JP3794038B2 - LAMINATED MATERIAL HAVING PARALLEL COMPOSITE MATERIAL SECOND WORKING MATERIAL AND PROCESS FOR PRODUCING THE SAME - Google Patents

LAMINATED MATERIAL HAVING PARALLEL COMPOSITE MATERIAL SECOND WORKING MATERIAL AND PROCESS FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP3794038B2
JP3794038B2 JP17876795A JP17876795A JP3794038B2 JP 3794038 B2 JP3794038 B2 JP 3794038B2 JP 17876795 A JP17876795 A JP 17876795A JP 17876795 A JP17876795 A JP 17876795A JP 3794038 B2 JP3794038 B2 JP 3794038B2
Authority
JP
Japan
Prior art keywords
composite material
urethane
granular composite
granular
secondary processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17876795A
Other languages
Japanese (ja)
Other versions
JPH0929880A (en
Inventor
育司 辻田
拓治 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17876795A priority Critical patent/JP3794038B2/en
Publication of JPH0929880A publication Critical patent/JPH0929880A/en
Application granted granted Critical
Publication of JP3794038B2 publication Critical patent/JP3794038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃材(たとえば、廃自動車)のシュレッダーダスト(シュレッダーにかけられなくてもシュレッダーダスト程度のサイズにされたダストを含む、以下同じ)から材料リサイクルした粒状複合材料の二次加工材(粒状複合材料を固めて固形体としたもの)を有する積層材料およびその製造方法に関する。
【0002】
【従来の技術】
廃材の材料リサイクルは、たとえば実開平5−85629号公報等で提案されている。
廃材、とりわけ廃車のシュレッダーダストのように、多種類の材料を含む廃材は、従来、鉄、非鉄金属の回収が主目的とされ、残りのプラスチック、ゴム、ウレタン、繊維等はその材料の多様性から材料リサイクルは無理と考えられ、専ら埋立て処分または焼却処分されていた。
廃車シュレッダーダストのうちサイズが20mm以上のものの各種材料比率については、金属類が重量では10%を占めているが、容積にすると1%以下であり、ほとんどすべてが、プラスチック、ゴム、ウレタン、繊維である。そして、廃車シュレッダーダストの年間発生量は、1台当り165kg、年に500万台廃車になるとして825、000トン/年にもなり、それらを埋立処分、焼却処分にすると埋立地の不足、CO2 等の多量発生という問題を生じる。
上記問題を軽減するために、本出願人は先に、シュレッダーダストのうち金属を除いたもの、すなわちプラスチック、ゴム、ウレタン、繊維を含むものを、他の物の材料に利用できるように材料リサイクルした粒状複合材料とその二次加工体、およびそれらの製造方法を提供した(特願平6−250706号、平成6年10月17日出願)。
【0003】
上記先願で提案した粒状複合材料二次加工体およびその製造方法は次の通りである。
シュレッダーダストを原材料とし約10〜20mm以下の各種サイズに粉砕され嵩密度が0.3g/cm3 以下の粒状複合材料と、
該粒状複合材料を固めて所定形状の固形体となしている樹脂材と、
から成る複合材料二次加工体。
シュレッダーダストを原材料とし約10〜20mm以下の各種サイズに粉砕され嵩密度が0.3g/cm3 以下の粒状複合材料と樹脂材とを混合し、
該粒状複合材料と樹脂材との混合物を加熱、固化して所定形状の固形体となす、
工程からなる複合材料二次加工体の製造方法。
上記の粒状複合材料二次加工体およびその製造方法では、嵩密度が0.3g/cm3 以下に管理されているため、粒の各々の材質は多種であるにかかわらず、総じて比重がほぼ一定となり、他の物、たとえば防音材等の原材料として容易に利用され得るようになる。したがって、従来は多種の材料を含むため利用不可能として埋設、焼却されていたものが、嵩密度基準で管理することにより、あたかも1種類の材料を扱うが如くに、他の物への原材料として利用できるようになる。また、複合材料が樹脂材で固められて二次加工(固形化)されるので、とり扱いが容易である。
【0004】
【発明が解決しようとする課題】
防音材とりわけ車両防音材として必要な性能である吸音性能(吸音率)、制振性能(損失係数)、遮音性能(振動伝導率と通気抵抗)に対し、上記先願技術による二次加工体は現行品の3種類(再生綿フェルト、モールドウレタン、PETフェルト)と比較して行うと、吸音率と損失係数で、モールドウレタン、再生綿フェルトと並ぶ高い性能を有し、かつ振動伝達率と通気抵抗では必ずしも優れておらず、PETフェルトに比較的近い材料であることが分かってきた。しかし、上記先願技術による二次加工体もしくは現行品による単一材料では、車両防音材に必要な上記3つの性能をすべて満足する材料は未だ見つかっていない。
本発明の目的は、防音材として必要な3つの性能、すなわち吸音性能、制振性能、遮音性能のすべてを満足することのできる、粒状複合材料二次加工材を有する積層材料およびその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) シュレッダーダストから金属成分が選別除去された、ウレタン、繊維、プラスチック、ゴムを主成分とし、サイズが10mm以上20mm以下の間の値以下の各種サイズに粉砕されることにより粒径によらずに嵩密度が0.3g/cm3 以下に管理された基材を、各種サイズの粉砕において粉砕機の目より所定量大きい目の篩にかけることにより、ウレタン、繊維を主成分とする材料Aと、プラスチック、ゴムを主成分とする材料Bと、に大別された粒状複合材料(1)と、該粒状複合材料(1)の材料Aまたは材料Bを固めて所定形状の固形体となしている繊維状の樹脂材(7)からなる粒状複合材料二次加工材(6)と、
該粒状複合材料二次加工材(6)に積層され、綿フェルト、モールドウレタン、PETフェルトのうち少なくとも1種からなる層(9)と、
からなる粒状複合材料二次加工材を有する積層材料(8)
(2) サイズが10mm以上20mm以下の間の値以上のシュレッダーダストを複合材料の原材料に選定し、
前記シュレッダーダストから、鉄、非鉄金属、ワイヤハーネスを選別除去して、ウレタン、繊維、プラスチック、ゴムを主成分とする軽い材料の混合物を選別し、
前記軽い材料の混合物を粉砕機により粉砕して前記10mm以上20mm以下の間の値以下の各種サイズとすることにより嵩密度が0.3g/cm3 以下の基材とするとともに、各種サイズの粉砕において前記基材を粉砕機の目より所定量大きい目の篩にかけることにより、篩上のウレタン、繊維を主成分とする材料Aと篩を通過したプラスチック、ゴムを主成分とする材料Bとに大別して、粒状複合材料(1)を製造し、
前記粒状複合材料(1)の材料Aまたは材料Bと繊維状の樹脂材(7)とを混合し、該粒状複合材料(1)と樹脂材(7)との混合物を加熱、固化して所定形状の固形体からなる複合材料二次加工材(6)とし、
該複合材料二次加工材(6)に、綿フェルト、モールドウレタン、PETフェルトのうち少なくとも1種からなる層(9)を積層する、
工程からなる粒状複合材料二次加工材を有する積層材料(8)の製造方法。
【0006】
【発明の実施の形態】
以下に、本発明の望ましい実施例を、図面を参照して説明する。
図1は本発明の実施例で用いる粒状複合材料1を示している。この粒状複合材料1は、シュレッダーダスト、たとえば廃車シュレッダーダストを原材料とし、ウレタン2、繊維3、プラスチック4、ゴム5の各粒を主成分とし、各粒のサイズが約10〜20mm以下(10〜20mmの篩を通ったもの)の各種サイズとされ、嵩密度が0.3g/cm3 以下(たとえば、0.3g/cm3 〜0.05g/cm3 )に管理されたものからなる。ここで、嵩密度は、粒状複合材料1を所定容積の容器に押えつけないで満杯に入れ、その時の粒状複合材料1の質量を容器容積で除した値として求められる。
【0007】
図2は、本発明の実施例で用いる、粒状複合材料を固形化した二次加工材6を示している。図2中、1は粒状複合材料であり、サイズが約10〜20mm以下の各種サイズに粉砕され、嵩密度が0.3g/cm3 の、ウレタン、繊維、プラスチック、ゴムを主成分とする混合材料である。また、7は、粒状複合材料を固めて所定形状の固形体となしているバインダーとしての樹脂材である。
樹脂材7は、熱可塑性樹脂または熱硬化性樹脂からなる。樹脂材7は、熱を加えられて粒状複合材料1と固形化される前は、繊維状の熱可塑性樹脂であるポリエステル複合繊維の場合もあり、PEパウダ、フェノールパウダ等の各種繊維材につなぎ材としての雑反毛、綿、麻等の天然繊維を加える場合もあり、さらにはウレタン系接着剤である場合もある。繊維状熱可塑性樹脂を5〜10%混合することにより二次加工材6の防音効果が大となる。
また、二次加工材6が、自動車用防音材(たとえばダッシュサイレンサー)の構成部材に用いられる場合は、粒状複合材料1には望ましくは軽いA材料(ウレタン、繊維)が用いられ、樹脂材7には望ましくは繊維状熱可塑性樹脂が用いられる。
【0008】
図3は本発明の実施例に係る粒状複合材料二次加工材を有する積層材料8を示している。この積層材料8は、上記の二次加工材6に、綿フェルト、モールドウレタン、PETフェルトのうち少なくとも1種からなる層9を積層、接着(接着は接着剤または熱融着による)されたものからなる。そして、防音材として使用する時は、音源側に層9を位置させるように配置する。
【0009】
つぎに、本発明の実施例に係る粒状複合材料二次加工材を有する積層材料8の製造方法を説明する。
粒状複合材料1は、図4に示す方法により製造される。
まず、工程11でシュレッダーダストを用意する。ついで、工程12でこのシュレッダーダストを回転式篩機(目開きが10〜20mmにあるもの)にかけて、サイズが約10〜20mm以上のダストを採取する(篩の上に残ったもの、工程13)。篩を通った小さな粉末状のダストは、廃棄、または他に利用すべく再生する。ついで、工程14にて、約10〜20mm以上のサイズのシュレッダーダストを磁選機にかけて鉄材を除去する。ついで、工程15でシュレッダーダストを非鉄金属選別機にかけてアルミ、銅等の非鉄金属を除去する。上記の磁選機、非鉄金属選別機は従来公知のものでよい。ついで、工程16にワイヤーハーネスを除去する。ワイヤーハーネスは、粒状であるプラスチック、ゴム、ウレタン、繊維等に比べて長く、格子櫛子を通すこと等により除去できる。ワイヤーハーネスを除去したものは、軽い粒状の混合物として選別採取される(工程17)。ついで、この軽い複合物を、工程18にて、回転式粉砕機に少なくとも1段かけて、約10〜20mmのサイズであった粒状ダストを約10〜20mmのサイズ以下の各種サイズ、たとえば1、2、3、6、8、12mm等に粉砕する。この工程で得られたものが基材(工程19)であり、この基材の粒状物は、金属は含まず、サイズが約10〜20mm以下の各種サイズの、プラスチック、繊維、ウレタン、ゴムを主成分とする混合粒状物からなる。この基材は、図5に示すように、嵩密度は、基材上限と基材下限との間にあり、粒径が1〜20mm(図では12mmまでを示した)の範囲では粒径によらず、ほぼ0.3g/cm3 以下(0.3〜0.05g/cm3 )にある。したがって、粒径を工程18で粉砕機にかけて、サイズ1〜20mmの各種サイズとすることにより、種々の材料、すなわちプラスチック、ゴム、ウレタン、繊維を含むにかかわらず、自動的に嵩密度を、0.3g/cm3 以下に管理できる。これによって、他の物の原材料として再利用が容易になり、従来、埋立、焼却されていたものを材料リサイクルできるようになる。
【0010】
さらに、図4に示すように、基材(プラスチック、ゴム、ウレタン、繊維の粒状物)は、工程20で、粉砕粒径+約3mmの目をもつ回転式篩機にかけられ、篩上に残った軽い粒状物(ウレタン、繊維を主成分とする粒状物、以下、材料Aという)と(工程21で採取)、篩下のやや重い粒状物(プラスチック、ゴムを主成分とする粒状物、以下、材料Bという)と(工程22で採取)に、大別される。プラスチック、ゴムは粉砕後の材料の膨張(スプリングバック)による粒径拡大が小で、粉砕機の粉砕粒径より約3mm大の径の目とした篩を通り抜けるが、ウレタン、繊維は粉砕後の膨張による粒径拡大が大で、篩の目を通り抜けることができず、これによって、ウレタン、繊維を主成分とする粒状物と、プラスチック、ゴムを主成分とする粒状物とに大別される。上記で、粉砕粒径が互いに異なる粉砕機で粉砕し、その度毎にその粉砕粒径+3mmの篩で選別することにより、粒状物は、たとえば、約12mmの粒径のA材料、約12mmの粒径のB材料、約8mmの粒径のA材料、約8mmの粒径のB材料、・・・、約1mmの粒径のA材料、約1mmの粒径のB材料に分別できる。そして、それぞれの嵩密度を測定してプロットすると図5に示すようになる。B材料は各種粒径でほぼ単一の嵩密度を示す(嵩密度がほとんどばらつかない)が、A材料は上限値と下限値との間(0.12〜0.03)でばらつく。ただし、そのばらつきは小さく、材料の比重はA材料で約0.06,B材料で約0.23である。そして、このことは粒径の変化、材料の変化の如何を問わずいえることである。このため、多種の材料、1mm〜20mmの種々の粒径を含んだ基材を、さらに比重がほぼ一定の、扱い易い工業材料に分別できることを示し、材料リサイクルがさらに適切に、かつ容易になる。
【0011】
図6は二次加工材6の製造方法の一例を示している。
図6の製造方法では、工程31において、コンベア36で繊維状熱可塑性樹脂を予備解繊工程32に供給する。予備解繊工程32では、解繊機37により繊維状熱可塑性樹脂を予備解繊し、綿状のシートを作製する。ついで、廃材投入工程33で、シュレッダーダストの基材(粒状複合材料1、望ましくは軽いA材料)を綿状シートの上に一定量均一に散布し、ついで混合解繊工程34にてこれを混合解繊する。ついで、工程35で、混合解繊を行った綿状のシートをオーブン40で加熱し、必要厚みに圧縮して冷却を行い、目的の二次加工材6を得る。たとえば、粒状複合材料として表1に示す仕様のものを、繊維状熱可塑性樹脂として表2に示す仕様のものを用いて、二次加工材6を作製する。この二次加工材6は、繊維状樹脂を利用したことにより通気性を有するとともに、強度を有する。また、繊維状樹脂を利用することにより製造工程から出る有害物質も少なくなり、環境衛生面にもよい。
【0012】
【表1】

Figure 0003794038
【0013】
【表2】
Figure 0003794038
【0014】
図7は、図6の工程に積層工程41を加えたもので、この積層工程41において、ラミネート機42により、綿フェルト、モールドウレタン、PETフェルトのうち1種からなる層9を、二次加工材6に積層、接着する。これによって、本発明実施例の粒状複合材料二次加工材を有する積層材料8が得られる。
【0015】
図8〜図11は、二次加工材6の防音性能を、現行品(綿フェルト、モールドウレタン、PETフェルト)との比較で示している。図8〜図11では、二次加工材6をRPS材として示してある。
図8〜図11に示すように、二次加工材6は、吸音率と損失係数で、モールドウレタン、再生綿フェルトと並ぶ高い性能を示し、振動伝達率と通気抵抗でPETフェルトに近い性能を示す。したがって、二次加工材6は、単独では、遮音性能(振動伝達率と通気抵抗)で改良されることが望まれる。
【0016】
図12、図13は、粒状複合材料二次加工材を含む積層材料8(本発明品)の振動伝達率、損失係数を、現行品および二次加工材単独との比較で示している。ただし、図12、図13では、二次加工材6をRSP材として示してある。
図12からわかるように、積層材料8とすることによって振動伝達率がPETフェルトより小さくなり、遮音性能が大幅に改善される。通気抵抗に関しては、二次加工材6と層9の通気抵抗の和となって増大するから、当然に遮音性能は向上する。また、吸音率についても、二次加工材6と層9の吸音率の和になるから、二次加工材6単独の場合に比べて、当然に吸音性能も向上する。また、損失係数については、図13に示すように、二次加工材単独の場合よりさらに増大するので、制振性能も向上する。したがって、積層材料は、吸音性能、制振性能、遮音性能の3つの特性のすべてについて良好となり、防音材として極めて優れていることがわかる。
【0017】
【発明の効果】
請求項1の粒状複合材料二次加工材を有する積層材料によれば、二次加工材と、綿フェルト、モールドウレタン、PETフェルトの少なくとも1種からなる層の積層構造としたので、防音上必要な3つの性能、すなわち、吸音性能、制振性能、遮音性能のすべてを満足する防音材が得られる。
請求項2の粒状複合材料二次加工材を有する積層材料の製造方法によれば、二次加工材に、綿フェルト、モールドウレタン、PETフェルトの少なくとも1種からなる層を積層したので、防音上必要な3つの性能、すなわち、吸音性能、制振性能、遮音性能のすべてを満足する防音材が得られる。
【図面の簡単な説明】
【図1】本発明実施例の積層材料に用いる粒状複合材料の一例を示す図である。
【図2】本発明実施例の積層材料に用いる二次加工材の断面図である。
【図3】本発明実施例の二次加工材を有する積層材料の断面図である。
【図4】本発明実施例の積層材料の製造に用いる粒状複合材料の製造方法を示すブロック図である。
【図5】本発明実施例の積層材料の製造に用いる粒状複合材料の嵩密度と粒のサイズとの関係を示すグラフである。
【図6】本発明実施例の積層材料の製造に用いる二次加工材の製造方法を示すブロック図である。
【図7】図6の製造方法にさらに積層工程を加えたブロック図である。
【図8】二次加工材と現行品の吸音率対周波数特性図である。
【図9】二次加工材と現行品の損失係数対温度特性図である。
【図10】二次加工材と現行品の振動伝達率対周波数特性図である。
【図11】二次加工材と現行品の通気抵抗値のグラフである。
【図12】モールドウレタン+二次加工材(本発明品)、および現行品の振動伝達率対周波数特性図である。
【図13】モールドウレタン+二次加工材(本発明品)、および現行品の損失係数対温度特性図である。
【符号の説明】
1 粒状複合材料
2 ウレタン粒
3 繊維粒
4 プラスチック粒
5 ゴム粒
6 二次加工材
7 樹脂材(バインダー)
8 二次加工材を有する積層材料
9 綿フェルト、モールドウレタン、PETフェルトのうち少なくとも1種からなる層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary processed material (granular material) of a granular composite material recycled from a shredder dust of a waste material (for example, an abandoned automobile) (including dust that has been sized to the extent of shredder dust even if not applied to a shredder). The present invention relates to a laminate material having a composite material solidified) and a method for producing the same.
[0002]
[Prior art]
Material recycling of waste materials has been proposed in, for example, Japanese Utility Model Publication No. 5-85629.
Waste materials, especially waste materials that contain many types of materials, such as shredder dust from scrap cars, have traditionally been mainly used to recover ferrous and non-ferrous metals, and the remaining plastics, rubber, urethane, fibers, etc. have a variety of materials. Therefore, it was considered impossible to recycle the materials, and they were exclusively landfilled or incinerated.
The ratio of various materials of scrap car shredder dust with a size of 20 mm or more is 10% by weight for metals, but less than 1% for volume, and almost all of them are plastic, rubber, urethane, fiber It is. And the annual amount of scrap car shredder dust generated is 165 kg per car, and it is 825,000 tons / year when it becomes 5 million car scraps per year. This causes the problem of a large amount of 2 etc.
In order to alleviate the above problems, the present applicant has first made a material recycling so that the shredder dust excluding metal, that is, plastic, rubber, urethane, and fiber can be used for other materials. A granular composite material, a secondary processed body thereof, and a production method thereof were provided (Japanese Patent Application No. 6-250706, filed on October 17, 1994).
[0003]
The granular composite material secondary processed body and its manufacturing method proposed in the above-mentioned prior application are as follows.
A granular composite material having shredder dust as a raw material and pulverized into various sizes of about 10 to 20 mm or less and having a bulk density of 0.3 g / cm 3 or less,
A resin material formed by solidifying the granular composite material into a solid body having a predetermined shape;
Composite material secondary processing body consisting of.
Using a shredder dust as a raw material, a granular composite material having a bulk density of 0.3 g / cm 3 or less and pulverized into various sizes of about 10 to 20 mm or less and a resin material are mixed,
Heating and solidifying the mixture of the granular composite material and the resin material to form a solid body having a predetermined shape;
The manufacturing method of the composite material secondary processing body which consists of a process.
In the above-mentioned granular composite material secondary processed body and its manufacturing method, since the bulk density is controlled to 0.3 g / cm 3 or less, the specific gravity is almost constant as a whole regardless of the variety of materials of the grains. Thus, it can be easily used as a raw material for other objects such as a soundproofing material. Therefore, in the past, what was buried and incinerated as being unusable because it contains a variety of materials can be managed as a raw material for other things as if it were handled by one kind of material by managing on the basis of the bulk density standard. It becomes available. Further, since the composite material is hardened with a resin material and subjected to secondary processing (solidification), handling is easy.
[0004]
[Problems to be solved by the invention]
For the soundproofing materials, especially the soundproofing performance (sound absorption coefficient), the vibration damping performance (loss factor), and the sound insulation performance (vibration conductivity and ventilation resistance), which are necessary performance as a vehicle soundproofing material, Compared with the current three types (recycled cotton felt, molded urethane, PET felt), the sound absorption coefficient and loss factor are as high as those of molded urethane and recycled cotton felt. Resistance has not always been excellent and has been found to be a relatively close material to PET felt. However, no material satisfying all of the above three performances required for the vehicle soundproofing material has been found yet in the secondary material by the prior application technique or the single material of the current product.
An object of the present invention is to provide a laminated material having a granular composite material secondary processing material that can satisfy all three performances necessary as a soundproofing material, that is, a sound absorbing performance, a vibration damping performance, and a sound insulation performance, and a method for producing the same. It is to provide.
[0005]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
(1) The main component is urethane, fiber, plastic, and rubber, from which metal components are selectively removed from shredder dust, and the size is pulverized into various sizes having a value between 10 mm and 20 mm. A material mainly composed of urethane and fibers is obtained by passing a base material whose bulk density is controlled to 0.3 g / cm 3 or less through a sieve having a predetermined amount larger than that of a pulverizer in various sizes of pulverization. and a, plastics, and material B composed mainly of rubber, and roughly classified by particulate composite material (1), and a solid body of predetermined shape solidifying material a or material B of particulate composite material (1) A fibrous resin material (7) , and a granular composite material secondary processing material (6) comprising:
Layered on the granular composite material (6) , and a layer (9) comprising at least one of cotton felt, molded urethane and PET felt;
Laminated material (8) which has the granular composite material secondary processing material which consists of.
(2) Select a shredder dust having a size of 10 mm or more and 20 mm or less as a raw material of the composite material,
From the shredder dust, iron, non-ferrous metals, wire harnesses are selectively removed, and a mixture of light materials mainly composed of urethane, fiber, plastic, rubber is selected,
The mixture of light materials is pulverized by a pulverizer to obtain various sizes having a value between 10 mm and 20 mm inclusive, thereby obtaining a base material having a bulk density of 0.3 g / cm 3 or less and pulverization of various sizes. In the above, the base material is passed through a sieve having a predetermined amount larger than the eyes of the pulverizer, whereby urethane on the sieve, material A containing fiber as a main component, plastic passing through the sieve, and material B containing rubber as a main component; In general, the granular composite material (1) is manufactured,
The material A or material B of the granular composite material (1) and the fibrous resin material (7) are mixed, and the mixture of the granular composite material (1) and the resin material (7) is heated and solidified to be predetermined. As a composite material secondary processing material (6) made of a solid body of shape,
Laminating a layer (9) composed of at least one of cotton felt, molded urethane, and PET felt on the composite material secondary processing material (6) .
The manufacturing method of the laminated material (8) which has the granular composite material secondary processing material which consists of a process.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a granular composite material 1 used in an embodiment of the present invention. This granular composite material 1 is made of shredder dust, for example, scrap car shredder dust, as a raw material, mainly composed of grains of urethane 2, fiber 3, plastic 4 and rubber 5, and the size of each grain is about 10 to 20 mm or less (10 to 10 mm). And having a bulk density of 0.3 g / cm 3 or less (for example, 0.3 g / cm 3 to 0.05 g / cm 3 ). Here, the bulk density is obtained as a value obtained by filling the granular composite material 1 without pressing it into a container having a predetermined volume and dividing the mass of the granular composite material 1 at that time by the container volume.
[0007]
FIG. 2 shows the secondary processed material 6 obtained by solidifying the granular composite material used in the embodiment of the present invention. In FIG. 2, reference numeral 1 denotes a granular composite material, which is pulverized into various sizes of about 10 to 20 mm or less and mixed mainly with urethane, fiber, plastic, and rubber having a bulk density of 0.3 g / cm 3. Material. Reference numeral 7 denotes a resin material as a binder formed by solidifying a granular composite material into a solid body having a predetermined shape.
The resin material 7 is made of a thermoplastic resin or a thermosetting resin. The resin material 7 may be a polyester composite fiber that is a fibrous thermoplastic resin before being solidified with the granular composite material 1 by applying heat, and is connected to various fiber materials such as PE powder and phenol powder. Natural fibers such as cotton, hemp, etc. may be added as a material, and there may be a urethane adhesive. By mixing 5 to 10% of the fibrous thermoplastic resin, the soundproofing effect of the secondary processed material 6 is increased.
Further, when the secondary processed material 6 is used as a constituent member of an automobile soundproofing material (for example, a dash silencer), a light A material (urethane, fiber) is desirably used for the granular composite material 1, and a resin material 7 Preferably, a fibrous thermoplastic resin is used.
[0008]
FIG. 3 shows a laminated material 8 having a granular composite material secondary processing material according to an embodiment of the present invention. This laminated material 8 is obtained by laminating a layer 9 made of at least one of cotton felt, molded urethane, and PET felt on the secondary processed material 6 and bonding (bonding is performed by an adhesive or heat fusion). Consists of. And when using as a soundproof material, it arrange | positions so that the layer 9 may be located in the sound source side.
[0009]
Below, the manufacturing method of the laminated material 8 which has a granular composite material secondary processing material which concerns on the Example of this invention is demonstrated.
The granular composite material 1 is manufactured by the method shown in FIG.
First, in step 11, shredder dust is prepared. Next, in step 12, the shredder dust is passed through a rotary sieving machine (having an opening of 10 to 20 mm), and dust having a size of about 10 to 20 mm or more is collected (remaining on the sieve, step 13). . The small powdery dust that passes through the sieve is discarded or regenerated for other uses. Next, in step 14, the shredder dust having a size of about 10 to 20 mm or more is applied to a magnetic separator to remove the iron material. Next, in step 15, the shredder dust is applied to a non-ferrous metal sorter to remove non-ferrous metals such as aluminum and copper. The magnetic separator and non-ferrous metal sorter described above may be conventionally known ones. Next, in step 16, the wire harness is removed. The wire harness is longer than granular plastic, rubber, urethane, fiber and the like, and can be removed by passing a lattice comb. The product from which the wire harness has been removed is selected and collected as a light granular mixture (step 17). The light composite is then subjected to at least one stage on a rotary grinder in step 18 to form granular dust having a size of about 10 to 20 mm in various sizes of about 10 to 20 mm or less, such as 1, Grind to 2, 3, 6, 8, 12 mm, etc. What was obtained in this step is a base material (step 19), and the granular material of this base material does not contain metal, and plastic, fiber, urethane, rubber of various sizes having a size of about 10 to 20 mm or less. It consists of a mixed granular material as a main component. As shown in FIG. 5, the base material has a bulk density between the base material upper limit and the base material lower limit, and the particle size is in the range of 1 to 20 mm (up to 12 mm in the figure). Regardless, it is approximately 0.3 g / cm 3 or less (0.3 to 0.05 g / cm 3 ). Therefore, by applying the particle diameter to a pulverizer in step 18 to obtain various sizes of 1 to 20 mm, the bulk density is automatically reduced to 0 regardless of including various materials, that is, plastic, rubber, urethane, and fiber. It can be managed at 3 g / cm 3 or less. This facilitates reuse as a raw material for other materials, and materials that have been previously landfilled or incinerated can be recycled.
[0010]
Further, as shown in FIG. 4, the base material (plastic, rubber, urethane, fiber granule) is subjected to a rotary sieving machine having a pulverized particle size + about 3 mm in Step 20 and remains on the sieve. Light particulates (urethane, particulates mainly composed of fiber, hereinafter referred to as material A) and (collected in step 21), slightly heavy particulates under sieve (particulates mainly composed of plastic and rubber, below) , Material B) and (collected in step 22). Plastic and rubber have a small particle size expansion due to expansion (spring back) of the material after pulverization, and pass through a sieve having a diameter about 3 mm larger than the pulverized particle size of the pulverizer. The particle size expansion due to expansion is large and cannot pass through the screen of the sieve, so that it is broadly divided into granular materials mainly composed of urethane and fiber, and granular materials mainly composed of plastic and rubber. . In the above, by pulverizing with a pulverizer having different pulverized particle diameters and selecting each time with a pulverized particle diameter + 3 mm sieve, the granular material is, for example, A material having a particle diameter of about 12 mm, B material having a particle size, A material having a particle size of about 8 mm, B material having a particle size of about 8 mm,..., A material having a particle size of about 1 mm, and B material having a particle size of about 1 mm. And when each bulk density is measured and plotted, it will become as shown in FIG. The B material exhibits almost a single bulk density at various particle sizes (the bulk density hardly varies), but the A material varies between the upper limit value and the lower limit value (0.12-0.03). However, the variation is small, and the specific gravity of the material is about 0.06 for the A material and about 0.23 for the B material. This is true regardless of the change in particle size or the change in material. For this reason, it shows that a base material including various materials and various particle diameters of 1 mm to 20 mm can be further separated into industrial materials that have a substantially constant specific gravity and are easy to handle, and material recycling becomes more appropriate and easy. .
[0011]
FIG. 6 shows an example of a method for manufacturing the secondary workpiece 6.
In the manufacturing method of FIG. 6, in step 31, the fibrous thermoplastic resin is supplied to the preliminary defibrating step 32 by the conveyor 36. In the preliminary defibrating step 32, the fibrous thermoplastic resin is preliminarily defibrated by the defibrator 37 to produce a cotton-like sheet. Next, in a waste material input step 33, a fixed amount of a shredder dust base material (granular composite material 1, preferably light A material) is uniformly sprayed on a cotton-like sheet, and then mixed in a mixing and defibrating step 34. Defibration. Next, in step 35, the cotton-like sheet subjected to the mixed defibrating is heated in an oven 40, compressed to a necessary thickness and cooled, and the intended secondary processed material 6 is obtained. For example, the secondary processed material 6 is manufactured using the granular composite material having the specifications shown in Table 1 and the fibrous thermoplastic resin having the specifications shown in Table 2. The secondary processed material 6 has air permeability and strength by using a fibrous resin. In addition, the use of fibrous resin reduces harmful substances from the manufacturing process, which is good for environmental hygiene.
[0012]
[Table 1]
Figure 0003794038
[0013]
[Table 2]
Figure 0003794038
[0014]
FIG. 7 is obtained by adding a laminating process 41 to the process of FIG. 6. In this laminating process 41, the laminating machine 42 performs secondary processing on the layer 9 made of one of cotton felt, molded urethane, and PET felt. Laminated and bonded to the material 6. Thereby, the laminated material 8 which has the granular composite material secondary processing material of this invention Example is obtained.
[0015]
8 to 11 show the soundproofing performance of the secondary processed material 6 in comparison with the current products (cotton felt, molded urethane, PET felt). 8 to 11, the secondary processed material 6 is shown as an RPS material.
As shown in FIGS. 8 to 11, the secondary processed material 6 shows a high performance comparable to that of molded urethane and recycled cotton felt in terms of sound absorption coefficient and loss coefficient, and performance close to that of PET felt in terms of vibration transmissibility and ventilation resistance. Show. Therefore, it is desired that the secondary processed material 6 be improved alone with sound insulation performance (vibration transmission rate and ventilation resistance).
[0016]
12 and 13 show the vibration transmissibility and loss factor of the laminated material 8 (product of the present invention) including the granular composite material secondary processed material in comparison with the current product and the secondary processed material alone. However, in FIG. 12, FIG. 13, the secondary processed material 6 is shown as RSP material.
As can be seen from FIG. 12, by using the laminated material 8, the vibration transmissibility becomes smaller than that of the PET felt, and the sound insulation performance is greatly improved. Since the airflow resistance increases as the sum of the airflow resistance of the secondary processed material 6 and the layer 9, the sound insulation performance is naturally improved. Moreover, since the sound absorption coefficient is the sum of the sound absorption coefficient of the secondary processed material 6 and the layer 9, the sound absorption performance is naturally improved as compared with the case of the secondary processed material 6 alone. Further, as shown in FIG. 13, the loss factor is further increased as compared with the case of the secondary work material alone, so that the damping performance is also improved. Therefore, it can be seen that the laminated material is excellent in all three characteristics of the sound absorption performance, the vibration damping performance, and the sound insulation performance, and is extremely excellent as a soundproof material.
[0017]
【The invention's effect】
According to the laminated material having the granular composite material secondary processing material according to claim 1, it is necessary for soundproofing because the secondary processing material and the layered structure of at least one of cotton felt, molded urethane, and PET felt are used. Thus, a soundproof material satisfying all three performances, that is, sound absorption performance, vibration control performance, and sound insulation performance can be obtained.
According to the method for producing a laminated material having the granular composite material secondary processing material according to claim 2, since a layer made of at least one of cotton felt, molded urethane, and PET felt is laminated on the secondary processing material, It is possible to obtain a soundproof material that satisfies all three required performances, that is, sound absorption performance, vibration control performance, and sound insulation performance.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a granular composite material used for a laminated material of an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a secondary processed material used for a laminated material according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a laminated material having a secondary processed material according to an embodiment of the present invention.
FIG. 4 is a block diagram showing a method for producing a granular composite material used for producing a laminated material according to an embodiment of the present invention.
FIG. 5 is a graph showing the relationship between the bulk density and grain size of a granular composite material used in the production of a laminated material of an example of the present invention.
FIG. 6 is a block diagram showing a method for manufacturing a secondary processed material used for manufacturing a laminated material according to an embodiment of the present invention.
7 is a block diagram in which a stacking step is further added to the manufacturing method of FIG. 6;
FIG. 8 is a diagram of sound absorption coefficient versus frequency characteristics of the secondary processed material and the current product.
FIG. 9 is a characteristic diagram of loss factor versus temperature of the secondary processed material and the current product.
FIG. 10 is a diagram of vibration transmissibility versus frequency characteristics of the secondary processed material and the current product.
FIG. 11 is a graph of ventilation resistance values of the secondary processed material and the current product.
FIG. 12 is a graph showing vibration transmissibility versus frequency characteristics of molded urethane + secondary processed material (product of the present invention) and the current product.
FIG. 13 is a graph showing loss coefficient versus temperature characteristics of molded urethane + secondary processed material (product of the present invention) and a current product.
[Explanation of symbols]
1 granular composite material 2 urethane particle 3 fiber particle 4 plastic particle 5 rubber particle 6 secondary processing material 7 resin material (binder)
8 Laminated material having secondary processed material 9 Layer composed of at least one of cotton felt, molded urethane, PET felt

Claims (2)

シュレッダーダストから金属成分が選別除去された、ウレタン、繊維、プラスチック、ゴムを主成分とし、サイズが10mm以上20mm以下の間の値以下の各種サイズに粉砕されることにより粒径によらずに嵩密度が0.3g/cm3 以下に管理された基材を、各種サイズの粉砕において粉砕機の目より所定量大きい目の篩にかけることにより、ウレタン、繊維を主成分とする材料Aと、プラスチック、ゴムを主成分とする材料Bと、に大別された粒状複合材料(1)と、該粒状複合材料(1)の材料Aまたは材料Bを固めて所定形状の固形体となしている繊維状の樹脂材(7)からなる粒状複合材料二次加工材(6)と、
該粒状複合材料二次加工材(6)に積層され、綿フェルト、モールドウレタン、PETフェルトのうち少なくとも1種からなる層(9)と、
からなる粒状複合材料二次加工材を有する積層材料(8)
Bulking regardless of particle size by grinding to various sizes with a size between 10 mm and 20 mm, with urethane, fiber, plastic and rubber as the main components, with metal components selected and removed from shredder dust. By applying the base material whose density is controlled to 0.3 g / cm 3 or less to a sieve having a predetermined amount larger than that of a pulverizer in pulverization of various sizes, a material A mainly composed of urethane and fibers, plastic, and the material B composed mainly of rubber, the roughly classified by particulate composite material (1), and form a solid body having a predetermined shape to solidify the material a or material B of particulate composite material (1) A fibrous composite material (7) , and a granular composite material secondary processing material (6) comprising:
Layered on the granular composite material (6) , and a layer (9) comprising at least one of cotton felt, molded urethane and PET felt;
Laminated material (8) which has the granular composite material secondary processing material which consists of.
サイズが10mm以上20mm以下の間の値以上のシュレッダーダストを複合材料の原材料に選定し、
前記シュレッダーダストから、鉄、非鉄金属、ワイヤハーネスを選別除去して、ウレタン、繊維、プラスチック、ゴムを主成分とする軽い材料の混合物を選別し、
前記軽い材料の混合物を粉砕機により粉砕して前記10mm以上20mm以下の間の値以下の各種サイズとすることにより嵩密度が0.3g/cm3 以下の基材とするとともに、各種サイズの粉砕において前記基材を粉砕機の目より所定量大きい目の篩にかけることにより、篩上のウレタン、繊維を主成分とする材料Aと篩を通過したプラスチック、ゴムを主成分とする材料Bとに大別して、粒状複合材料(1)を製造し、
前記粒状複合材料(1)の材料Aまたは材料Bと繊維状の樹脂材(7)とを混合し、該粒状複合材料(1)と樹脂材(7)との混合物を加熱、固化して所定形状の固形体からなる複合材料二次加工材(6)とし、
該複合材料二次加工材(6)に、綿フェルト、モールドウレタン、PETフェルトのうち少なくとも1種からなる層(9)を積層する、
工程からなる粒状複合材料二次加工材を有する積層材料(8)の製造方法。
Select shredder dust whose size is between 10 mm and 20 mm or more as the raw material of the composite material,
From the shredder dust, iron, non-ferrous metals, wire harnesses are selectively removed, and a mixture of light materials mainly composed of urethane, fiber, plastic, rubber is selected,
The mixture of light materials is pulverized by a pulverizer to obtain various sizes having a value between 10 mm and 20 mm inclusive, thereby obtaining a base material having a bulk density of 0.3 g / cm 3 or less and pulverization of various sizes. In the above, the base material is passed through a sieve having a predetermined amount larger than the eyes of the pulverizer, whereby urethane on the sieve, material A containing fiber as a main component, plastic passing through the sieve, and material B containing rubber as a main component; In general, the granular composite material (1) is manufactured,
The material A or material B of the granular composite material (1) and the fibrous resin material (7) are mixed, and the mixture of the granular composite material (1) and the resin material (7) is heated and solidified to be predetermined. As a composite material secondary processing material (6) made of a solid body of shape,
Laminating a layer (9) composed of at least one of cotton felt, molded urethane, and PET felt on the composite material secondary processing material (6) .
The manufacturing method of the laminated material (8) which has the granular composite material secondary processing material which consists of a process.
JP17876795A 1995-07-14 1995-07-14 LAMINATED MATERIAL HAVING PARALLEL COMPOSITE MATERIAL SECOND WORKING MATERIAL AND PROCESS FOR PRODUCING THE SAME Expired - Lifetime JP3794038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17876795A JP3794038B2 (en) 1995-07-14 1995-07-14 LAMINATED MATERIAL HAVING PARALLEL COMPOSITE MATERIAL SECOND WORKING MATERIAL AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17876795A JP3794038B2 (en) 1995-07-14 1995-07-14 LAMINATED MATERIAL HAVING PARALLEL COMPOSITE MATERIAL SECOND WORKING MATERIAL AND PROCESS FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JPH0929880A JPH0929880A (en) 1997-02-04
JP3794038B2 true JP3794038B2 (en) 2006-07-05

Family

ID=16054265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17876795A Expired - Lifetime JP3794038B2 (en) 1995-07-14 1995-07-14 LAMINATED MATERIAL HAVING PARALLEL COMPOSITE MATERIAL SECOND WORKING MATERIAL AND PROCESS FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP3794038B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252660A (en) * 2012-06-07 2013-12-19 Unitika Ltd Mounting material for interior
DE102017102541A1 (en) * 2017-02-09 2018-08-09 Leonhard Kurz Stiftung & Co. Kg Process for producing a plastic molding with a decorated surface and a plastic molding
JP7017791B2 (en) * 2019-07-22 2022-02-09 株式会社辰巳エヤーエンジニアリング Soundproof base material manufacturing equipment

Also Published As

Publication number Publication date
JPH0929880A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP3273188B2 (en) Method of recycling thermosetting polyurethane flexible foam
US10329701B2 (en) Method of forming a nonwoven molded article
CN110831732B (en) Oriented strand board, method of manufacturing oriented strand board, and apparatus for manufacturing oriented strand board
CN101715473B (en) Composite counterweight and method of making same
KR20110110145A (en) Nonwoven textile made from short fibers
US4296168A (en) Padding sheet formed of a mixture of fibers bonded at their intersections
US5786280A (en) Molded part and method of its production
JP3794038B2 (en) LAMINATED MATERIAL HAVING PARALLEL COMPOSITE MATERIAL SECOND WORKING MATERIAL AND PROCESS FOR PRODUCING THE SAME
EP0528246A2 (en) A method and a system for recycling waste materials including plastics materials
JP3472117B2 (en) Production method of soundproofing material
US5786279A (en) Molded park from recycled used-carpets
US5662994A (en) Molded part and method of its production
JP3210813B2 (en) Granular composite material, secondary processed product thereof, and method for producing the same
JP3618595B2 (en) Production method of soundproofing material
JPS6073812A (en) Semimanufacture for manufacturing part consisting of thermoplastic material and manufacture thereof
US7918952B1 (en) Process for transforming headliner
JPH07205169A (en) Production of molded soundproof material
JPH08226061A (en) Lamination molded article of fiber-reinforced resin and its production
JPH11147209A (en) Fiber board and manufacture of fiber board
EP0704287A2 (en) Method for manufacturing a damping panel and panel made therefrom
JP3900753B2 (en) Reproduction method of soundproof material
JPH08226059A (en) Molding of fiber-reinforced resin and its production
JP2000276179A (en) Sound absorbing material and production of this sound absorbing material
CN107599557B (en) Shape-stable composite material with a layer of fibre-reinforced recycled ground material
JPH07204619A (en) Method for recycling waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term