzed by gas chromatography (internal standard method using diethylene glycol dimethyl ether as an internal standard). As a result, 3,5-diethyl-5,6-dihydro-2H-2-pyranol was charged with formaldehyde standards and consumed 2-ethyl. The yield based on -2-hexenal was 26% and 30%, respectively.
[0043]
Methanol was distilled off from the reaction solution under reduced pressure (100 to 50 mmHg, bath temperature 60 ° C.), and 550 ml of water was added to the residue. After stirring at 55-60 ° C. for 10 minutes, the mixture was allowed to stand for about 10 minutes to remove the aqueous layer. After the same water washing operation was further performed twice, the organic layer was rectified using a McMahon packed tower having an inner diameter of 50 mm and a height of 1 m, and 3,5-diethyl-5 as a fraction having a boiling point of 97 to 98 ° C./1 mmHg. , 6-Dihydro-2H-2-pyranol (purity 99%) 89.1 g, 2,4-diethyl-5-hydroxy-2-pentenal (purity 95%) 99.5 g as a fraction having a boiling point of 110 ° C./1 mmHg Got.
[0044]
The structure is the mass spectrum and 1 Confirmed by 1 H-NMR. 1 From the results of H-NMR, it was found that 3,5-diethyl-5,6-dihydro-2H-2-pyranol is an approximately 3: 2 cis-trans isomer mixture.
Figure 0003795547
1 H-NMR (CDCl Three , Δ) 0.95 (3H, t, J = 7.4 Hz), 1.06 (3H, t, J = 7.4 Hz), 1.25-1.35 and 1.35-1.5 (2H , 3: 2, m), 1.85 and 2.22 (1H, 2: 3, 2bs), 2.0-2.2 (2H, m), 2.88 and 2.89 (1H, 2d, J = 5.6 and 5.4 Hz), 3.57 and 3.57 (1H, t and dt, t: J = 10.7 Hz, dt: J = 1.6, 11.3 Hz), 3.74 and 4.05 (1H, 3: 2, ddd and dd, ddd: J = 1.2, 5.6, 10.7 Hz, dd: J = 4.0, 11.3 Hz), 5.16 and 5.20 (1H, 2: 3, 2d, J = 5.1 and 4.9 Hz), 5.56 and 5.66 (1H, 3: 2, s and d, d: J = 4.9 Hz)
2,4-diethyl-5-hydroxy-2-pentenal
Mass spectrum (CI method, m / z) 157 (M + 1)
Mass spectrum (EI method, m / z) 126 (M-HCHO)
1 H-NMR (CDCl Three , Δ) 0.92 (3H, t, J = 7.5 Hz), 1.00 (3H, t, J = 7.6 Hz), 1.3-1.45 (1H, m), 1.6- 1.75 (1H, m), 2.25-2.4 (2H, m), 2.7-2.85 (1H, m), 3.05 (1H, br), 3.61 (1H, dd, J = 7.1, 10.7 Hz), 3.70 (1H, dd, J = 5.4, 10.7 Hz), 6.25 (1H, d, J = 10.5 Hz), 9.39. (1H, s)
[0045]
Example 4:
5 g of 3,5-diethyl-5,6-dihydro-2H-2-pyranol obtained in Example 3 was charged into a 100 ml autoclave together with 0.25 g of Raney nickel and 0.5 ml of water, and a hydrogen pressure of 30 kg / cm. 2 , And stirred at 120 ° C. for 5 hours. After the catalyst was filtered off from the reaction solution, water was distilled off under reduced pressure to obtain 2,4-diethyl-1,5-pentanediol quantitatively.
[0046]
【The invention's effect】
The present invention provides a method for producing a 1,5-pentanediol derivative and a 5,6-dihydro-2H-2-pyranol derivative useful as a synthetic intermediate for the 1,5-pentanediol derivative.

Claims (2)

一般式(I)
Figure 0003795547
(式中、RおよびRは同一または異なって低級アルキルを表す)で表される2−ブテナール誘導体とホルムアルデヒドとを反応させ、得られた反応生成物の混合物を一般式(III)
Figure 0003795547
(式中、R およびR は前記と同義である)で表される5,6−ジヒドロ−2H−2−ピラノール誘導体を分離せず、水素化することを特徴とする、一般式(II)
Figure 0003795547
(式中、RおよびRは前記と同義である)で表される1,5−ペンタンジオール誘導体の製造方法。
Formula (I)
Figure 0003795547
(In the formula, R 1 and R 2 are the same or different, lower alkyl represents a) reacting a 2-butenal derivative with formaldehyde, represented by the mixture formula of the resulting reaction product (III)
Figure 0003795547
(Wherein R 1 and R 2 have the same meanings as described above), which is hydrogenated without being separated, is represented by the general formula (II )
Figure 0003795547
(Wherein R 1 and R 2 are as defined above), a method for producing a 1,5-pentanediol derivative.
およびRがともにエチルである請求項1記載の製造方法。The process according to claim 1, wherein R 1 and R 2 are both ethyl.
JP07274895A 1994-05-31 1995-03-30 Method for producing 1,5-pentanediol derivative Expired - Fee Related JP3795547B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07274895A JP3795547B2 (en) 1994-05-31 1995-03-30 Method for producing 1,5-pentanediol derivative
PCT/JP1995/002441 WO1997019904A1 (en) 1995-03-30 1995-11-30 Process for preparing 1,5-pentanediol derivative

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6-118481 1994-05-31
JP11848194 1994-05-31
JP07274895A JP3795547B2 (en) 1994-05-31 1995-03-30 Method for producing 1,5-pentanediol derivative
PCT/JP1995/002441 WO1997019904A1 (en) 1995-03-30 1995-11-30 Process for preparing 1,5-pentanediol derivative

Publications (2)

Publication Number Publication Date
JPH0848642A JPH0848642A (en) 1996-02-20
JP3795547B2 true JP3795547B2 (en) 2006-07-12

Family

ID=26413887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07274895A Expired - Fee Related JP3795547B2 (en) 1994-05-31 1995-03-30 Method for producing 1,5-pentanediol derivative

Country Status (1)

Country Link
JP (1) JP3795547B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316311A (en) * 2000-03-03 2001-11-13 Asahi Kasei Corp Highly pure 1,5-pentanediol
CN101432255B (en) * 2006-04-28 2013-04-24 株式会社可乐丽 Method for production of 3-methyl-1,5-pentanediol

Also Published As

Publication number Publication date
JPH0848642A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
KR101223949B1 (en) Process for the purification of 1,4-butanediol
HU198437B (en) Process for producing mono- or bis-carbonyl-compounds
JPH0455181B2 (en)
KR20060132860A (en) Methods for preparing 1,3-butylene glycol
CA1319707C (en) Process for the preparation of serinol
JP3795547B2 (en) Method for producing 1,5-pentanediol derivative
JP3807514B2 (en) Method for producing ditrimethylolpropane
US6072089A (en) Process for producing 1,5-pentanediol derivatives
US4740639A (en) Process for preparation of 2,4-disubstituted-1,5-pentanediols
US2628257A (en) Production of unsaturated aldehydes
JPH11228467A (en) Production of saturated alcohol
JP3795970B2 (en) Method for producing α, β-unsaturated aldehyde
US5856527A (en) Preparation of 3-Alkyltetrahydrofurans
US3468927A (en) Process for preparing pimelic acid and a 2,2-dialkyl-1,3-propanediol
US3359324A (en) Method of preparing 2, 3-dimethyl-4-pentenal
US5371242A (en) Preparation of products of the reduction of 4-hydroxybutyric acid derivatives
JPH04253935A (en) Preparation of 2-(4-chlorophenyl)-3- methylbutyric acid
CN1087011C (en) Process for preparing 1, 5 -pentanediol derivative
WO2005105774A1 (en) Process for the preparation of 3-(3,4-methylenedioxyphenyl)-2-methylpropanal
EP0932607A2 (en) Preparation of 3-alkyltetrahydrofurans
US4532082A (en) Preparation of 3-cyano-2-alkylalkanals
WO2000018752A1 (en) Preparation of 3-alkyltetrahydrofurans
JPH0584305B2 (en)
JPH10306051A (en) Production of ketones
JPH0214337B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees