JP3795420B2 - Electric disc brake - Google Patents
Electric disc brake Download PDFInfo
- Publication number
- JP3795420B2 JP3795420B2 JP2002095594A JP2002095594A JP3795420B2 JP 3795420 B2 JP3795420 B2 JP 3795420B2 JP 2002095594 A JP2002095594 A JP 2002095594A JP 2002095594 A JP2002095594 A JP 2002095594A JP 3795420 B2 JP3795420 B2 JP 3795420B2
- Authority
- JP
- Japan
- Prior art keywords
- planetary
- ball screw
- rotation angle
- gear
- outer periphery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Braking Arrangements (AREA)
Abstract
Description
【0001】
【産業上の利用分野】
本発明は、自動車や自動二輪車等の各種車両に搭載され、電動モータの駆動力で進退動機構を進退動させ、ディスクロータに摩擦パッドを押圧摺動して制動を行う電気式ディスクブレーキに係るものであり、進退動機構の進退量の検出手段を、部品点数を増やす事なく、廉価に設けるものである。
【0002】
【従来の技術】
従来、自動車や自動二輪車等の各種車両に於いて、電動モータの駆動力で作動する進退動機構により、押圧部材を介して摩擦パッドをディスクロータに押圧摺動させて制動を行う電気式ディスクブレーキが存在する。この進退動機構の進退量を検出し、ディスクロータに対する摩擦パッドの変位量を求めるため、特開2000−104763号公報記載の発明及び特開2000−62591号公報記載の発明では、進退動機構としてボールねじ機構を用い、電動モータにより回動するボールねじナットの外周に設けたロータと、このロータに臨ませてキャリパボディに設けたステータとから成るロータリーエンコーダにより、ボールねじナットの回転角を検出し、ボールねじ軸の進退量を算出していた。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のロータリーエンコーダでは、上述の如く進退動機構や減速ギア機構等とは別個に、ロータとステータを設ける必要があり、部品点数や組み付けの手間が増えるとともに、ロータリーエンコーダの設置位置が限られるものとなる。また、部品点数の増加により、キャリパボディも大きくなり、車体への設置の際のレイアウトの自由度が低下する。
【0004】
本発明は上述の如き課題を解決しようとするものであって、進退動機構の回動部品の回転角を高精度に検出可能な回転角センサを、部品点数を増加させる事なく、簡易かつ廉価に形成しようとするものである。そして、回転角センサの設置スペースを最小限とし、キャリパボディをコンパクトに形成して、電気式ディスクブレーキ設置時のレイアウトの自由度を高めるものである。
【0005】
【課題を解決するための手段】
本発明は上述の如き課題を解決するため、電動モータの駆動力で進退動し摩擦パッドの押圧部材に押圧力を発生させる進退動機構と、この進退動機構に電動モータの駆動力を減速して伝達する減速ギア機構をキャリパボディに設け、前記進退動機構によりディスクロータに摩擦パッドを押圧摺動させて制動を行う電気式ディスクブレーキに於いて、前記減速ギア機構を、電動モータにより回動可能で前記電動モータの回転子として作用するマグネットを円筒部の外周に配置し、この円筒部の摩擦パッドとは反対側の後部に、この円筒部よりも径大な径大部を設け、この径大部に突起部を設けた遊星腕と、この遊星腕の外周に回動可能に軸支される遊星歯車と、キャリパボディに回動不能に固定され、前記遊星歯車を回動させる太陽歯車とで構成し、前記遊星腕の外周に設けた突起部と、この突起部の外周に臨ませて円周状に配置したコイルとで回転角センサを形成し、突起部の通過に伴ってコイルに波形の出力電圧を発生させ、この波形の出力電圧で遊星腕の回転角を検知し、前記進退動機構の進退量を算出可能として成るものである。
【0006】
また、減速ギア機構の遊星歯車は、遊星腕外周に設けた突起部に回動可能に軸支しても良い。
【0007】
また、進退動機構は、減速ギア機構の遊星歯車よりも径大で遊星歯車の回動によって回動するボールねじナットと、このボールねじナットの回動により、ディスク軸の方向に進退動するボールねじ軸とから成り、遊星歯車にて径大なボールねじナットを回動する事により、減速ギア機構から伝達される回動力を更に減速して、ボールねじ軸を介して押圧部材に押圧力を発生させても良い。
【0008】
【作用】
本発明は上述の如く構成したもので、遊星腕の突起部と、この突起部に臨ませて配置したコイルとにより回転角センサを構成している。このように、コイルを配置してステータを形成しているが、突起部を設けた遊星腕をロータとする事ができる。そのため、回転角センサのためのロータを、別個に設ける必要がないし、部品点数や組み付けの手間を増やす事がなく、設置スペースも最小限とする事ができ、回転角センサを簡易で廉価に形成する事が可能となる。また、キャリパボディのコンパクトな形成が可能となり、電気式ディスクブレーキを車体に設置する際のレイアウトの自由度が増すものである。
【0009】
そして、運転者がブレーキペダルを踏み込んで制動操作を行うと、電動モータが駆動し、減速ギア機構の遊星腕が回動する。この遊星腕の回動により、遊星腕に軸支した遊星歯車が、太陽歯車の外周を回動する。この遊星歯車の回動により、電動モータの駆動力が減速されて進退動機構に伝達され、この進退動機構が作動して、摩擦パッドの押圧部材に押圧力を発生させる事により、摩擦パッドがディスクロータに押し付けられ、制動が行われる。
【0010】
上記遊星腕の回動により、遊星腕の外周に設けた突起部が、円周状のコイル内を回動する事により、波形の出力電圧を発生するので、遊星腕の回転角を高精度に検知可能となるものである。そして、この検知した回転角により、進退動機構の進退量が算出可能となり、ディスクロータに対する摩擦パッドの位置を認識して、電動モータの駆動を制御して、制動時の摩擦パッドの移動量を調整する事により、的確な制動を可能とするものである。
【0011】
また、前記進退動機構は、従来公知の何れの機構であっても良く、例えば前記減速機構の遊星歯車よりも径大で遊星歯車の回動によって回動するボールねじナットと、このボールねじナットの回動により、ディスク軸の方向に進退動するボールねじ軸とから成るボールねじ機構を用いる事ができる。そして、遊星歯車にて径大なボールねじナットを回動する事により、減速ギア機構により減速された電動モータの駆動力が、更に減速されるので、電動モータの駆動力をボールねじ軸の進退力に効率的に変換して、押圧部材に強い押圧力を発生させる事ができる。そして、前記回転角センサにて検出された回転角を基に、ボールねじ軸の進退量を検出可能となる。
【0012】
【実施例】
以下、本発明の一実施例を図面に於いて説明すると、(1)は自動車の車輪に接続して一体に回動するディスクロータで、両側の摩擦面(2)に臨ませて、図1に示す如く、タイヤホイール(5)の内側に於いて、一対の摩擦パッド(3)(4)を配置している。また、前記ディスクロータ(1)に臨ませて、車両本体にブラケット(6)を固定し、この固定側からディスクロータ(1)の外周を跨いで反対側に掛けて突設したキャリパ支持腕(7)に、前記摩擦パッド(3)(4)を摺動可能に配置している。
【0013】
また、前記ブラケット(6)のキャリパ支持腕(7)に、摩擦パッド(3)(4)をディスクロータ(1)に押し付けるキャリパボディ(8)を、図2に示す如く、一対のスライドピン(9)を介して進退動可能に連結している。このキャリパボディ(8)は、図1に示す如く、ディスクロータ(1)を挟んで、一方の摩擦パッド(3)の背面に配置する作用部(10)と、他方の摩擦パッド(4)の背面に配置する反力爪(11)を設けた反作用部(12)と、ディスクロータ(1)の外周を跨いで作用部(10)及び反作用部(12)とを連結するブリッジ部(13)とで構成されている。
【0014】
そして、前記作用部(10)は、図1に示す如く、シリンダ(14)内に、ブラシレス型の電動モータ(15)と、摩擦パッド(3)(4)の押圧力を発生させるボールねじ機構(16)と、このボールねじ機構(16)に電動モータ(15)の駆動力を減速して伝達する減速ギア機構(17)とを収納している。この減速ギア機構(17)は、電動モータ(15)の駆動力により回動可能な遊星腕(18)と、この遊星腕(18)に回動可能に軸支した遊星歯車(23)と、この遊星歯車(23)を回動させる太陽歯車(26)とから構成されている。
【0015】
前記遊星腕(18)は、前記電動モータ(15)の回転子として作用するマグネット(39)を円筒部(20)の外周に配置し、電動モータ(15)の駆動力により、軸受部(57)を介してシリンダ(14)内を回動可能としている。また、本発明では、遊星腕(18)を、後述する回転角センサのロータとして兼用可能とするため、円筒部(20)の、摩擦パッド(3)とは反対側の後部に、円筒部(20)よりも径大で側面三角形状の径大部(21)を設けている。そして、三角形状とする事により形成される径大部(21)の3つの突起部(52)に、遊星歯車(23)を回動可能に軸支し、図1、図2に示す如く、各遊星歯車(23)を、突起部(52)外周に開口した切欠窓(22)から外部に突出させている。また、径大部(21)を三角形状に形成する事により、遊星腕(18)の軽量化と材料費の削減が可能となるとともに、後述の回転角センサのロータとしての使用が可能となるものである。
【0016】
また、遊星歯車(23)は、第1歯車部(24)と、この第1歯車部(24)よりも歯数の少ない第2歯車部(25)とを、軸方向の前後に分離して一体に形成し、前記第1歯車部(24)を、キャリパボディ(8)に回動不能に固定された太陽歯車(26)に噛合し、この太陽歯車(26)により遊星歯車(23)の回動を可能としている。
【0017】
上記太陽歯車(26)の固定は、図1、図3に示す如く、キャリパボディ(8)の後部に配置したバックプレート(27)に、等間隔で挿通穴(29)を複数開口し、各挿通穴(29)に挿通した固定ピン(28)を、太陽歯車(26)の背面に凹設した固定穴(30)に挿入する事により行っている。前記固定ピン(28)は、バックプレート(27)の装着孔(32)に装着したキャップ(33)にて頭部を押圧され、固定穴(30)への挿入状態が保たれている。そして、キャップ(33)を外すと、固定ピン(28)の頭部とバックプレート(27)間に装着した押圧発条(31)の付勢力により、固定ピン(28)が固定穴(30)から離脱し、太陽歯車(26)の固定が解除可能となる。
【0018】
そして、前記遊星腕(18)内に、軸受部(58)を介してボールねじ機構(16)のボールねじナット(34)を、回動可能で進退動不能に収納している。このボールねじナット(34)は、遊星腕(18)の径大部(21)側に配置した後端外周に、太陽歯車(26)よりも歯数の少ない減速歯車(35)を固定している。この減速歯車(35)を、前記遊星歯車(23)の第2歯車部(25)に噛合し、遊星歯車(23)の回動によってボールねじナット(34)の回動を可能としている。そして、このボールねじナット(34)の内径側に設けたボール溝(36)に、複数のボール(37)を介してボールねじ軸(38)を進退動可能に螺合している。
【0019】
また、前記ボールねじ軸(38)は先端に、摩擦パッド(3)の押圧部材として、平板状のパッド押圧板(40)を互いに分離不能に接続している。このパッド押圧板(40)にて、摩擦パッド(3)を、広い面積で一部に押圧力を集中する事なく押圧して、ディスクロータ(1)に平行に押し付け可能としている。
【0020】
また、本実施例では、前記パッド押圧板(40)の外周とシリンダ(14)の内周との間に、伸縮可能なダストシール(47)を接続して、シリンダ(14)の開口部(45)を被覆し、シリンダ(14)内への塵埃や水滴、小石等の侵入を防止可能としている。このシリンダ(14)内部のシール性を更に高めるため、本発明では、前記ボールねじ軸(38)とパッド押圧板(40)との接続を、以下に示す如く行っている。
【0021】
まず、図1に示す如く、ボールねじ軸(38)は、内部を中空形状に形成し、中空部(41)を設けるとともに、摩擦パッド(3)側に取付ねじ(42)を固定する固定壁(49)を形成する。また、パッド押圧板(40)の背面に、袋穴状の取付穴(43)を凹設する。そして、ボールねじ軸(38)の中空部(41)側から、前記パッド押圧板(40)の取付穴(43)に、ボールねじ軸(38)の固定壁(49)を介して取付ねじ(42)を螺合し、ボールねじ軸(38)とパッド押圧板(40)とを接続している。
【0022】
このような構成とする事により、パッド押圧板(40)には、シリンダ(14)内部と摩擦パッド(3)側の外部とを連通する穴等が何ら形成される事はないし、該パッド押圧板(40)とボールねじ軸(38)との接続が、パッド押圧板(40)及びダストシール(47)で被覆された空間内で行われるものとなる。従って、シリンダ(14)の開口部(45)のシール性が向上し、摩擦パッド(3)側からのシリンダ(14)内への微細な塵埃や少量の水滴の侵入も確実に防ぐ事ができる。また、パッド押圧板(40)とボールねじ軸(38)との接続を、キャリパボディ(8)の後部側から行えるので、組み付け性やメンテナンス性も向上するものである。
【0023】
更に、本実施例では、キャリパボディ(8)の外表面の熱伝導を低くするため、キャリパボディ(8)を、電動モータ(15)の摩擦パッド(3)側と減速ギア機構(17)側で3分割可能に形成し、各パーツ間に、図1に示す如く、キャリパボディ(8)よりも熱伝導率の低い断熱材製の断熱リング部材(46)を挿入配置している。この断熱リング部材(46)により、摩擦パッド(3)(4)の制動熱が、キャリパボディ(8)の外表面を介して電動モータ(15)や減速ギア機構(17)に伝達されるのを防止可能となるとともに、電動モータ(15)の駆動熱が、減速ギア機構(17)に伝達されるのも防ぐ事ができる。
【0024】
尚、前記断熱リング部材(46)は、キャリパボディ(8)の本体を分割形成して、各パーツ間に挿入配置しているので、キャリパボディ(8)内部に断熱部材を設ける場合と比較して、組み付けが容易であり、生産性に影響を与える事はない。また、分割形成によりキャリパボディ(8)の内部への各種部品の組み付け性やメンテナンス性を向上させる事ができる。
【0025】
また、本実施例では、図1に示す如く、ボールねじ軸(38)の先端に荷重センサ(48)を設けて、摩擦パッド(3)に掛かる荷重を検知可能としている。そして、荷重センサ(48)と検知器本体(図示せず)とを接続するハーネス(50)を、図1に示す如く、ボールねじ軸(38)の中空部(41)に挿通させている。また、ハーネス(50)は、ボールねじ軸(38)の進退動の移動距離に合わせて、余裕を持たせた長さで中空部(41)に配置している。ところが、この余裕部分の弛みが、部品相互の隙間に入り込んで、引掛かりや切断を生じる虞がある。
【0026】
この不具合を解消するため、図1に示す如く、ハーネス(50)を引張り発条(51)にて引張り付勢し、弛み部分を常に中空部(41)に配置して、中空部(41)の外ではハーネス(50)が常に張った状態となるようにしている。そして、ボールねじ軸(38)が摩擦パッド(3)方向に前進して、ハーネス(50)に引張り力が加わっても、引張り発条(51)が伸張するので、ハーネス(50)が切断されたり、ボールねじ軸(38)の前進が阻害される事はない。また、ボールねじ軸(38)が後退すると、引張り発条(51)が復元収縮するので、ハーネス(50)が中空部(41)以外の位置で弛む事はない。
【0027】
更に、本実施例では、図1、図3に示す如く、遊星腕(18)の径大部(21)の後端面に臨ませて、前記バックプレート(27)に、パーキング機構のソレノイド(54)を設けている。そして、車両の駐車時に、摩擦パッド(3)(4)により制動を行って、ソレノイド(54)を作動すると、係止ピン(55)が、遊星腕(18)の径大部(21)端面に設けた係止穴(56)に係合する。この係合により、遊星腕(18)が回動不能に固定され、摩擦パッド(3)(4)による制動を維持する事ができる。また、バックプレート(27)外周に、被覆カバー(44)を装着して、ソレノイド(54)やバックプレート(27)、その他を外的衝撃から保護している。
【0028】
そして、本発明では、制動時の摩擦パッド(3)(4)によるディスクロータ(1)の押圧を調整して、適切な制動を可能とするため、前記遊星腕(18)の回転角を検出する回転角センサを設け、この回転角センサで検出した回転角により、ブラシレス型の電動モータ(15)の駆動を制御したり、ボールねじ軸(38)の進退量を算出可能としている。そして、本発明では、前述の如く、遊星腕(18)の径大部(21)に設けた突起部(52)を、回転角センサのロータとして使用する。そして、図2、図3に示す如く、前記突起部(52)の外周に臨ませて、シリンダ(14)の内周面に、コイル(19)を円周状に配置してステータを設けている。
【0029】
上記コイル(19)の内周を、三角形状の径大部(21)が回動する事により、突起部(52)の存在によって波形の出力電圧を発生するので、突起部(52)とコイル(19)とで構成する回転角センサにて遊星腕(18)の回転角を検知可能となるものである。このように、遊星腕(18)の径大部(21)をロータとする事ができるので、遊星腕(18)とは別個に回転角センサ用のロータを設ける必要がなく、部品点数や組み付け工数の増加を防ぐ事ができる。
【0030】
そして、回転角センサの設置スペースを最小限に抑える事が可能となるとともに、本実施例では、更に電動モータ(15)をキャリパボディ(8)に内蔵し、更に前記遊星歯車(23)等の減速ギア機構(17)を電動モータ(15)の内側ではなく、電動モータ(15)よりも後部側に配置している。従って、キャリパボディ(8)が長尺にも径大にもならず、コンパクトな形成が可能となり、電気式ディスクブレーキをタイヤホイール(5)の内側に設置する際のレイアウトの自由度が増すものとなる。
【0031】
上述の如く構成された電気式ディスクブレーキでは、自動車の運転者がブレーキペダルを踏み込んで制動操作を行うと、この踏み込み量に応じて電動モータ(15)が駆動し、遊星腕(18)がシリンダ(14)内を回動する。この遊星腕(18)の回動により、径大部(21)に軸支され、太陽歯車(26)に第1歯車部(24)を噛合する遊星歯車(23)が、太陽歯車(26)の外周を回動する。この遊星歯車(23)の回動により、第2歯車部(25)に減速歯車(35)を噛合するボールねじナット(34)が回動される。
【0032】
そして、ボールねじ機構(16)の作用により、回動力がボールねじ軸(38)の摩擦パッド(3)方向への前進力に変換され、パッド押圧板(40)を介して作用部(10)側の摩擦パッド(3)を押圧摺動し、ディスクロータ(1)に押し付ける。更に、ボールねじ軸(38)の摺動の反力で、キャリパボディ(8)が後退し、反作用部(12)の反力爪(11)が、反作用部(12)側の摩擦パッド(4)を押圧摺動し、ディスクロータ(1)に押し付ける事により、制動が行われる。
【0033】
上記制動に於いて、減速ギア機構(17)での作用により、電動モータ(15)の駆動力は、効率的に減速されて、摩擦パッド(3)(4)の強い押圧力に変換可能となり、効果的な制動が可能となる。そして、制動時の遊星腕(18)の回転角を、回転角センサにて検出する事により、ボールねじ軸(38)の進退量を算出可能となり、この進退量及び荷重センサ(48)により検出される摩擦パッド(3)(4)の押圧力等のデータを基に電動モータ(15)の駆動の制御を行って、摩擦パッド(3)(4)の押圧摺動の調整等、電気式ブレーキの適切な作動を可能としている。
【0034】
前記遊星腕(18)の回転角により、ボールねじ軸(38)の前進時の移動量を算出する手段を、減速ギア機構(17)による減速作用をふまえて説明すると、例えば、太陽歯車(26)の歯数を72、この太陽歯車(26)と噛合する遊星歯車(23)の第1歯車部(24)の歯数を15、第2歯車部(25)の歯数を12、この第2歯車部(25)と噛合するボールねじナット(34)の減速歯車(35)の歯数を60とする。
【0035】
まず、電動モータ(15)により遊星腕(18)が一方向に一回転すると、遊星腕(18)に軸支した遊星歯車(23)が、太陽歯車(26)の外周を一方向に一周する。この場合、太陽歯車(26)の歯数は72で、第1歯車部(24)の歯数は15であるから、遊星歯車(23)は、太陽歯車(26)の外周を一周する際に、一方向に72歯/15歯=4.8回転する。即ち、第1歯車部(24)と同軸の第2歯車部(25)も、一方向に4.8回転する。(第2歯車部(25)の歯数は12であるから、一周では4.8回転×12歯=57.6歯分の変位となる。)
【0036】
一方、ボールねじナット(34)には、遊星腕(18)の回転により、一方向への回転力(60歯分)が作用する。また、ボールねじナット(34)の減速歯車(35)と噛合する第2歯車部(25)により、減速歯車(35)には、一方向とは逆方向に、4.8×(12歯/60歯)=0.96回転の回転力が作用する(歯数では、前記57.6歯分)。この一方向と逆方向への回転力を合成すると、1+(−0.96)=0.04回転となる(歯数での計算では、減速歯車(35)は、60歯+(−57.6)=2.4歯分、一方向に変位し、減速歯車(35)は60歯だから、2.4歯/60歯=0.04回転となる)。従って、遊星腕(18)の一方向への一回転に対して、ボールねじナット(34)が、同一方向に0.04回転するものとなり、25:1の比率で減速が行われる。
【0037】
そして、上記計算式、及び回転角センサにより検出される遊星腕(18)の回転角と、ボールねじ軸(38)やボールねじナット(34)の寸法を基に、ボールねじ軸(38)の前進時の移動量を算出する事ができる。
【0038】
そして、ブレーキペダルの踏み込みを解除すると、電動モータ(15)の制御により遊星腕(18)が逆回転し、遊星歯車(23)を介してボールねじナット(34)が、先の回転とは逆方向に回転するので、ボールねじ軸(38)が後退し、摩擦パッド(3)の押圧が解除される。また、このボールねじ軸(38)後退の反力により、キャリパボディ(8)も復元方向に摺動し、反作用部(12)側の摩擦パッド(4)の押圧が解除されるので、制動が解除されるものである。また、この制動解除の際の遊星腕(18)の回転角を回転角センサで検出する事により、ボールねじ軸(38)の後退時の移動量が算出可能となり、制動制御のデータとして使用されるものとなる。
【0039】
また、上記第1実施例では、突起部(52)と遊星歯車(23)とを径大部(21)の外周の三箇所に設ける事により、三角形状の径大部(21)としているが、他の異なる第2実施例では、図5に示す如く、突起部(52)及び遊星歯車(23)を径大部(21)の外周に等間隔で二箇所に設け、楕円形状の径大部(21)としている。このような構成では、三箇所に遊星歯車(23)を設けた第1実施例に比べ、使用する遊星歯車(23)の数や組み付けの手間が減り、遊星腕(18)の形成が容易となるし、より軽量な遊星腕(18)を得る事ができる。
【0040】
また、他の異なる第3実施例では、図6に示す如く、突起部(52)及び遊星歯車(23)を径大部(21)に等間隔で四箇所に設け、十文字形状の径大部(21)としている。この構成では、第1、第2実施例に比べて、部品点数や組み付けの手間は掛かるが、遊星歯車(23)が太陽歯車(26)の外周を回動する際の回動安定性がより高まるとともに、出力電圧の波形が、より密な正弦波となり、遊星腕(18)の回転角の検出精度が高まるものとなる。
【0041】
【発明の効果】
本発明は上述の如く構成したもので、進退動機構の進退量を検出するための回転角センサを、電動モータの駆動力を減速して進退動機構に伝達する減速ギア機構の遊星腕をロータとし、この遊星腕の外周に設けた突起部に臨ませて配置したコイルをステータとして構成している。このように、遊星腕をロータとして使用が可能で、回転角センサのためのロータを別個にキャリパボディに設ける必要がないから、部品点数や組み付けの手間が増える事がなく、回転角センサを簡易かつ廉価に形成可能となる。更に、回転角センサの設置スペースを最小限に抑える事ができるので、キャリパボディをコンパクトに形成する事が可能となり、電気式ディスクブレーキ設置時のレイアウトの自由度が高まるものとなる。
【図面の簡単な説明】
【図1】本発明の一実施例で、ディスクロータに臨ませて設置した電気式ディスクブレーキの横断面図。
【図2】図3のA−A線断面図で、太陽歯車の固定ピンとハーネスとを省略したものである。
【図3】図1のバックプレート側の部分拡大断面図。
【図4】減速ギア機構の斜視図。
【図5】本発明の第2実施例の、突起部を2箇所に設けた回転角センサの断面図で、太陽歯車の固定ピンとハーネスとを省略したものである。
【図6】本発明の第3実施例の、突起部を4箇所に設けた回転角センサの断面図で、太陽歯車の固定ピンとハーネスとを省略したものである。
【符号の説明】
1 ディスクロータ
3 摩擦パッド
4 摩擦パッド
8 キャリパボディ
15 電動モータ
17 減速ギア機構
18 遊星腕
19 コイル
23 遊星歯車
26 太陽歯車
34 ボールねじナット
38 ボールねじ軸
52 突起部[0001]
[Industrial application fields]
The present invention relates to an electric disc brake that is mounted on various vehicles such as an automobile and a motorcycle, and that moves forward and backward by a driving force of an electric motor, and presses and slides a friction pad on a disc rotor to perform braking. Therefore, the advance / retreat amount detection means of the advance / retreat mechanism is inexpensively provided without increasing the number of parts.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in various vehicles such as automobiles and motorcycles, an electric disc brake that performs braking by pressing and sliding a friction pad against a disc rotor via a pressing member by an advancing / retreating mechanism that is operated by a driving force of an electric motor. Exists. In order to detect the advance / retreat amount of the advance / retreat mechanism and obtain the displacement amount of the friction pad with respect to the disk rotor, the invention described in Japanese Patent Application Laid-Open No. 2000-104763 and the invention described in Japanese Patent Application Laid-Open No. 2000-62591 are described as an advance / retreat mechanism. Using a ball screw mechanism, the rotation angle of the ball screw nut is detected by a rotary encoder consisting of a rotor provided on the outer periphery of a ball screw nut that is rotated by an electric motor and a stator provided on the caliper body facing this rotor. Then, the advance / retreat amount of the ball screw shaft was calculated.
[0003]
[Problems to be solved by the invention]
However, in the conventional rotary encoder, it is necessary to provide a rotor and a stator separately from the advance / retreat mechanism and the reduction gear mechanism as described above, which increases the number of parts and labor of assembly, and limits the installation position of the rotary encoder. It will be. In addition, the caliper body becomes larger due to the increase in the number of parts, and the degree of freedom in layout during installation on the vehicle body decreases.
[0004]
The present invention is intended to solve the above-described problems, and a rotation angle sensor capable of detecting the rotation angle of a rotating component of an advance / retreat mechanism with high accuracy is simple and inexpensive without increasing the number of components. To try to form. In addition, the installation space for the rotation angle sensor is minimized, the caliper body is compactly formed, and the degree of freedom in layout when installing the electric disc brake is increased.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention advances and retracts by the driving force of the electric motor and generates a pressing force on the pressing member of the friction pad, and reduces the driving force of the electric motor to the advancing and retracting mechanism. In the electric disc brake, which is provided with a reduction gear mechanism for transmitting in the caliper, and brakes by pressing and sliding the friction pad against the disc rotor by the advance / retreat mechanism, the reduction gear mechanism is rotated by an electric motor. A magnet that can act as a rotor of the electric motor is disposed on the outer periphery of the cylindrical portion, and a large diameter portion larger than the cylindrical portion is provided on the rear side of the cylindrical portion opposite to the friction pad. A planetary arm provided with a projection on the large diameter portion, a planetary gear pivotally supported on the outer periphery of the planetary arm, and a sun gear fixed to the caliper body so as not to rotate and rotating the planetary gear And A rotation angle sensor is formed by a protrusion provided on the outer periphery of the planetary arm and a coil arranged circumferentially so as to face the outer periphery of the protrusion. An output voltage is generated, and the rotation angle of the planetary arm is detected from the output voltage of this waveform, so that the advance / retreat amount of the advance / retreat mechanism can be calculated.
[0006]
Further, the planetary gear of the reduction gear mechanism may be pivotally supported on a protrusion provided on the outer periphery of the planetary arm.
[0007]
Further, the advance / retreat mechanism has a ball screw nut having a diameter larger than that of the planetary gear of the reduction gear mechanism and rotated by the rotation of the planetary gear, and a ball that moves forward and backward in the direction of the disk shaft by the rotation of the ball screw nut. The ball screw nut consists of a screw shaft, and the planetary gear rotates a large ball screw nut to further reduce the rotational force transmitted from the reduction gear mechanism, thereby applying a pressing force to the pressing member via the ball screw shaft. It may be generated.
[0008]
[Action]
The present invention is configured as described above, and a rotation angle sensor is constituted by a projecting portion of a planetary arm and a coil disposed so as to face the projecting portion. As described above, the coils are arranged to form the stator, but the planetary arm provided with the protrusions can be used as the rotor. For this reason, there is no need to provide a separate rotor for the rotation angle sensor, the number of components and assembly work are not increased, installation space can be minimized, and the rotation angle sensor can be formed simply and inexpensively. It becomes possible to do. In addition, the caliper body can be compactly formed, and the degree of freedom in layout when the electric disc brake is installed on the vehicle body is increased.
[0009]
When the driver depresses the brake pedal to perform a braking operation, the electric motor is driven and the planetary arm of the reduction gear mechanism rotates. Due to the rotation of the planetary arm, the planetary gear pivotally supported on the planetary arm rotates on the outer periphery of the sun gear. Due to the rotation of the planetary gear, the driving force of the electric motor is decelerated and transmitted to the advance / retreat mechanism, and the advance / retreat mechanism is activated to generate a pressing force on the pressing member of the friction pad. It is pressed against the disk rotor and braking is performed.
[0010]
Due to the rotation of the planetary arm, the projection provided on the outer periphery of the planetary arm generates a waveform output voltage by rotating in the circumferential coil, so the rotation angle of the planetary arm can be adjusted with high accuracy. It can be detected. Based on the detected rotation angle, the advance / retreat amount of the advance / retreat mechanism can be calculated, the position of the friction pad relative to the disc rotor is recognized, the drive of the electric motor is controlled, and the amount of movement of the friction pad during braking is determined. By adjusting, accurate braking is possible.
[0011]
Further, the advance / retreat mechanism may be any conventionally known mechanism, for example, a ball screw nut having a diameter larger than that of the planetary gear of the speed reduction mechanism and rotating by the rotation of the planetary gear, and the ball screw nut. Thus, it is possible to use a ball screw mechanism including a ball screw shaft that moves back and forth in the direction of the disk shaft. By rotating the ball screw nut having a large diameter with the planetary gear, the driving force of the electric motor decelerated by the reduction gear mechanism is further decelerated. It is possible to efficiently convert to a force and generate a strong pressing force on the pressing member. The advance / retreat amount of the ball screw shaft can be detected based on the rotation angle detected by the rotation angle sensor.
[0012]
【Example】
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (1) is a disk rotor that is connected to a wheel of an automobile and rotates integrally with it, facing both friction surfaces (2). As shown, a pair of friction pads (3) and (4) are arranged inside the tire wheel (5). Further, a bracket (6) is fixed to the vehicle body so as to face the disk rotor (1), and a caliper support arm (projecting from the fixed side across the outer periphery of the disk rotor (1) to the opposite side is provided. 7), the friction pads (3) and (4) are slidably disposed.
[0013]
Further, a caliper body (8) for pressing the friction pads (3), (4) against the disc rotor (1) on the caliper support arm (7) of the bracket (6), as shown in FIG. It is connected via 9) so that it can move forward and backward. As shown in FIG. 1, the caliper body (8) includes an action portion (10) disposed on the back surface of one friction pad (3) and a friction pad (4) between the disk rotor (1). A reaction portion (12) provided with a reaction force claw (11) disposed on the back surface and a bridge portion (13) for connecting the action portion (10) and the reaction portion (12) across the outer periphery of the disk rotor (1). It consists of and.
[0014]
As shown in FIG. 1, the action portion (10) has a ball screw mechanism for generating a pressing force of the brushless electric motor (15) and the friction pads (3) and (4) in the cylinder (14). (16) and a reduction gear mechanism (17) for reducing and transmitting the driving force of the electric motor (15) to the ball screw mechanism (16) are housed. The reduction gear mechanism (17) includes a planetary arm (18) that can be rotated by the driving force of the electric motor (15), a planetary gear (23) that is pivotally supported by the planetary arm (18), and The planetary gear (23) is configured to rotate with a sun gear (26).
[0015]
In the planetary arm (18), a magnet (39) acting as a rotor of the electric motor (15) is arranged on the outer periphery of the cylindrical portion (20), and the bearing portion (57) is driven by the driving force of the electric motor (15). ) Through the cylinder (14). In the present invention, the planetary arm (18) can also be used as a rotor of a rotation angle sensor, which will be described later, so that a cylindrical portion (20) is provided at the rear of the cylindrical portion (20) opposite to the friction pad (3). A large diameter portion (21) having a larger diameter than that of 20) and having a triangular side surface is provided. Then, the planetary gear (23) is pivotally supported on the three protrusions (52) of the large-diameter portion (21) formed by the triangular shape, and as shown in FIGS. 1 and 2, Each planetary gear (23) is projected to the outside from a notch window (22) opened on the outer periphery of the protrusion (52). Further, by forming the large-diameter portion (21) in a triangular shape, the planetary arm (18) can be reduced in weight and the material cost can be reduced, and can be used as a rotor of a rotation angle sensor described later. Is.
[0016]
The planetary gear (23) separates the first gear portion (24) and the second gear portion (25) having a smaller number of teeth than the first gear portion (24) in the axial direction. The first gear portion (24) is integrally formed and meshed with a sun gear (26) fixed to the caliper body (8) so as not to rotate, and the planetary gear (23) of the planetary gear (23) is engaged with the sun gear (26). It can be turned.
[0017]
As shown in FIGS. 1 and 3, the sun gear (26) is fixed by opening a plurality of insertion holes (29) at equal intervals in the back plate (27) disposed at the rear of the caliper body (8). The fixing pin (28) inserted through the insertion hole (29) is inserted into the fixing hole (30) recessed in the back surface of the sun gear (26). The head of the fixing pin (28) is pressed by the cap (33) mounted in the mounting hole (32) of the back plate (27), and the state of insertion into the fixing hole (30) is maintained. When the cap (33) is removed, the fixing pin (28) is removed from the fixing hole (30) by the urging force of the pressing ridge (31) mounted between the head of the fixing pin (28) and the back plate (27). The sun gear (26) can be released by releasing.
[0018]
In the planetary arm (18), the ball screw nut (34) of the ball screw mechanism (16) is accommodated through the bearing portion (58) so as to be rotatable but not to be able to advance and retract. The ball screw nut (34) has a reduction gear (35) having fewer teeth than the sun gear (26) fixed to the outer periphery of the rear end disposed on the large diameter portion (21) side of the planetary arm (18). Yes. The reduction gear (35) is engaged with the second gear portion (25) of the planetary gear (23), and the ball screw nut (34) can be rotated by the rotation of the planetary gear (23). A ball screw shaft (38) is screwed into a ball groove (36) provided on the inner diameter side of the ball screw nut (34) via a plurality of balls (37) so as to be able to advance and retract.
[0019]
The ball screw shaft (38) has a flat pad pressing plate (40) as a pressing member for the friction pad (3) connected to the tip of the ball screw shaft (38) so as not to be separated from each other. With this pad pressing plate (40), the friction pad (3) can be pressed in a large area without concentrating the pressing force on a part thereof, and can be pressed in parallel with the disk rotor (1).
[0020]
Further, in this embodiment, an extendable dust seal (47) is connected between the outer periphery of the pad pressing plate (40) and the inner periphery of the cylinder (14), and the opening (45) of the cylinder (14) is connected. ) To prevent entry of dust, water droplets, pebbles, etc. into the cylinder (14). In order to further improve the sealing performance inside the cylinder (14), in the present invention, the ball screw shaft (38) and the pad pressing plate (40) are connected as follows.
[0021]
First, as shown in FIG. 1, the ball screw shaft (38) is formed in a hollow shape, provided with a hollow portion (41), and a fixed wall for fixing a mounting screw (42) on the friction pad (3) side. (49) is formed. Further, a bag-hole-like mounting hole (43) is recessed in the back surface of the pad pressing plate (40). Then, from the hollow portion (41) side of the ball screw shaft (38) to the mounting hole (43) of the pad pressing plate (40) through the fixing wall (49) of the ball screw shaft (38), 42) are screwed together to connect the ball screw shaft (38) and the pad pressing plate (40).
[0022]
With this configuration, the pad pressing plate (40) is not formed with any hole or the like for communicating the inside of the cylinder (14) and the outside on the friction pad (3) side. The connection between the plate (40) and the ball screw shaft (38) is made in the space covered with the pad pressing plate (40) and the dust seal (47). Therefore, the sealing performance of the opening (45) of the cylinder (14) is improved, and the entry of fine dust and a small amount of water droplets into the cylinder (14) from the friction pad (3) side can be surely prevented. . Further, since the pad pressing plate (40) and the ball screw shaft (38) can be connected from the rear side of the caliper body (8), the assembling property and the maintenance property are improved.
[0023]
Further, in this embodiment, in order to reduce the heat conduction of the outer surface of the caliper body (8), the caliper body (8) is connected to the friction pad (3) side and the reduction gear mechanism (17) side of the electric motor (15). As shown in FIG. 1, a heat insulating ring member (46) made of a heat insulating material having a lower thermal conductivity than that of the caliper body (8) is inserted and disposed between the parts. By this heat insulating ring member (46), the braking heat of the friction pads (3) and (4) is transmitted to the electric motor (15) and the reduction gear mechanism (17) through the outer surface of the caliper body (8). In addition, it is possible to prevent the drive heat of the electric motor (15) from being transmitted to the reduction gear mechanism (17).
[0024]
The heat insulating ring member (46) is formed by dividing the main body of the caliper body (8) and inserted between the parts, so that the heat insulating member is provided in the caliper body (8). Assembling is easy and does not affect productivity. Moreover, the assembling property and the maintenance property of various components inside the caliper body (8) can be improved by the division formation.
[0025]
Further, in this embodiment, as shown in FIG. 1, a load sensor (48) is provided at the tip of the ball screw shaft (38) so that the load applied to the friction pad (3) can be detected. A harness (50) for connecting the load sensor (48) and the detector main body (not shown) is inserted through the hollow portion (41) of the ball screw shaft (38) as shown in FIG. Further, the harness (50) is disposed in the hollow portion (41) with a sufficient length according to the moving distance of the ball screw shaft (38) moving forward and backward. However, there is a risk that the slack of the margin part may enter the gap between the parts and cause catching or cutting.
[0026]
In order to solve this problem, as shown in FIG. 1, the harness (50) is tensioned and biased by the pulling ridge (51), and the slack portion is always arranged in the hollow portion (41), so that the hollow portion (41) Outside, the harness (50) is always in a tensioned state. Even if the ball screw shaft (38) moves forward in the direction of the friction pad (3) and a tensile force is applied to the harness (50), the tension ridge (51) extends, so that the harness (50) is cut. The advance of the ball screw shaft (38) is not hindered. Further, when the ball screw shaft (38) is retracted, the tension ridge (51) is restored and contracted, so that the harness (50) is not loosened at a position other than the hollow portion (41).
[0027]
Further, in this embodiment, as shown in FIGS. 1 and 3, the back plate (27) faces the rear end face of the large diameter portion (21) of the planetary arm (18) and the parking mechanism solenoid (54). ). Then, when the vehicle is parked, braking is performed by the friction pads (3) and (4) and the solenoid (54) is operated, so that the locking pin (55) is the end surface of the large diameter portion (21) of the planetary arm (18). It engages with a locking hole (56) provided in. By this engagement, the planetary arm (18) is fixed so as not to rotate, and braking by the friction pads (3) and (4) can be maintained. A covering cover (44) is attached to the outer periphery of the back plate (27) to protect the solenoid (54), the back plate (27), and others from external impacts.
[0028]
In the present invention, the rotation angle of the planetary arm (18) is detected in order to adjust the pressing of the disk rotor (1) by the friction pads (3) and (4) during braking to enable appropriate braking. The rotation angle sensor is provided, and the drive of the brushless electric motor (15) can be controlled and the advance / retreat amount of the ball screw shaft (38) can be calculated by the rotation angle detected by the rotation angle sensor. In the present invention, as described above, the protrusion (52) provided on the large diameter portion (21) of the planetary arm (18) is used as the rotor of the rotation angle sensor. As shown in FIGS. 2 and 3, a stator is provided by arranging coils (19) circumferentially on the inner peripheral surface of the cylinder (14) so as to face the outer periphery of the protrusion (52). Yes.
[0029]
Since the triangular large diameter portion (21) rotates around the inner periphery of the coil (19), a waveform output voltage is generated due to the presence of the protrusion (52). Therefore, the protrusion (52) and the coil The rotation angle of the planetary arm (18) can be detected by the rotation angle sensor constituted by (19). Thus, since the large diameter portion (21) of the planetary arm (18) can be used as a rotor, it is not necessary to provide a rotation angle sensor rotor separately from the planetary arm (18). An increase in man-hours can be prevented.
[0030]
In addition, the installation space for the rotation angle sensor can be minimized, and in this embodiment, the electric motor (15) is further built in the caliper body (8), and the planetary gear (23) and the like are further incorporated. The reduction gear mechanism (17) is arranged not on the inner side of the electric motor (15) but on the rear side of the electric motor (15). Therefore, the caliper body (8) is neither long nor large in diameter, and can be formed compactly, increasing the degree of freedom of layout when installing the electric disc brake inside the tire wheel (5). It becomes.
[0031]
In the electric disc brake configured as described above, when the driver of the automobile depresses the brake pedal and performs a braking operation, the electric motor (15) is driven according to the amount of depression, and the planetary arm (18) is (14) Turn inside. Due to the rotation of the planetary arm (18), the planetary gear (23) that is pivotally supported by the large-diameter portion (21) and meshes with the first gear portion (24) in the sun gear (26) is the sun gear (26). Rotate the outer periphery of the. The rotation of the planetary gear (23) rotates the ball screw nut (34) that meshes with the reduction gear (35) in the second gear portion (25).
[0032]
Then, due to the action of the ball screw mechanism (16), the turning force is converted into a forward force in the direction of the friction pad (3) of the ball screw shaft (38), and the action portion (10) is provided via the pad pressing plate (40). The friction pad (3) on the side is pressed and slid and pressed against the disc rotor (1). Further, the caliper body (8) is retracted by the sliding reaction force of the ball screw shaft (38), and the reaction force claw (11) of the reaction portion (12) is moved to the friction pad (4) on the reaction portion (12) side. ) Is pressed and slid and pressed against the disc rotor (1) to perform braking.
[0033]
In the above braking, the driving force of the electric motor (15) is efficiently decelerated by the action of the reduction gear mechanism (17) and can be converted into a strong pressing force of the friction pads (3) and (4). Effective braking is possible. Then, by detecting the rotation angle of the planetary arm (18) at the time of braking with the rotation angle sensor, the advance / retreat amount of the ball screw shaft (38) can be calculated, and this advance / retreat amount and the load sensor (48) detect it. The electric motor (15) is controlled based on the data such as the pressing force of the friction pads (3) and (4) to adjust the pressing and sliding of the friction pads (3) and (4). Appropriate operation of the brake is possible.
[0034]
The means for calculating the amount of movement of the ball screw shaft (38) when the planetary arm (18) moves forward will be described based on the speed reduction effect of the speed reduction gear mechanism (17). For example, the sun gear (26 ) Of 72, the number of teeth of the first gear portion (24) of the planetary gear (23) meshing with the sun gear (26) is 15, the number of teeth of the second gear portion (25) is 12, The number of teeth of the reduction gear (35) of the ball screw nut (34) meshing with the two gear portion (25) is set to 60.
[0035]
First, when the planetary arm (18) makes one rotation in one direction by the electric motor (15), the planetary gear (23) pivotally supported on the planetary arm (18) makes one rotation around the outer periphery of the sun gear (26). . In this case, since the number of teeth of the sun gear (26) is 72 and the number of teeth of the first gear part (24) is 15, when the planetary gear (23) goes around the outer periphery of the sun gear (26). , 72 teeth / 15 teeth = 4.8 rotations in one direction. That is, the second gear portion (25) coaxial with the first gear portion (24) also rotates 4.8 in one direction. (Since the number of teeth of the second gear portion (25) is 12, it is a displacement of 4.8 rotations × 12 teeth = 57.6 teeth in one rotation.)
[0036]
On the other hand, a rotational force (for 60 teeth) in one direction acts on the ball screw nut (34) by the rotation of the planetary arm (18). Further, the second gear portion (25) meshing with the reduction gear (35) of the ball screw nut (34) causes the reduction gear (35) to be 4.8 × (12 teeth / (60 teeth) = 0.96 rotation force is applied (the number of teeth is equivalent to 57.6 teeth). When the rotational force in the one direction and the opposite direction is combined, 1 + (− 0.96) = 0.04 rotation (in the calculation with the number of teeth, the reduction gear (35) has 60 teeth + (− 57. 6) = 2.4 teeth are displaced in one direction, and the reduction gear (35) is 60 teeth, so 2.4 teeth / 60 teeth = 0.04 rotations). Accordingly, the ball screw nut (34) rotates 0.04 in the same direction with respect to one rotation in one direction of the planetary arm (18), and deceleration is performed at a ratio of 25: 1.
[0037]
Based on the above formula and the rotation angle of the planetary arm (18) detected by the rotation angle sensor and the dimensions of the ball screw shaft (38) and the ball screw nut (34), the ball screw shaft (38) The amount of movement at the time of advance can be calculated.
[0038]
When the depression of the brake pedal is released, the planetary arm (18) rotates reversely under the control of the electric motor (15), and the ball screw nut (34) is reversely rotated through the planetary gear (23). Since it rotates in the direction, the ball screw shaft (38) retreats and the friction pad (3) is released. Further, the caliper body (8) slides in the restoring direction by the reaction force of the retraction of the ball screw shaft (38), and the pressing of the friction pad (4) on the reaction portion (12) side is released, so that braking is performed. It is to be canceled. Further, by detecting the rotation angle of the planetary arm (18) at the time of releasing the brake with a rotation angle sensor, the amount of movement of the ball screw shaft (38) when retreating can be calculated and used as data for braking control. Will be.
[0039]
In the first embodiment, the protrusion (52) and the planetary gear (23) are provided at three locations on the outer periphery of the large-diameter portion (21), thereby forming a triangular large-diameter portion (21). In another different second embodiment, as shown in FIG. 5, the protrusion (52) and the planetary gear (23) are provided on the outer periphery of the large-diameter portion (21) at two equal intervals so as to have an elliptical large diameter. Part (21). In such a configuration, the number of planetary gears (23) to be used and the time and effort of assembly are reduced and the formation of the planetary arm (18) is easier than in the first embodiment in which the planetary gears (23) are provided at three locations. In fact, a lighter planetary arm (18) can be obtained.
[0040]
Further, in another different third embodiment, as shown in FIG. 6, the protrusions (52) and the planetary gear (23) are provided at four locations at equal intervals on the large diameter portion (21), and the cross-shaped large diameter portion is formed. (21). In this configuration, compared to the first and second embodiments, the number of parts and assembling work are increased, but the rotational stability when the planetary gear (23) rotates on the outer periphery of the sun gear (26) is more improved. As it increases, the waveform of the output voltage becomes a denser sine wave, and the detection accuracy of the rotation angle of the planetary arm (18) increases.
[0041]
【The invention's effect】
The present invention is configured as described above, and the rotation angle sensor for detecting the amount of advance / retreat of the advance / retreat mechanism is used as the planetary arm of the reduction gear mechanism for reducing the driving force of the electric motor and transmitting it to the advance / retreat mechanism. And a coil arranged facing a protrusion provided on the outer periphery of the planetary arm is configured as a stator. In this way, the planetary arm can be used as a rotor, and it is not necessary to provide a separate rotor for the rotation angle sensor on the caliper body, so the number of parts and the labor for assembly are not increased, and the rotation angle sensor can be simplified. It can be formed at a low price. Furthermore, since the installation space for the rotation angle sensor can be minimized, the caliper body can be made compact, and the degree of freedom in layout when installing the electric disc brake is increased.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electric disc brake installed to face a disc rotor in an embodiment of the present invention.
2 is a cross-sectional view taken along line AA of FIG. 3, in which the sun gear fixing pin and the harness are omitted.
FIG. 3 is a partially enlarged cross-sectional view of the back plate side of FIG.
FIG. 4 is a perspective view of a reduction gear mechanism.
FIG. 5 is a cross-sectional view of a rotation angle sensor having two protrusions according to a second embodiment of the present invention, in which a sun gear fixing pin and a harness are omitted.
FIG. 6 is a cross-sectional view of a rotation angle sensor according to a third embodiment of the present invention, in which protrusions are provided at four locations, in which a sun gear fixing pin and a harness are omitted.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002095594A JP3795420B2 (en) | 2002-03-29 | 2002-03-29 | Electric disc brake |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002095594A JP3795420B2 (en) | 2002-03-29 | 2002-03-29 | Electric disc brake |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003287066A JP2003287066A (en) | 2003-10-10 |
JP3795420B2 true JP3795420B2 (en) | 2006-07-12 |
Family
ID=29239012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002095594A Expired - Fee Related JP3795420B2 (en) | 2002-03-29 | 2002-03-29 | Electric disc brake |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3795420B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2863994B1 (en) * | 2003-12-17 | 2006-03-17 | Bosch Gmbh Robert | CHECKING THE TIGHTENING OF AN AUTOMATIC PARKING BRAKE FOR A MOTOR VEHICLE |
JP2008286284A (en) * | 2007-05-16 | 2008-11-27 | Nissin Kogyo Co Ltd | Electric brake device |
CN108749801A (en) * | 2018-07-19 | 2018-11-06 | 宁波拓普智能刹车系统有限公司 | A kind of deceleration mechanism of integrated electrical control braking force aid system |
CN113389825A (en) * | 2021-05-18 | 2021-09-14 | 江苏大学 | Gap regulation and control device and method for electronic mechanical brake |
CN115217870A (en) * | 2022-07-29 | 2022-10-21 | 重庆长安汽车股份有限公司 | Brake caliper, brake system, automobile and design method |
-
2002
- 2002-03-29 JP JP2002095594A patent/JP3795420B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003287066A (en) | 2003-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3750933B2 (en) | Electric disc brake layout | |
EP1840405B1 (en) | Electric disk brake, caliper for the electric disk brake, motor/controller unit for the electric disk brake, and method for assembling the caliper for the electric disk brake | |
JP5093476B2 (en) | Electric disc brake | |
JPH06327190A (en) | Actuator for electrically driven brake | |
JP3797481B2 (en) | Electric disc brake | |
JP4928085B2 (en) | Electric brake device | |
JP3795420B2 (en) | Electric disc brake | |
US10889282B2 (en) | Vehicle brake device | |
JP4170089B2 (en) | Electric disc brake | |
JP5077604B2 (en) | Electric disc brake | |
JP2008157378A (en) | Motor-driven disc brake | |
JP2003329070A (en) | Electric disc-brake | |
JP3880427B2 (en) | Electric disc brake | |
JP2008115880A (en) | Electric disc-brake | |
JP4060200B2 (en) | Pad clearance adjustment method for electric disc brakes | |
JP4385164B2 (en) | Electric disc brake device | |
JP4152773B2 (en) | Brake operation amount detection device that produces an operation feeling corresponding to the operation amount of the brake pedal | |
JP7257302B2 (en) | disc brake | |
JP5387830B2 (en) | Electric disc brake | |
JP3719663B2 (en) | Electric disc brake | |
JP4706860B2 (en) | Electric disc brake | |
KR20090061967A (en) | Planet gear typed electric mechanical brake system | |
JP3719662B2 (en) | Electric disc brake | |
JP4335375B2 (en) | Actuator for motor-driven drum brake | |
JP2004251336A (en) | Method for changing friction pad of electric disk brake |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060412 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110421 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140421 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |